説明

分離膜付き多孔質体

【課題】複数の管状通路を備えていても分離膜付き多孔質体全体として分離効率の高い分離膜付き多孔質体を提供する。
【解決手段】多孔質体12に設けられた貫通孔の内壁に分離機能を有する分離膜を形成した管状通路11を複数備える分離膜付き多孔質体1であって、前記管状通路の長さ方向に垂直な断面において、前記多孔質体の中心近傍に位置する前記管状通路の断面積が、前記多孔質体の外周近傍に位置する前記管状通路の断面積よりも小さくすることにより、分離膜付き多孔質体全体として高い分離効率を得ることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、分離膜付き多孔質体に関し、特に、含水アルコールの脱水濃縮、天然ガス分離、石油プラントにおける異性体分離等の技術において有用な分離膜付き多孔質体に関するものである。
【背景技術】
【0002】
従来より、各種ガスを含有する混合気体中から特定ガスを分離するフィルタや、含水アルコールから水分を除去するフィルタ、触媒を担持したメンブレンリアクター等が用いられているが、安全かつ簡便なことからその適用範囲が拡がり、今やこれらの分離濃縮技術は各種燃焼機関をはじめ、食品工業や医療用機器、化学プラントや石油精製プラントの蒸留の一部代替、更には溶剤の回収処理、廃棄物処理等の分野でも注目されている。
【0003】
例えば、水素ガスを分離するフィルタとしては、石油精製プラントにおいて発生するオフガスや、アンモニア合成プラントにおいて発生するパージガスからの水素ガスの回収などに、また二酸化炭素を分離するフィルタとしては、燃費の向上およびパイプラインの腐食防止を目的に天然ガスに含まれる二酸化炭素の除去への応用が研究されている。さらに、酸素を分離するフィルタとしては、医療機器、スポーツ機器、各種燃焼機関用として応用されている。
【0004】
従来のフィルタでは、例えばセラミックス製の多孔質体に非分離流体を通す貫通孔を設け、この貫通孔の内壁に分離機能を有する例えば炭素膜等が成膜された分離膜付き多孔質体を用いるものがあり、分離膜付き多孔質体としては、円筒状の多孔質体の内側に一つの管状通路を有するチューブラー型や、円柱状の多孔質体の内部に、その円柱の長さ方向に平行な複数の管状通路を有するモノリス型等が知られている(特許文献1を参照)。特にモノリス型はチューブラー型と比較して被分離流体を多量に流すことができ、フィルタに配置する分離膜付き多孔質体の数を低減できるため、分離膜付き多孔質体の交換、取り付け作業による装置の稼働率の低下や作業中の破損、シール不良の問題を防ぐことができる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−221177号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
図3に示すようなモノリス型の分離膜付き多孔質体では、多孔質体の中心近傍に位置する管状通路における分離成分の分離効率は、外周近傍に位置する管状通路における分離効率よりも低くなり、分離膜付き多孔質体全体の分離効率が低下し、たとえば被分離流体を濃縮して取り出す場合には、取り出された被分離流体が充分に濃縮されずに再分離処理が必要になるという問題があった。これは、分離膜付き多孔質体において管状通路から分離された分離成分は、多孔質体内部を多孔質体外周表面に向け、多孔質体の気孔(細孔)内部と外周表面に接する雰囲気中との分離成分の分圧差を駆動力として移動することにより分離膜から排出されるが、図3に示すようなモノリス型の分離膜付き多孔質体では、円柱の外周近傍に位置する管状通路と比較して、円柱の軸の近傍に位置する管状通路で分離された分離成分は、多孔質体内部における移動距離が長く、排出されにくいためである。
【0007】
本発明は上記の課題に鑑みてなされたものであり、複数の管状通路を備えていても分離
膜付き多孔質体全体として分離効率の高い分離膜付き多孔質体を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の分離膜付き多孔質体は、多孔質体に設けられた貫通孔の内壁に分離機能を有する分離膜を形成した管状通路を複数備える分離膜付き多孔質体であって、前記管状通路の長さ方向に垂直な断面において、前記多孔質体の中心近傍に位置する前記管状通路の断面積が、前記多孔質体の外周近傍に位置する前記管状通路の断面積よりも小さいことを特徴とする。
【発明の効果】
【0009】
本発明の分離膜付き多孔質体では、多孔質体の中心近傍に位置する管状通路の断面積を小さくすることにより、多孔質体の中心近傍に位置する管状通路を流れる被分離流体の流量を低減することにより、分離膜付き多孔質体全体として高い分離効率を得ることができる。
【図面の簡単な説明】
【0010】
【図1】本発明の実施形態の一例であるモノリス型分離膜付き多孔質体の、管状通路の長さ方向に垂直な断面図である。
【図2】本発明の実施例におけるモノリス型分離膜付き多孔質体の、管状通路の長さ方向に垂直な断面図である。
【図3】従来のモノリス型分離膜付き多孔質体の一例を示す斜視図である。
【発明を実施するための形態】
【0011】
図1は、本発明の実施形態の一例であるモノリス型の分離膜付き多孔質体の、管状通路の長さ方向に垂直な断面図である。分離膜付き多孔質体1は、例えば円柱状のセラミックス製の多孔質体12に設けられた円形の断面形状を有する貫通孔の内壁に、分離機能を有する例えば炭素膜等の分離膜12aが形成された、13本の管状通路11が配置されたものである。このような分離膜付き多孔質体1においては、管状通路11の両端における圧力差は、分離膜付き多孔質体1の両端における圧力差に等しく一定に保たれているため、管状通路11を流れる被分離流体の流速はいずれも等しくなる。
【0012】
本実施形態では、管状通路11の長さ方向に垂直な断面における多孔質体12の中心近傍に位置する管状通路11aの断面積を、多孔質体12の外周近傍に位置する管状通路11cの断面積よりも小さくすることにより、管状通路11a内を通過する被分離流体の流量が、管状通路11c内を流れる被分離流体の流量よりも少なくなる。したがって、管状通路11aと管状通路11cの分離膜の性能が等しい場合、より分離成分を排出しやすい管状通路11cではより多くの分離成分を分離して多孔質体12の外周表面13から排出するが、より分離成分が排出されにくい管状通路11aでは、分離される分離成分の量が少ないため、多孔質体12の細孔内の移動距離が長くても多孔質体12の外周表面13に比較的排出されやすくなる。結果として、管状通路11aおよび11cを通過する被分離流体の濃縮率の差が低減され、分離膜付き多孔質体全体として高い分離効率が得られる。
【0013】
なお、多孔質体12の外周近傍から中心にかけて、複数の管状通路11が存在する場合は、管状通路11の断面積は、管状通路11の設置位置が、多孔質体12の外周から遠ざかるに従って小さくなっていることが好ましい。すなわち、管状通路11の長さ方向に垂直な方向の断面において、多孔質体12の中心近傍に位置する中央部管状通路11aの断面積をA、多孔質体12の外周近傍に位置する外周部管状通路11cの断面積をA、管状通路11aと11cの間に位置する中間部管状通路11bの断面積をAとした場合、各管状通路11の断面積が、関係式
<A<A ・・・式1
を満たすことが好ましい。
【0014】
このように、管状通路11の断面積A、すなわち管状通路11を通過する被分離流体の流量を、管状通路11が多孔質体12の外周表面13から遠ざかるに従って低減することにより、各管状通路11管を通過する被分離流体の濃縮率の差をさらに低減することができる。
【0015】
管状通路11の断面積Aは、具体的には、多孔質体12の直径、気孔率、細孔径、細孔分布等や、管状通路11の設置位置により決定される必要があるが、管状通路11における断面積A、および管状通路11の幾何学的重心位置と多孔質体12の外周表面13との最短距離Lを、任意の二つの管状通路11i、11jについて、より多孔質体12の中心近傍に位置する管状通路11iにおいてはAおよびLとし、より多孔質体12の外周近傍に位置する管状通路11jにおいてはAおよびLとした場合、Aが以下の関係式
(L/L≦(A/A)≦(L/L) ・・・式2
を満たすことが好ましい。上記関係式を満たすことにより、分離成分が多孔質体外周表面から排出されるまでの距離と、多孔質体12の断面における分離成分の拡散面積に応じて、管状通路11内を通過する被分離流体の流量を適度に調節することができる。Aが上記式2の上限よりも大きい場合は、管状通路11iから排出される被分離流体の濃縮率が低くなり、分離膜付き多孔質体全体の分離効率を向上することが難しくなる。一方、Aが上記式2の下限よりも小さい場合は、管状通路11iを通過する被分離流体の濃縮率が管状通路11jより高くなる場合もあるが、分離膜付き多孔質体全体としての被分離流体の流量が少なくなり、処理能力が低下する。
【0016】
例えば、中央部管状通路11a、中間部管状通路11b、外周部管状通路11cの半径をそれぞれR、R、R、各管状通路の中心と多孔質体12の外周表面13との最短距離をそれぞれL、L、Lとした時、
(L/L≦(R/R≦(L/L
(L/L≦(R/R≦(L/L
(L/L≦(R/R≦(L/L
の関係とするのが好ましい。
【0017】
また、例えば多孔質体12の中央近傍に配置される管状通路11aにおいて、外周近傍に配置された管状通路11cの断面積と等しい面積の中に、複数の管状通路11a群を配置することにより、被分離流体の流量を低減するとともに分離膜の面積が増大し、管状通路11a群を通過する被分離流体の濃縮率をより高くすることができる。
【0018】
本発明においては、モノリス型の分離膜付き多孔質体1の形状は円柱状に限るものではなく、例えば楕円柱状や、三角柱、四角柱等の多角柱状でもかまわない。多角柱状の場合は所望により多角形の角を丸めることもできる。また、管状通路11の長さ方向に垂直な断面における管状通路11の断面形状も、円形に限るものではなく、例えば楕円形や、三角形、四角形等の多角形としても構わない。なお、管状通路11の断面形状が円形以外の場合、多孔質体12の断面および管状通路11の断面の中心とは、幾何学的な重心をいい、多孔質体12における管状通路11の設置位置は、この幾何学的な重心により規定される。
【0019】
本発明の分離膜付き多孔質体の製造方法について、その一例を説明する。
【0020】
まず、所定の貫通孔が設けられた多孔質体12を準備する。多孔質体12の種々の形状
や貫通孔の配置等については、たとえば押出成形で成形するのであれば金型等を適宜設計して所望の成形体を作製してもよいし、成形体や焼成体に加工を施してもよい。
【0021】
多孔質体12の材料としては、アルミナ、ムライト、コージェライト、ジルコニア、マグネシア、炭化珪素、窒化珪素などのセラミックスを好適に用いることができる。多孔質体12を構成するセラミック粒子の平均粒径は1〜100μm、好ましくは1〜30μmの範囲であり、平均細孔径は0.1〜30μm、好ましくは0.1〜10μmの範囲であることが好ましい。
【0022】
管状通路となる多孔質体12の貫通孔の内壁には、分離膜との間に多孔質体12よりも平均粒径が小さいセラミック粒子で構成される中間層を設けてもよい。中間層の材料としては、アルミナ、ムライト、コージェライト、ジルコニア、マグネシア、炭化珪素、窒化珪素などのセラミックスを好適に用いることができる。中間層は、たとえば平均粒径0.01〜10μm、好ましくは0.02〜1μmのセラミック粒子からなる原料粉末を適宜秤量し、例えば親水性の分散剤を用いて水に分散させ、例えばディップコート法(浸漬塗布法)などの塗布手段を用いて多孔質体12の貫通孔の内壁に塗布し、乾燥した後、熱処理することで形成できる。このとき、形成された中間層を構成するセラミック粒子はネックにより部分的に結合していればよく、その粒径は原料粉末の粒径にほぼ等しい。中間層の厚さは、例えば浸漬時間や浸漬回数により調整可能であり、例えば5〜1000μmの範囲とすることができる。また、中間層の平均細孔径は0.01〜3μm、好ましくは0.1〜0.5μmの範囲で適宜選択すればよい。中間層の厚さは、多孔質体12の貫通孔の内壁に存在する凹凸を中間層で覆うことができる厚さであればよい。その上に形成される分離膜の内壁にピンホール等の表面欠陥が残留するのを防ぎ、かつ透過速度を大きくするという点から、中間層の厚みは、多孔質体12の貫通孔の内壁を構成するセラミック粒子の平均粒径の1〜50倍が好ましく、更には2〜20倍がより好ましい。なお、中間層の厚さ、多孔質体12および中間層の平均粒径は、多孔質体12および中間層の走査型電子顕微鏡(SEM)による断面写真から求めることができ、平均粒径は、たとえばインターセプト法により算出できる。また、多孔質体12および中間層の平均細孔径は、水銀圧入法で求めることができる。
【0023】
多孔質体12の貫通孔の内壁もしくはそこに形成された中間層上に、炭素膜等の分離膜を形成することで、分離膜付き多孔質体1を得ることができる。分離膜の形成方法は、たとえば炭素膜を分離膜として形成する場合であれば、炭素膜の前駆体として芳香族ポリイミド、ポリプロピレン、ポリフリルアルコール、ポリ塩化ビニリデン、フェノール樹脂等を溶媒に溶かして炭素膜の前駆体溶液(単に前駆体溶液という場合もある)を作製し、ディップコート等により多孔質体12の貫通孔の内壁もしくはそこに形成された中間層上に炭素膜前駆体被膜を形成し、乾燥した後、窒素雰囲気等の非酸化性雰囲気または真空下で、550〜1000℃の温度で熱処理することで、炭素膜が形成される。なお、炭素膜前駆体被膜を形成する際、多孔質体12の細孔内への前駆体溶液の侵入を防止するため、多孔質体12の細孔内に1kPa程度の圧力でヘリウムガスを供給して細孔内を加圧しながら行ってもよい。また、炭素膜前駆体被膜の形成と乾燥とを複数回繰り返した後、熱処理をおこなっても構わない。
【0024】
分離膜の厚さは、ピンホール等の欠陥発生を抑制し、透過速度を大きくするという点から、0.01〜5μmが好ましく、特には0.1〜3μmが好ましい。
【0025】
以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【実施例】
【0026】
まず、図2に示すような9本の貫通孔を有する、長さ200mm、平均粒径3.0μm、平均細孔径1.1μmのアルミナ製の多孔質体を準備した。
【0027】
次に、アルミナ粉末(平均粒径0.02〜0.9μm)を水とポリビニルアルコール(PVA)に分散させ、アルミナスラリーを作製し、アルミナ製の多孔質体をこのアルミナスラ
リーに浸漬して一定速度で引き上げ、多孔質体表面および貫通孔の内壁に中間層となる被膜を形成し、乾燥した。その後、多孔質体全体を1100℃で熱処理し、貫通孔の内壁に平均粒径0.2μm、平均細孔径0.05μmのアルミナ粒子からなる厚さ30μmの中間層を形成した。なお、中間層の厚さ、アルミナ多孔質体および中間層の平均粒径は、アルミナ多孔質体および中間層の走査型電子顕微鏡(SEM)による断面写真から求め、平均細孔径は水銀圧入法により求めた。
【0028】
一方で、炭素膜の前駆体溶液として、フェノール樹脂をテトラヒドロフラン(THF)に溶解した濃度35%のフェノール樹脂溶液(以下、単に前駆体溶液ともいう)を作製した。貫通孔の内壁に中間層を形成した多孔質体は、貫通孔の開口部の一方を密閉し、他方の開口部から前駆体溶液を注入して1分間保持した後、前駆体溶液を排出し、中間層上にフェノール樹脂の被膜を形成して、130℃で10分間乾燥させた。その後、密閉した貫通孔の開口部を開放し、多孔質体全体を窒素雰囲気中850℃で10分間熱処理し、厚さ2μmの炭素膜が形成された、長さ200mmの分離膜付き多孔質体を得た。分離膜付き多孔質体の中央部、中間部および外周部の管状通路の半径をそれぞれR1、R2およびR3、管状通路の中心と多孔質体の外周表面との最短距離をそれぞれL1、L2およびL3として表1に示す。
【0029】
【表1】

【0030】
作製した分離膜付き多孔質体について、温度75℃、水/エタノール(EtOH)の質量比10/90の混合溶液を管状通路内に通し、供給側である管状通路の内側を大気圧とし、透過側である分離膜付き多孔質体の外周面側を真空として、圧力差を駆動力として混合溶液中の水の浸透気化分離を行った。
【0031】
管状通路から排出された濃縮混合溶液の水/エタノール(EtOH)の質量比を、ガスクロマトグラフGC-2014(島津製作所)を用いて測定し、表2に示した。また、分
離膜付き多孔質体の管状通路の長さ方向に垂直な断面における、中央部、中間部および外周部の管状通路の断面積をそれぞれA1、A2およびA3とし、式1および式2で示される関係式をいずれも満足する場合は◎、式1のみを満足する場合は○、いずれの関係式も満足しない場合は×として表2に示した。
【0032】
【表2】

【0033】
管状通路の断面積が、設置位置が多孔質体の中心近傍に近づくに従って小さくなる試料No.1〜5の分離膜付き多孔質体では、管状通路の断面積がすべて等しい試料No.6や、配置位置が多孔質体の中心近傍に近づくに従って大きくなる試料No.7の分離膜付き多孔質体よりも、管状通路から排出された混合溶液のエタノール濃度が高く、より高い分離効率が得られた。
【符号の説明】
【0034】
1 : 分離膜付き多孔質体
11 : 管状通路
11a : 中央部管状通路
11b : 中間部管状通路
11c : 外周部管状通路
12 : 多孔質体
13 : 多孔質体の外周表面
、R1: 中央部管状通路の半径
、R2: 中間部管状通路の半径
、R3: 外周部管状通路の半径
、L1: 中央部管状通路の中心と多孔質体の外周表面との距離
、L2: 中間部管状通路の中心と多孔質体の外周表面との距離
、L3: 外周部管状通路の中心と多孔質体の外周表面との距離

【特許請求の範囲】
【請求項1】
多孔質体に設けられた貫通孔の内壁に分離機能を有する分離膜を形成した管状通路を複数備える分離膜付き多孔質体であって、
前記管状通路の長さ方向に垂直な断面において、前記多孔質体の中心近傍に位置する前記管状通路の断面積が、前記多孔質体の外周近傍に位置する前記管状通路の断面積よりも小さいことを特徴とする分離膜付き多孔質体。
【請求項2】
前記管状通路の長さ方向に垂直な断面において、前記管状通路の断面積は、前記管状通路の設置位置が、前記多孔質体の外周から遠ざかるに従って小さくなることを特徴とする請求項1に記載の分離膜付き多孔質体。
【請求項3】
前記多孔質体に設けられた任意の二つの前記管状通路において、前記管状通路の長さ方向に垂直な断面における、より前記多孔質体の中心近傍に位置する方の前記管状通路の断面積をA、幾何学的重心と前記多孔質体の前記外周との最短距離をLとし、より前記多孔質体の外周近傍に位置する方の前記管状通路の断面積をA,幾何学的重心と前記多孔質体の前記外周との最短距離をLとしたときに、前記Aが以下の関係式
(L/L≦(A/A)≦(L/L
を満たすことを特徴とする請求項1または2に記載の分離膜付き多孔質体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2013−111529(P2013−111529A)
【公開日】平成25年6月10日(2013.6.10)
【国際特許分類】
【出願番号】特願2011−260282(P2011−260282)
【出願日】平成23年11月29日(2011.11.29)
【出願人】(000006633)京セラ株式会社 (13,660)
【Fターム(参考)】