説明

半導体ナノ粒子蛍光体

【課題】コアシェル構造半導体ナノ粒子において発生する格子不整合性を緩和する緩和層として第2シェルを有し、結晶粒子の結晶性を改善し、表面欠陥をキャッピングし、分散性の高く、発光効率が高く信頼性に優れたコアシェル構造半導体ナノ粒子蛍光体を提供する。
【解決手段】13族15族半導体からなるナノ粒子コアと、ナノ粒子コアを被覆する第1シェルと、第1シェルを被覆する第2シェルとを備え、ナノ粒子コアの格子定数と第2シェルの格子定数との差は、ナノ粒子コアの格子定数と第1シェルの格子定数との差より小さい、もしくは、ナノ粒子コアの格子定数より第1シェルの格子定数が小さく、ナノ粒子コアの格子定数より第2シェルの格子定数が大きい、もしくは、ナノ粒子コアの格子定数より第1シェルの格子定数が大きく、ナノ粒子コアの格子定数より第2シェルの格子定数が小さい半導体ナノ粒子蛍光体に関する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体ナノ粒子蛍光体に関し、詳しくは、発光強度および発光効率を向上させた積層構造を備える半導体ナノ粒子蛍光体に関する。
【背景技術】
【0002】
半導体結晶粒子(以下「結晶粒子」という。)を励起子ボーア半径程度に小さくすると、量子サイズ効果を示すことが知られている。量子サイズ効果とは物質の大きさが小さくなるとその中の電子は自由に運動できなくなり、このような状態では電子のエネルギーは任意ではなく特定の値しか取り得なくなることである。たとえば、励起子ボーア半径程度の結晶粒子から発生する光の波長は寸法が小さくなるほど短波長になる(C.B.Murrayら、(Journal of the American Chemical Society)、1993年、115、p.8706−8715(非特許文献1)参照)。非特許文献1に記載のII−VI族化合物半導体を用いた蛍光体は、信頼性および耐久性に問題があり、また、カドミウムやセレンといった環境汚染物質を使用しているため、これに代わる材料が必要とされてきた。
【0003】
II−VI族化合物半導体に代わる材料として、窒化物系半導体の微結晶合成の試みがなされている(特開2004−307679号公報(特許文献1)参照)。上記特許文献1では、半導体ナノ粒子はバンドギャップエネルギーがより大きい化合物で被覆されることにより半導体ナノ粒子表面のエネルギー状態が安定化し、発光効率が向上するコアシェル構造の13族窒化物半導体ナノ粒子蛍光材料について開示されている。しかし、このようなコアシェル構造の13族窒化物半導体ナノ粒子においては、コアとシェルとの間の格子不整合に起因して、多数の結晶欠陥が発生したり、コアやシェルの表面に凹凸が発生したりして、コアおよびその上のシェルの結晶性が著しく低下し、蛍光材料の発光効率が低下する。
【特許文献1】特開2004−307679号公報
【非特許文献1】C.B.Murrayら、(Journal of the American Chemical Society)、1993年、115、p.8706−8715
【発明の開示】
【発明が解決しようとする課題】
【0004】
本発明は、上記状況に鑑み、コアシェル構造半導体ナノ粒子において発生する格子不整合性を緩和する緩和層として第2シェルを有し、結晶粒子の結晶性を改善し、表面欠陥をキャッピングする。さらに修飾有機分子が強固に結合することで、分散性の高く、発光効率が高く信頼性に優れたコアシェル構造半導体ナノ粒子蛍光体を提供することを目的とする。
【課題を解決するための手段】
【0005】
本発明は、13族15族半導体からなるナノ粒子コアと、ナノ粒子コアを被覆する第1シェルと、第1シェルを被覆する第2シェルとを備え、ナノ粒子コアの格子定数と第2シェルの格子定数との差は、ナノ粒子コアの格子定数と第1シェルの格子定数との差より小さい、もしくは、ナノ粒子コアの格子定数より第1シェルの格子定数が小さく、ナノ粒子コアの格子定数より第2シェルの格子定数が大きい、もしくは、ナノ粒子コアの格子定数より第1シェルの格子定数が大きく、ナノ粒子コアの格子定数より第2シェルの格子定数が小さい、半導体ナノ粒子蛍光体に関する。
【0006】
また、本発明の半導体ナノ粒子蛍光体において、ナノ粒子コア、第1シェルおよび第2シェルにおける各格子定数は、第1シェル<ナノ粒子コア<第2シェル、または第2シェル<ナノ粒子コア<第1シェルであることが好ましい。
【0007】
また、本発明の半導体ナノ粒子蛍光体において、ナノ粒子コア、第1シェルおよび第2シェルにおける各格子定数は、ナノ粒子コア<第2シェル<第1シェル、または第1シェル<第2シェル<ナノ粒子コアであることが好ましい。
【0008】
また、本発明の半導体ナノ粒子蛍光体において、ナノ粒子コアが13族窒化物半導体であることが好ましい。
【0009】
また、本発明の半導体ナノ粒子蛍光体において、ナノ粒子コアが窒化インジウムであることが好ましい。
【0010】
また、本発明の半導体ナノ粒子蛍光体において、ナノ粒子コアが13族混晶窒化物半導体であることが好ましい。
【0011】
また、本発明の半導体ナノ粒子蛍光体において、ナノ粒子コアが窒化インジウム・ガリウムであるが好ましい。
【0012】
また、本発明の半導体ナノ粒子蛍光体において、平均粒子径が、ボーア半径の2倍以下であることが好ましい。
【0013】
また、本発明の半導体ナノ粒子蛍光体において、第2シェルの外側にさらに複数のシェルを有し、第1シェルから最外側のシェルまでが3層以上の積層構造からなることが好ましい。
【0014】
また、本発明の半導体ナノ粒子蛍光体において、第2シェルまたは、最外側のシェルの外表面は、さらに修飾有機分子が結合し、または、修飾有機分子が被覆してなることが好ましい。
【発明の効果】
【0015】
本発明における半導体ナノ粒子蛍光体は、格子定数を制御した第2シェルを有するため、第2シェルによりナノ粒子コアと第1シェルとの格子不整合性が緩和され、13族15族半導体ナノ粒子コアと第1シェルとの間に生ずる格子不整合による結晶欠陥の発生を抑えることができ、発光効率が高い。
【発明を実施するための最良の形態】
【0016】
以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には、同一の参照符号を付し、その説明は繰り返さない。また、図面における長さ、大きさ、幅などの寸法関係は、図面の明瞭化と簡略化のために適宜に変更されており、実際の寸法を表してはいない。
【0017】
<半導体ナノ粒子蛍光体の基本構造>
図1は、本発明の一実施形態にかかる半導体ナノ粒子蛍光体の基本構造を示す模式図である。以下、図1に基づいて説明する。
【0018】
本発明の半導体ナノ粒子蛍光体10は、13族15族半導体からなるナノ粒子コア11と、ナノ粒子コア11を被覆する第1シェル12と、第1シェル12を被覆する第2シェル13とを備える。本実施形態においては、第2シェル13の該表面は、さらに修飾有機
分子14で被覆されている。修飾有機分子14は、ヘテロ原子が配位結合するような化学結合と、物理吸着による結合の双方で半導体ナノ粒子蛍光体10を被覆している。第1シェル12は、ナノ粒子コア11を一部もしくは全て包含しており、第1シェル12および第2シェル13は、被覆厚みに分布があってもよい。第1シェル12および第2シェル13は、それぞれナノ粒子コア11および第1シェル12の結晶構造を引き継いで形成されており、それぞれの間は化学結合している。
【0019】
ここでナノ粒子コア11は、第1シェル12の結晶成長時に成長の核となる。ナノ粒子コア11の表面では、未結合手を有する15族元素および13族元素が配列している。そこに第1シェル12の原料となる元素が結合する。
【0020】
第1シェル12の格子定数がナノ粒子コア11の格子定数より大きい場合には、ナノ粒子コア11は第1シェル12により引っ張りの応力をうける。一方、第1シェル12の格子定数がナノ粒子コア11の格子定数よりの小さい場合には、ナノ粒子コア11は第1シェル12により圧縮の応力を受ける。
【0021】
ナノ粒子コア11が引っ張りまたは圧縮の応力を受けると、ナノ粒子コア11および第1シェル12の結晶格子は歪み、その歪みのエネルギーを緩和するために、結晶中に欠陥が発生するというような問題が生じる虞がある。
【0022】
そこで第1シェル12の外側に、これらの応力を緩和する半導体結晶としての第2シェル13を成長させることによりナノ粒子コア11が受ける応力を減少させ、格子不整合性を緩和させる。第1シェル12の格子定数がナノ粒子コア11より大きく、ナノ粒子コア11が第1シェル12により引っ張りの応力をうける場合には、第2シェル13としては格子定数がナノ粒子コア11よりも小さく、圧縮の応力を生じる半導体結晶を成長させる。一方、第1シェル12の格子定数がナノ粒子コア11の格子定数より小さく、ナノ粒子コア11が第1シェル12により圧縮の応力を受ける場合には、第2シェル13としては格子定数がナノ粒子コア11よりも大きく、引っ張りの応力を生じる半導体結晶を成長させる。
【0023】
また、第1シェル12の格子定数がナノ粒子コア11より大きく、ナノ粒子コア11が第1シェル12により引っ張りの応力をうける場合でも、第2シェル13の格子定数がナノ粒子コア11と第1シェル12との間であれば、ナノ粒子コア11が受ける応力を減少させることができる。同様に、第1シェル12の格子定数がナノ粒子コア11より小さく、ナノ粒子コア11が第1シェル12により圧縮の応力をうける場合でも、第2シェル13の格子定数がナノ粒子コア11の格子定数と第1シェル12の格子定数との間であれば、ナノ粒子コア11が受ける応力を減少させることができる。
【0024】
以上から、本発明においては、以下の(1)〜(3)のいずれかであることが要求される。
(1)ナノ粒子コアの格子定数と第2シェルの格子定数との差は、ナノ粒子コアの格子定数と第1シェルの格子定数との差より小さい。
(2)ナノ粒子コアの格子定数より第1シェルの格子定数が小さく、ナノ粒子コアの格子定数より第2シェルの格子定数が大きい。
(3)ナノ粒子コアの格子定数より第1シェルの格子定数が大きく、ナノ粒子コアの格子定数より第2シェルの格子定数が小さい。
【0025】
これは、第1シェルの外側に第2シェルを成長させることにより第1シェルが第2シェルにより応力を受け、第1シェルからナノ粒子コアへの応力が緩和されるため、ナノ粒子コアと第1シェル間で発生する格子定数の違いによる欠陥が減少するという理由からであ
る。
【0026】
そして、ナノ粒子コア11、第1シェル12および第2シェル13における各格子定数は、第1シェル<ナノ粒子コア<第2シェル、または、第2シェル<ナノ粒子コア<第1シェルであるときにナノ粒子コア11が受ける応力を特に減少できる。
【0027】
また、ナノ粒子コア11、第1シェル12および第2シェル13における各格子定数は、ナノ粒子コア<第2シェル<第1シェル、または、第1シェル<第2シェル<ナノ粒子コアであるときに同様にナノ粒子コア11が受ける応力を特に減少できる。
【0028】
また、本実施形態においては、格子定数は、TEM観察における格子像観察を行なうことにより確認(測定)することができる。
【0029】
本実施形態において、半導体ナノ粒子蛍光体10は、積層構造となっている。励起光を半導体ナノ粒子蛍光体10に照射すると、励起光のエネルギーをナノ粒子コア11が吸収する。ここで、ナノ粒子コア11の平均粒子径は、量子サイズ効果を有する程度に小さいので、ナノ粒子コア11は離散化した複数のエネルギー準位のみとり得るが、一つの準位になる場合もある。ナノ粒子コア11で吸収されて励起された光エネルギーは、伝導帯の基底準位と価電子帯の基底準位との間で遷移し、そのエネルギーに相当する波長の光が発光する。第1シェル12および第2シェル13は、13族15族半導体からなるナノ粒子コア11で発生した励起キャリアの閉じ込め効果に寄与し発光効率を向上させている。
【0030】
また、半導体ナノ粒子蛍光体10の平均粒子径は、X線回析測定の結果スペクトル半値幅より通常2〜6nmと見積もられ、これは励起子ボーア半径の2倍以下の微粒子であり第1シェル12および第2シェル13の厚さは0.1〜10nmの範囲に調整される。ここで第1シェル12および第2シェル13の厚さが0.1nmより小さいとナノ粒子コア11の表面を十分に被覆できず均一な保護層を形成しにくい。一方10nmより大きいとシェル自体を均一に作ることが難しくなり欠陥が増え、原材料コストの面においても望ましくない。以上から、半導体ナノ粒子蛍光体10のの平均粒子径は、0.1nm〜100nmの範囲であることが好ましく、0.5nm〜50mの範囲が特に好ましく、1〜20nmの範囲が更に好ましい。
【0031】
本発明の半導体ナノ粒子蛍光体10は、TEM観察を行ない、高倍率での観察像により格子像を確認することで第1シェル12、第2シェル13および修飾有機分子14の厚みを確認できる。
【0032】
本実施形態においてナノ粒子コア11は、半導体のナノ粒子である。ナノ粒子コア11は、13族元素(B、Al、Ga、In、Tl)と15族元素(N、P、As、Sb、Bi)との結合からなる13族15族半導体で形成されている。ナノ粒子コア11は、可視発光を発現するバンドギャップを有する組成の半導体InN、InP、InGaN、InGaP、AlInN、AlInP、AlGaInNおよびAlGaInPのいずれかからなることが好ましい。これは、これらの材料において、粒径およびその混晶比を制御することにより、任意の可視発光を実現することが可能となるからである。
【0033】
ナノ粒子コア11のバンドギャップは、1.8〜2.8eVの範囲にあることが好ましい。そして、半導体ナノ粒子蛍光体10を赤色蛍光体として用いる場合にはナノ粒子コア11のバンドギャップは1.85〜2.5eV、緑色蛍光体として用いる場合にはナノ粒子コア11のバンドギャップは2.3〜2.5eV、青色蛍光体として用いる場合にはナノ粒子コア11のバンドギャップは2.65〜2.8eVの範囲が特に好ましい。なお、13族15族半導体からなるナノ粒子コア11の平均粒子径および13族金属の混晶の割
合を調整することで半導体ナノ粒子蛍光体10の発光色を決定できる。したがって、ナノ粒子コア11は、13族混晶窒化物半導体であることが好ましい。
【0034】
ナノ粒子コア11の平均粒子径が励起子ボーア半径の2倍以下では、発光強度が極端に向上する。ボーア半径とは、励起子の存在確率の広がりを示すもので、数式(1)で表される。たとえば、GaNの励起子ボーア半径は3nm程度、InNの励起子ボーア半径は7nm程度である。
【0035】
y=4πεh2・me2 数式(1)
ここで
y:ボーア半径、
ε:誘電率、
h:プランク定数、
m:有効質量、
e:電荷素量
である。
【0036】
半導体ナノ粒子蛍光体10は、その平均粒子径が励起子ボーア半径の2倍以下になると量子サイズ効果により光学的バンドギャップが広がるが、その場合でも上述のバンドギャップ範囲にあることが好ましい。
【0037】
また、第1シェル12は、13族15族半導体からなるナノ粒子コア11の表面に、ナノ粒子コア11の結晶構造を引き継いで成長し形成される。第1シェル12は、GaAs、GaP、GaN、GaSb、InAs、InP、InN、InSb、AlAs、AlP、AlSb、AlN、ZnO、ZnS、ZnSeおよびZnTeのいずれかからなることが好ましい。
【0038】
また、第2シェル13は、第1シェル12の表面にナノ粒子コア11の結晶構造を引き継いで成長し形成される。第2シェル13は、GaAs、GaP、GaN、GaSb、InAs、InP、InN、InSb、AlAs、AlP、AlSb、AlN、ZnO、ZnS、ZnSeおよびZnTeのいずれかからなることが好ましい。
【0039】
ナノ粒子コア11、第1シェル12および第2シェル13には意図しない不純物を含んでいてもよく、また低濃度であれば、ドーパントとして2族元素(Be、Mg、Ca、Sr、Ba)、ZnあるいはSiの少なくともいずれかを意図的に添加していてもよい。濃度範囲は1×1016cm-3から1×1021cm-3の間が特に好ましく、また好ましく用いられるドーパントは、Mg、Zn、Siである。
【0040】
修飾有機分子14は、分子中に親水基と疎水基を持つ化合物と定義される。修飾有機分子14としては、窒素含有官能基、硫黄含有官能基、酸性基、アミド基、ホスフィン基、ホスフィンオキシド基、水酸基などが挙げられる。例えば、ヘキサメタリン酸ナトリウム、ラウリン酸ナトリウム、ドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸トリエタノールアミン、ラウリルジエタノールアミド、ドデシルトリメチルアンモニウムクロリド、トリオクチルホスフィン、トリオクチルホスフィンオキシドなどがある。さらに、修飾有機分子として望ましくは疎水基としての非極性炭化水素末端と、親水基としてのアミノ基を持つ化合物であるアミンがあげられる。その具体例としては、ブチルアミン、t−ブチルアミン、イソブチルアミン、トリ−n−ブチルアミン、トリイソブチルアミン、トリエチルアミン、ジエチルアミン、ヘキシルアミン、ジメチルアミン、ラウリルアミン、オクチルアミン、テトラデシルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、ト
リデシルアミン、トリウンデシルアミンなどある。
【0041】
修飾有機分子14を備える半導体ナノ粒子蛍光体10どうしは修飾有機分子14で形成された層で隔離され、分散性が良く、半導体ナノ粒子蛍光体10を応用する際に取り扱いが容易である。さらに、修飾有機分子14は、ヘテロ原子−炭素原子間での電気的極性が生じ、第2シェル13の外表面に強固に付着すると考えられる。
【0042】
<製造方法>
本発明において、本実施形態の半導体ナノ粒子蛍光体の製造方法には特に制限はないが、生成物質の構成元素を含む複数の出発物質を媒体に分散させ、これを反応させて目的の生成物質を得る化学合成法は簡便な手法であり低コストである点から好ましい。化学合成法には、ゾルゲル法(コロイド法)、ホットソープ法、逆ミセル法、ソルボサーマル法、分子プレカーサ法、水熱合成法、フラックス法などが含まれる。
【0043】
以下、本実施形態における半導体ナノ粒子蛍光体10の製造方法を説明する。ここでは、化合物半導体材料のナノ粒子製造に適している液相での化学的な合成を利用するホットソープ法について説明する。
【0044】
(1)ナノ粒子コア合成工程
まず、ナノ粒子コア11を液相合成する。InNからなるナノ粒子コア11を例に挙げると、フラスコなどに溶媒として1−オクタデセンを満たし、トリス(ジメチルアミノ)インジウムと修飾有機分子14となるヘキサデシルアミン(HDA)とを混合する。混合した液体は、十分に攪拌された後、合成温度180〜500℃で反応を行なう。本方法では、ナノ粒子コア11のサイズは原理的に反応時間が長いほど大きく成長する。したがって、フォトルミネッセンス、光吸収、動的光散乱などでナノ粒子コア11のサイズをモニタすることで、所望のサイズにナノ粒子コア11を制御することができる。本工程で、修飾有機分子14で被覆されたナノ粒子コア11を含む溶液が製造される。
【0045】
(2)第1シェル合成工程
上述のナノ粒子コア11を含む溶液に、第1シェル12の原材料である反応試薬を加え、加熱反応させることによってナノ粒子コア11表面に第1シェル12を化学的に結合させる。第1シェル12はナノ粒子コア11の結晶構造を引き継いで成長するため、格子不整合によりコア11は第1シェル12からの応力を受ける。本工程で、第1シェル12の表面が修飾有機分子14で被覆され、第1シェル12で被覆されたナノ粒子コア11を含む溶液が製造される。
【0046】
(3)第2シェル合成工程
上述の第1シェル12で被覆されたナノ粒子コア11を含む溶液に、第2シェル13の原材料である反応試薬を加え、加熱反応させることによって第1シェル12表面に第2シェル13を化学的に結合させる。第2シェル13はナノ粒子コア11および第1シェル12の結晶構造を引き継いで成長するため、格子不整合により第1シェル11は第2シェル13からの応力を受ける。このとき、第2シェル13はコア11が第1シェル12から受ける応力を緩和するような格子定数を有するため、ナノ粒子コア11は第2シェル13により緩和された第1シェル12の保護効果により結晶欠陥が少ない半導体ナノ粒子蛍光体10が得られる。
【0047】
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
【実施例】
【0048】
(実施例1)
本実施例においては、励起光を吸収して赤色光を発する半導体ナノ粒子蛍光体を作製した。具体的には、格子定数が3.545であるInNからなる平均粒子径5nmのナノ粒子コアと、格子定数が3.189であるGaNからなる第1シェルと、格子定数が3.821であるZnSからなる第2シェルとを備える半導体ナノ粒子蛍光体を作製した。
【0049】
製造方法には、ホットソープ法を利用した。以下、製造方法について説明する。まず、トリス(ジメチルアミノ)インジウムを、ヘキサデシルアミン(HDA)を混合した1−オクタデセン溶液中で熱分解反応により、InNからなるナノ粒子コアを合成し、この溶液にさらに、第1シェルの原料であるトリス(ジメチルアミノ)ガリウムを、ヘキサデシルアミンを混合した1−オクタデセン溶液を反応し、この溶液をさらに、第2シェルの原料である酢酸亜鉛および硫黄を、ヘキサデシルアミンを混合した1−オクタデセン溶液を反応させることにより、InN(ナノ粒子コア)/GaN(第1シェル)/ZnS(第2シェル)/ヘキサデシルアミン(修飾有機分子)の半導体ナノ粒子蛍光体が製造された。なお、格子定数については、TEM観察によって確認した。
【0050】
半導体ナノ粒子蛍光体の表面はヘキサデシルアミンで被覆されており、この状態を以下InN/GaN/ZnS/HDAとも表わす。なお、以下、本実施例において、仮に「A/B」と表記した場合に示す意味は、Bで被覆されたAとする。
【0051】
この実施例で得られた半導体ナノ粒子蛍光体は、ナノ粒子コア/第1シェル/第2シェル構造を有する窒化インジウム半導体ナノ粒子蛍光体であり、ナノ粒子コア表面は格子定数がナノ粒子コアよりも小さい第1シェルで被覆した。そして、第1シェルの格子不整合によるナノ粒子コア表面に対する応力を緩和するために、第1シェルの格子定数がナノ粒子コアよりも小さいのに対して、ナノ粒子コアよりも大きい格子定数を持つ第2シェルにより被覆した。したがって、結晶性が高く、発光効率が高かった。また、表面を修飾有機分子が均一に被覆することにより、半導体ナノ粒子蛍光体同士は凝集されず、均一な大きさで分散性が高かった。
【0052】
また、この半導体ナノ粒子蛍光体において13族窒化物からなる青色発光素子を励起光源として用いることができ、特に外部量子効率の高い405nmの発光を効率よく吸収できる。また、InNは、発光波長が620nmとなるように平均粒子径が調整されているため赤色発光を示すことができる。さらに、修飾有機分子で平均粒子径が制御されており、得られた半導体ナノ粒子蛍光体のX線回折測定の結果、スペクトル半値幅より見積もられた半導体ナノ粒子蛍光体の平均粒子径(直径)は、Scherrerの式(数式(2))を用いると5nmと見積もられ、量子サイズ効果を示し発光効率は向上した。
【0053】
B=λ/Cosθ・R 数式(2)
ここで
B:X線半値幅[deg]、
λ:X線の波長[nm]、
θ:Bragg角[deg]、
R:平均粒子径[nm]
を示す。
【0054】
上記結果を表1にまとめた。以下の実施例も同様に表1に結果をまとめた。
【0055】
【表1】

【0056】
(実施例2)
本実施例においては、励起光を吸収して赤色光を発する半導体ナノ粒子蛍光体を作製した。具体的には、格子定数が3.545であるInNからなる平均粒子径4nmのナノ粒子コアと、格子定数が3.821であるZnSからなる第1シェルと、格子定数が3.112であるAlNからなる第2シェルとを備える半導体ナノ粒子蛍光体を作製した。
【0057】
製造方法には、実施例1と同様にホットソープ法を利用した。以下、製造方法について詳しく説明する。トリス(ジメチルアミノ)インジウムを、ヘキサデシルアミン(HDA)を混合した1−オクタデセン溶液中で熱分解反応により、InNからなるナノ粒子コアを合成し、さらに第1シェルZnSの原料酢酸亜鉛および硫黄溶液とを反応させ、さらに第2シェルの原料AlNの原料トリス(ジメチルアミノ)アルミニウムを反応させることにより、InN(ナノ粒子コア)/ZnS(第1シェル)/AlN(第2シェル)/ヘキサデシルアミン(修飾有機分子)の半導体ナノ粒子蛍光体が製造された。なお、格子定数については、TEM観察することによって確認した。
【0058】
この実施例で得られた半導体ナノ粒子蛍光体は、ナノ粒子コア/第1シェル/第2シェル構造を有する窒化インジウム半導体ナノ粒子蛍光体であり、ナノ粒子コア表面は格子定数がナノ粒子コアよりも格子定数の大きい第1シェルで被覆した。そして、第1シェルの格子不整合による応力を緩和するために、第1シェルの格子定数がナノ粒子コアよりも大きいのに対して、ナノ粒子コアよりも小さい格子定数を持つ第2シェルにより被覆した。したがって、結晶性が高く、発光効率が高かった。また、表面を修飾有機分子が均一に被覆することにより、半導体ナノ粒子蛍光体同士は凝集されず、均一な大きさで分散性が高かった。
【0059】
また、この蛍光体において13族窒化物からなる青色発光素子を励起光源として用いることができ、特に外部量子効率の高い405nmの発光を効率よく吸収できる。また、ナノ粒子コアは、発光波長が520nmとなるように平均粒子径が調整されているため緑色発光を示すことができる。さらに、修飾有機分子で平均粒子径が制御されており、得られた半導体ナノ粒子蛍光体のX線回折測定の結果、スペクトル半値幅より見積もられた半導体ナノ粒子蛍光体の平均粒子径(直径)は、Scherrerの式(数式(2))を用いると4nmと見積もられ、量子サイズ効果を示し発光効率は向上した。
【0060】
(実施例3)
本実施例においては、励起光を吸収して赤色光を発する半導体ナノ粒子蛍光体を作製した。具体的には、格子定数が3.545であるInNからなる平均粒子径3nmのナノ粒子コアと、格子定数が3.821であるZnOからなる第1シェルと、格子定数が3.250であるZnOからなる第2シェルと、SiO2からなる第3シェルとを備える半導体ナノ粒子蛍光体を作製した。
【0061】
製造方法には、実施例1と同様にホットソープ法を利用した。以下、製造方法について詳しく説明する。トリス(ジメチルアミノ)インジウムを、ヘキサデシルアミン(HDA)を混合した1−オクタデセン溶液中で熱分解反応により、InNからなるナノ粒子コアを合成し、さらに第2シェルの原料酢酸亜鉛およびエタノールと水との溶液を反応させ、さらに外郭にゾルゲル法によりテトラエトキシシラン、メタノール、水溶液を反応させることにより、InN(ナノ粒子コア)/ZnS(第1シェル)/ZnO(第2シェル)/SiO2(第3シェル)/ヘキサデシルアミン(修飾有機分子)の半導体ナノ粒子蛍光体が製造された。なお、格子定数については、TEM観察することによって確認した。
【0062】
この実施例で得られた半導体ナノ粒子蛍光体は、ナノ粒子コア/第1シェル/第2シェル/第3シェル構造を有する窒化インジウム半導体ナノ粒子蛍光体であり、ナノ粒子コア表面は格子定数がナノ粒子コアよりも格子定数の大きい第1シェルで被覆した。そして、第1シェルの格子不整合による応力を緩和するために、第1シェルの格子定数がナノ粒子コアよりも大きいのに対して、ナノ粒子コアよりも小さい格子定数を持つ第2シェルにより被覆した。したがって、結晶性が高く、発光効率が高かった。また、表面を修飾有機分子が均一に被覆することにより、半導体ナノ粒子蛍光体同士は凝集されず、均一な大きさ
で分散性が高かった。また、SiO2からなる第3シェルを備えることで、SiO2からなるマトリックス中に均一に分散した該半導体ナノ粒子蛍光体表面を強固に保護することができた。
【0063】
また、この蛍光体において13族窒化物からなる青色発光素子を励起光源として用いることができ、特に外部量子効率の高い405nmの発光を効率よく吸収できた。また、ナノ粒子コアは、発光波長が470nmとなるように平均粒子径が調整されているため青色発光を示すことができる。さらに、修飾有機分子で平均粒子径が制御されており、得られた蛍光体のX線回折測定の結果、スペクトル半値幅より見積もられた半導体ナノ粒子蛍光体の平均粒子径(直径)は、Scherrerの式(数式(2))を用いると3nmと見積もられ、量子サイズ効果を示し発光効率は向上した。
【0064】
(実施例4)
本実施例においては、励起光を吸収して赤色光を発する半導体ナノ粒子蛍光体を作製した。具体的には、格子定数が5.870であるInPからなる平均粒子径3nmのナノ粒子コアと、格子定数が4.510であるGaNからなる第1シェルと、格子定数が5.406であるZnSからなる第2シェルとを備える半導体ナノ粒子蛍光体を作製した。
【0065】
製造方法には、実施例1と同様にホットソープ法を利用した。以下、製造方法について詳しく説明する。まず、三塩化インジウムおよびトリス(トリメチルシリルホスフィン)を、ヘキサデシルアミン(HDA)を混合した1−オクタデセン溶液中での反応により、InPナノ粒子コアを合成し、この溶液にさらに、第1シェルの原料であるトリス(ジメチルアミノ)ガリウムを、ヘキサデシルアミンを混合した1−オクタデセン溶液を反応し、この溶液をさらに、第2シェルの原料である酢酸亜鉛および硫黄を、ヘキサデシルアミンを混合した1−オクタデセン溶液を反応させることにより、InP(ナノ粒子コア)/GaN(第1シェル)/ZnS(第2シェル)/ヘキサデシルアミン(修飾有機分子)の半導体ナノ粒子蛍光体が製造された。なお、格子定数については、TEM観察することによって確認した。
【0066】
この実施例で得られた半導体ナノ粒子蛍光体は、コア/第1シェル/第2シェル構造を有する窒化インジウム半導体ナノ粒子蛍光体を備え、ナノ粒子コア表面は格子定数がナノ粒子コアよりも格子定数の小さい第1シェルで被覆した。そして、第1シェルの格子不整合による応力を緩和するために、第1シェルおよびナノ粒子コアそれぞれの格子定数との関係がナノ粒子コアよりは小さく、第1シェルよりは大きい第2シェルにより被覆した。したがって、結晶性が高く、発光効率が高かった。また、表面を修飾有機分子が均一に被覆することにより、半導体ナノ粒子蛍光体同士は凝集されず、均一な大きさで分散性が高かった。
【0067】
また、この蛍光体において13族窒化物からなる青色発光素子を励起光源として用いることができ、特に外部量子効率の高い405nmの発光を効率よく吸収できる。また、ナノ粒子コアは、発光波長が650nmとなるように平均粒子径が調整されているため赤色発光を示すことができる。さらに、修飾有機分子で平均粒子径が制御されており、得られた蛍光体のX線回折測定の結果、スペクトル半値幅より見積もられた半導体ナノ粒子蛍光体の平均粒子径(直径)は、Scherrerの式(数式(2))を用いると3nmと見積もられ、量子サイズ効果を示し発光効率は向上した。
【0068】
(実施例5)
本実施例においては、励起光を吸収して青色光を発する半導体ナノ粒子蛍光体を作製した。具体的には、格子定数が3.26であるIn0.2Ga0.8Nからなる平均粒子径5nmのナノ粒子コアと、格子定数が3.189であるGaNからなる第1シェルと、格子定数
が3.821であるZnSからなる第2シェルとを備える半導体ナノ粒子蛍光体を作製した。
【0069】
製造方法には、実施例1と同様にホットソープ法を利用した。以下、製造方法について詳しく説明する。まず、トリス(ジメチルアミノ)インジウムおよびトリス(ジメチルアミノ)ガリウムを、ヘキサデシルアミン(HDA)を混合した1−オクタデセン溶液中で熱分解反応により、In0.2Ga0.8Nナノ粒子コアを合成し、この溶液にさらに、第1シェルGaNの原料トリス(ジメチルアミノ)ガリウム溶液を反応させ、さらに第2シェルの原料酢酸亜鉛および硫黄溶液を反応させることにより、In0.2Ga0.8N(ナノ粒子コア)/GaN(第1シェル)/ZnS(第2シェル)/HDA(修飾有機分子)のIn0.2Ga0.8Nの半導体ナノ粒子蛍光体が製造された。なお、格子定数については、TEM観察することによって確認した。
【0070】
この実施例で得られた半導体ナノ粒子蛍光体は、ナノ粒子コア/第1シェル/第2シェル構造を有する窒化インジウム半導体ナノ粒子蛍光体を備え、ナノ粒子コア表面は格子定数がナノ粒子コアよりも格子定数の小さい第1シェルで被覆した。そして、第1シェルの格子不整合による応力を緩和するために、第1シェルの格子定数がナノ粒子コアよりも小さいのに対して、ナノ粒子コアよりも大きい格子定数を持つ第2シェルにより被覆した。したがって、結晶性が高く、発光効率が高かった。また、表面を修飾有機分子が均一に被覆することにより、半導体ナノ粒子蛍光体同士は凝集されず、均一な大きさで分散性が高かった。
【0071】
また、この半導体ナノ粒子蛍光体において13族窒化物からなる青色発光素子を励起光源として用いることができ、特に外部量子効率の高い405nmの発光を効率よく吸収できる。また、第1シェルのInN結晶は、発光波長が460nmとなるように平均粒子径が調整されているため青色発光を示すことができる。さらに、修飾有機分子で平均粒子径が制御されており、得られた半導体ナノ粒子蛍光体のX線回折測定の結果、スペクトル半値幅より見積もられた半導体ナノ粒子蛍光体の平均粒子径(直径)は、Scherrerの式(数式(2))を用いると5nmと見積もられ、量子サイズ効果を示し発光効率は向上した。
【0072】
(実施例6)
本実施例においては、励起光を吸収して赤色光を発する半導体ナノ粒子蛍光体を作製した。具体的には、格子定数が5.77であるIn0.7Ga0.3Pからなる平均粒子径3nmのナノ粒子コアと、格子定数が4.401であるAlNからなる第1シェルと、格子定数が5.406であるZnSからなる第2シェルとを備える半導体ナノ粒子蛍光体を作製した。
【0073】
製造方法には、実施例1と同様にホットソープ法を利用した。以下、製造方法について詳しく説明する。まず、三塩化インジウム、三塩化ガリウムおよびトリス(トリメチルシリルホスフィン)を、ヘキサデシルアミン(HDA)を混合した1−オクタデセン溶液中での反応により、In0.7Ga0.3Pナノ粒子コアを合成し、この溶液にさらに、第1シェルの原料であるトリス(ジメチルアミノ)アルミニウムを、ヘキサデシルアミンを混合した1−オクタデセン溶液を反応し、この溶液をさらに、第2シェルの原料である酢酸亜鉛および硫黄を、ヘキサデシルアミンを混合した1−オクタデセン溶液を反応させることにより、In0.7Ga0.3P(ナノ粒子コア)/AlN(第1シェル)/ZnS(第2シェル)/HDA(修飾有機分子)のIn0.7Ga0.3Pの半導体ナノ粒子蛍光体が製造された。なお、格子定数については、TEM観察することによって確認した。
【0074】
この実施例で得られた半導体ナノ粒子蛍光体は、ナノ粒子コア/第1シェル/第2シェ
ル構造を有する窒化インジウム・ガリウム半導体ナノ粒子蛍光体を備え、ナノ粒子コア表面は格子定数がナノ粒子コアよりも格子定数の小さい第1シェルで被覆した。そして、第1シェルの格子不整合による応力を緩和するために、第1シェルおよびナノ粒子コアそれぞれの格子定数との関係がナノ粒子コアよりは小さく、第1シェルよりは大きい第2シェルにより被覆した。したがって、結晶性が高く、発光効率が高かった。また、表面を修飾有機分子が均一に被覆することにより、半導体ナノ粒子蛍光体同士は凝集されず、均一な大きさで分散性が高かった。
【0075】
また、ナノ粒子コアは13族インジウム・ガリウム混晶半導体であり、発光波長はインジウム、ガリウムの混晶比および平均粒子径により調整されるため、発光波長の制御が容易であった。また、表面を修飾有機分子が均一に被覆することにより、半導体ナノ粒子蛍光体同士は凝集されず、均一な大きさで分散性が高かった。
【0076】
また、この蛍光体において13族窒化物からなる青色発光素子を励起光源として用いることができ、特に外部量子効率の高い405nmの発光を効率よく吸収できる。また、ナノ粒子コアは、発光波長が600nmとなるように平均粒子径が調整されているため赤色発光を示すことができる。さらに、修飾有機分子で平均粒子径が制御されており、得られた半導体ナノ粒子蛍光体のX線回折測定の結果、スペクトル半値幅より見積もられた半導体ナノ粒子蛍光体の平均粒子径(直径)は、Scherrerの式(数式(2))を用いると3nmと見積もられ、量子サイズ効果を示し発光効率は向上した。
【0077】
(比較例1)
InNからなる平均粒子径5nmのナノ粒子コアと、当該ナノ粒子コアを被覆するGaNからなるシェルにて形成された二層構造を備える蛍光体を作製した。図2は、比較例1で製造された蛍光体の模式図を示す。以下、図2に基づいて比較例1を説明する。
【0078】
まず、トリス(ジメチルアミノ)インジウムを、ヘキサデシルアミン(HDA)を混合した1−オクタデセン溶液中で熱分解反応により、InNからなるナノ粒子コア31を合成し、この溶液にさらに、シェル32の原料であるトリス(ジメチルアミノ)ガリウムを、ヘキサデシルアミンを混合した1−オクタデセン溶液を反応させることにより、InN(ナノ粒子コア31)/GaN(シェル32)/HDA(修飾有機分子33)の半導体ナノ粒子蛍光体30が得られた。
【0079】
この比較例1で得られた半導体ナノ粒子蛍光体30は、コア/シェル構造を有する窒化インジウムを含む半導体ナノ粒子蛍光体である。ナノ粒子コア31表面はナノ粒子コア31よりも格子定数の小さいシェル32の格子不整合による応力を受け、結晶性が低く、発光効率が低かった。なお、ナノ粒子コア31は、405nmの発光を吸収し、半導体ナノ粒子蛍光体30は発光波長が620nmの赤色発光を示した。
【0080】
図3は、実施例1および比較例1にかかる半導体ナノ粒子蛍光体の発光特性を示す図である。図3における縦軸は、各半導体ナノ粒子蛍光体の赤色発光(波長620nm)の強度(単位はarbitrary unit)を示す。
【0081】
図3からもわかるとおり、実施例1による半導体ナノ粒子蛍光体は、比較例1よりも、蛍光の効率も高いことが分かった。
【0082】
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【産業上の利用可能性】
【0083】
本発明は、発光効率、分散性に優れた機能を有する半導体ナノ粒子蛍光体を提供するものである。
【図面の簡単な説明】
【0084】
【図1】本発明の一実施形態にかかる半導体ナノ粒子蛍光体の基本構造を示す模式図である。
【図2】比較例1で製造された蛍光体の模式図を示す。
【図3】実施例1および比較例1にかかる半導体ナノ粒子蛍光体の発光特性を示す図である。
【符号の説明】
【0085】
10 半導体ナノ粒子蛍光体、11 ナノ粒子コア、12 第1シェル、13 第2シェル、14 修飾有機分子、15 半導体ナノ粒子蛍光体、31 ナノ粒子コア、32 シェル、33 修飾有機分子。

【特許請求の範囲】
【請求項1】
13族15族半導体からなるナノ粒子コアと、前記ナノ粒子コアを被覆する第1シェルと、前記第1シェルを被覆する第2シェルとを備え、
前記ナノ粒子コアの格子定数と前記第2シェルの格子定数との差は、前記ナノ粒子コアの格子定数と前記第1シェルの格子定数との差より小さい、
もしくは、
前記ナノ粒子コアの格子定数より前記第1シェルの格子定数が小さく、前記ナノ粒子コアの格子定数より第2シェルの格子定数が大きい、
もしくは、
前記ナノ粒子コアの格子定数より前記第1シェルの格子定数が大きく、前記ナノ粒子コアの格子定数より第2シェルの格子定数が小さい、
半導体ナノ粒子蛍光体。
【請求項2】
前記ナノ粒子コア、前記第1シェルおよび前記第2シェルにおける各格子定数は、
前記第1シェル<前記ナノ粒子コア<前記第2シェル、または、
前記第2シェル<前記ナノ粒子コア<前記第1シェルである請求項1に記載の半導体ナノ粒子蛍光体。
【請求項3】
前記ナノ粒子コア、前記第1シェルおよび前記第2シェルにおける各格子定数は、
前記ナノ粒子コア<前記第2シェル<前記第1シェル、または、
前記第1シェル<前記第2シェル<前記ナノ粒子コアである請求項1に記載の半導体ナノ粒子蛍光体。
【請求項4】
前記ナノ粒子コアが13族窒化物半導体である請求項1〜3のいずれかに記載の半導体ナノ粒子蛍光体。
【請求項5】
前記ナノ粒子コアが窒化インジウムである請求項4に記載の半導体ナノ粒子蛍光体。
【請求項6】
前記ナノ粒子コアが13族混晶窒化物半導体である請求項4に記載の半導体ナノ粒子蛍光体。
【請求項7】
前記ナノ粒子コアが窒化インジウム・ガリウムである請求項6に記載の半導体ナノ粒子蛍光体。
【請求項8】
平均粒子径が、ボーア半径の2倍以下である請求項1〜7のいずれかに記載の半導体ナノ粒子蛍光体。
【請求項9】
前記第2シェルの外側にさらに複数のシェルを有し、前記第1シェルから最外側のシェルまでが3層以上の積層構造からなる請求項1〜8のいずれかに記載の半導体ナノ粒子蛍光体。
【請求項10】
前記第2シェルまたは、前記最外側のシェルの外表面は、さらに修飾有機分子が結合し、または、修飾有機分子で被覆されてなる半導体ナノ粒子蛍光体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate