説明

垂直離着陸無人航空機機体構造

【課題】輸出、民生空域、および安全規制に適合する低コストかつ軽量のUAVを提供するために、高い強度の複合材料の構造的部品部分、および軽量の空力的発泡体部分で選択的に形成された無人航空機を提供すること。
【解決手段】UAVの全重量をさらに削減するために、機械的要素は複数の機能を提供するように設計される。構造要素を同じまたは類似の非専門工程で製造し、かつ非構造要素を同じまたは類似の非専門工程で製造し、全体的な製造コストを削減することもできる。破砕性を提供し、かつ正常な飛行構造的整合性を維持するように、材料および結合要素が選択される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に無人航空機(UAV)の分野に関する。より具体的には、本発明は、推進システムとして1つまたは複数のダクテッドファンを備えた垂直離着陸(VTOL)が可能なUAVの分野を対象とする。
【背景技術】
【0002】
無人航空機(UAV)は、パイロットが搭乗していない、および/または、遠隔に制御される航空機である。UAVは、遠隔に制御される、または、あらかじめプログラムされた飛行計画またはより複雑な動的自動化および視覚システムに基づいて自律的に飛行させることができる。UAVは現在、偵察および攻撃のシナリオを含む多くの軍事的任務で使用されている。武装したUAVは、無人戦闘航空機(UCAV)として知られている。
【0003】
UAVはまた、人間の観測者が危険にさらされるかもしれないときの消火活動、騒じょうおよび犯罪現場の警察による監視、および自然災害時の偵察支援などの、限られた数の民生用途でも使用されている。UAVは、有人航空機には退屈すぎる、不潔すぎる、危険すぎる、または費用が掛かりすぎる任務に選ばれることが多い。
【0004】
種々さまざまなUAVの形状、サイズ、構成および特性がある。最新のUAVは、制御され持続した水平飛行が可能であり、1つまたは複数のジェットエンジン、レシプロエンジン、またはダクテッドファンによって動力が供給される。
【0005】
民生用途でUAVによって運搬されるペイロードには、オプティカルセンサ(たとえば、可視または赤外線スペクトルで画像またはビデオを捕らえることができる)および/またはレーダシステムが通常含まれる。UAVの精巧なセンサは、雲、雨または霧を通り抜けて、昼夜いずれの状況においても、すべてリアルタイムで、写真のように鮮明な画像を提供することができる。たとえば、合成開口レーダ画像のコヒーレント交換検出の概念により、地形が時間の経過とともにどのように変わったかを特定することによって捜索救助能力が可能になる。
【発明の概要】
【発明が解決しようとする課題】
【0006】
垂直離着陸(VTOL)能力を提供することで、軽便性が向上し、UAVが目的の場所にうまく移動することができ、固定翼航空機が利用できない地域での利用が可能になる。
UAVは軍事的任務で広範囲に利用されているが、民生用途でのUAVの使用は、たとえば、コスト懸念、(国際武器取引規制−ITARなどの)輸出規制、民生用空域規制および安全規制により制限されている。さらに、生命および/または財産に危害を及ぼす恐れがある重量を有する自律的飛行物体に関する種々の規制により、UAVが民生用途に一層浸透することが制限されてきた可能性もある。
【課題を解決するための手段】
【0007】
本願の対象は、たとえば、重量およびコストを削減し、破砕可能要素を選択的に実装することで分解を制御でき、かつ液体燃料を使用するより大きなUAVと少なくともほぼ等価である全体的な耐久性を提供するような方法で、複合材料、金属、および発泡体で選択的に構成される垂直離着陸(VTOL)無人航空機(UAV)である。重量を削減し、高い構造的整合性を維持し、かつ破砕可能な機体構造を提供するように、空力要素を構造要素から分離し、かつ各階層の要素に対応する材料を選択するUAV設計が提供される。たとえば、複雑な複合積層材または金属材料で以前は形成されていた空力要素は、より軽い発泡体射出成形材料に置換されてもよい。次に、構造的構成要素は、構造的構成要素がそれぞれ遭遇すると予想される加えられる力に応じて、さまざまな強度、重量、およびコストを有する複合材料で選択的に形成されてもよい。機体構造の個々の選択された品目は、衝撃で分解する破砕可能な材料で構成されてもよい。設計によって、機体が接触するに至るたとえば小型の有人航空機などの対象に、たとえば損傷を与えないように、応力水準が超過する場合には機体部品が分解する。
【0008】
選択的に構成要素の重量を削減することによって、完成したUAVの全重量が、生命および財産に危害を及ぼすことに関する多くの民生規制の制限を下回ることができ、したがって、たとえば、許可および/または特別な保険を取得する追加費用なしでUAVの購入および運用が可能になる。
【0009】
UAVは、たとえば、原動機、ファンブレード組立体、ダクトリング、固定子取付具、原動機取付具、固定子スリップストリーム、ダクト間スリップストリーム、ダクト間相互接続、アビオニクス取付管、着陸装置取付具、アビオニクス取付具、アビオニクス相互接続、翼シャフト、テールコーン蓋、テールコーンヒンジ、テールコーンラッチ、サーボギア、着陸脚、ダクトリップ、翼、テールコーン、テールバンパを含む、いくつかの相互連結された構成要素を有してもよい。
【0010】
他の実施形態では、追加の構成要素、代用された構成要素、またはこれらの構成要素のサブセットが含まれてもよい。
原動機、ファンブレード組立体、ダクトリング、固定子取付具、原動機取付具、固定子スリップストリーム、ダクト間スリップストリーム、ダクト間相互接続、アビオニクス取付管、着陸装置取付具、アビオニクス取付具、アビオニクス相互接続、翼シャフト、テールコーン蓋、テールコーンヒンジ、テールコーンラッチ、サーボギア、および着陸脚などの構造支持要素は、高い構造的整合性を維持するために、たとえば、木、金属、または複合材料で製造されてもよい。ダクトリップ、翼、テールコーンおよびテールバンパのような空力要素は、たとえば、発泡体材料で製造されてもよい。
【0011】
ダクト間相互接続、着陸装置取付具、アビオニクス取付具、および原動機取付具などの構造的相互接続構成要素は、十分な構造的整合性を提供する特定の繊維長の複合材料を用いるが、十分に高い応力水準を適用すると分離または分解して構造的破砕性をもたらすように設計することもできる。破砕可能な相互接続構成要素を選択的に実施すると、分解した断片のサイズおよび質量に対して、さらなる、すなわち補足的な制御を実現することができる。目的は、機体をより小さく、すなわちより衝撃が少ない質量に崩壊させるように、正常な操縦負荷と、機体における選択された接合ポイントの衝撃に対する歪みおよび引き裂き強度特性との平衡を保つことである。塑性変形を示さないが、変形が弾性であるときに不具合となる重要な構造ポイントのために、炭素繊維および発泡体などの材料が選択される。空中衝突については、衝撃および引き裂き強度特性を超過し、その結果機体は所望のマスフラグメントに分解させられる。機体の重要な接合ポイントで、材料の弾性、剛性率、引張強度、衝撃強度、および引き裂き強度を管理すると、用途基準による用途上の所望の破砕性が得られる。
【0012】
ダクトリップとテールコーンの間の結合および取付メカニズムは、破損箇所の交換を可能にし、かつ/または衝撃破砕性を支持する、分離可能な結合材料によって遂行されてもよい。これは、室温加硫配合物(RTV)のような結合剤、あるいは伸ばしたときに取付を解放するOリングメカニズムによって、遂行することができる。
【0013】
1つまたは複数のダクテッドファンに動力を供給する1つまたは複数の原動機は、バッテリのような内蔵電力源により動力が供給される電気モータであることも可能である。電気モータを使用すると、振動を最小限にし、維持費を削減することができる。
【0014】
別の実施形態では、機械的要素を、複数の機能性を提供するように設計することができる。たとえば、軽量の空力的エアダクトを支持するダクトリングはまた発動機取付具の役目をし、振動のための共振排除をもたらす接続管はまた遮蔽配線経路の役目をし、およびダクト間取付ポイントはまた着陸脚取付具の役目をすることもできる。
【0015】
ダクトリング、ダクト間スリップストリームおよび/またはダクトリップなどの構造要素は、バッテリ、または機体構造に統合された燃料電池構成要素などのエネルギー蓄積装置として役目をすることを含む二重の役割を提供することができる。好ましくは、本開示によって構成されるUAVは、約1.81kg(4ポンド)以下のシステム全重量を有するべきである。
【0016】
例示の実施形態では、機械的要素は2つの機能を設けられ、そのことにより、構成要素の総コストおよびUAV構造の全コストを削減することもできる。構造要素は同じまたは類似の非専門的工程で製造し、非構造要素は同じまたは類似の非専門工程で製造して、全製造コストを削減することもできる。
【0017】
開示する実施形態の他の特徴およびさらなる適用可能範囲は、添付図面を参照して以下の詳細な記述で示され、当業者には理解されるであろう。
【図面の簡単な説明】
【0018】
【図1】実施形態による無人航空機(UAV)の斜視図である。
【図2】図1のUAVの破断斜視図である。
【図3】着陸脚が格納位置にあるUAVの斜視図である。
【図4】ダクトリップおよびダクトリングを有するダクト組立体の拡大した一例を示す。
【図5】図5(a)は原動機取付具の一例の上面斜視図である。図5(b)は原動機取付具の一例の底面斜視図である。
【図6】固定子スリップストリーム取付具の一例を示す。
【図7】結合した固定子、脚および結合管取付具構造の一例を示す。
【図8】固定子スリップストリームおよび/またはダクト連結管として使用する結合管の一例を示す。
【図9】ペイロード支持管の例に取り付けられたペイロードの一例を示す。
【図10】テールコーンおよびサーボ構造を示す。
【図11】原動機取付具と格納位置へ回転したテールコーンとを含むファン組立体の斜視図である。
【図12】代替実施形態による無人航空機(UAV)の斜視図である。
【図13】図12の固定子スリップストリーム、脚、ダクト連結および結合装置の一例の拡大図である。
【図14】図14(a)は図13の結合装置の一例の拡大図である。図14(b)は図13の結合装置の一例の拡大図である。
【発明を実施するための形態】
【0019】
本願の態様により、軽量の無人航空機(UAV)を構成するためのシステムおよび方法について説明する。空力要素および構造要素は所望の性能特性に対応して選択される。機械的要素は、二重の機能性を提供し、かつ対応するUAVの部品数およびコストを削減するように設計される。
【0020】
以下の開示はダブルダクトのホバリング航空機につき言及しているが、本実施形態が航空機の分野で広い適応性を有することは認識されよう。例で説明された特別の構成は変えることができ、例示の実施形態を説明するために引用されている。
【0021】
図1に示されるように、一実施形態によるUAV 100には、ダクト連結組立体104を介して相互接続されたダクテッドファン組立体102が含まれる。UAV 100には、ファン組立体102およびダクト連結組立体104が地面に触れないように保つための脚120が含まれる。図1は2つのダクテッドファン組立体を示しているが、ダクテッドファン組立体はいくつでもこの開示と矛盾せずに使用することが可能である。たとえば、単一のダクテッドファン組立体を、ダクト結合組立体を必要としないで、使用することが可能である。あるいは、3つ以上のダクテッドファン組立体が1つまたは複数のダクト結合組立体を介して相互接続することも可能である。
【0022】
各ダクテッドファン組立体102には、ダクトリップ106の外側の周囲を囲んで延長する、構造上剛性なダクトリング108に構造的に支持された軽量の空力的ダクトリップ106が含まれてもよい。ダクトリップ106は、壁面105の上端に向かって放射状方向でわずかに外側へ延長し、次に上方肩部107を形成するために外側へかつ壁面を覆って下方へ曲がる、円筒状に成形された下方壁面105を有する。
【0023】
原動機取付具110に取り付けられた原動機109が、ダクトリップ106およびダクトリング108内に収容される。次に、原動機取付具110は固定子スリップストリーム112を介してダクトリング108に固定される。固定子スリップストリーム112は固定子取付具113を介してダクトリング108に固定される。図1は3つの固定子スリップストリーム112を開示しているが、4つ以上を提供することも可能である。図1に示されるように、固定子スリップストリーム112の最初の2つは、ダクト連結組立体104に接続し、かつUAV 100のために剛性の支持を提供するために、約60°未満の角度Aだけ離して配置される。第3の固定子スリップストリームは、固定子スリップストリーム112の最初の2つのいずれからも約60°よりも大きい角度Bに配置される。角度AおよびBは例としてのみ示される。他の固定子スリップストリームの配置も使用が可能である。
【0024】
固定子スリップストリーム112は、固定子取付具113に達するように、ダクトリップ106およびダクトリング108に形成された穴を貫通してもよい。固定子取付具113が、固定子スリップストリーム112の一端を受け止め固定するために、ダクトリング108の外側表面上に提供されてもよい。
【0025】
2つ以上のプロペラブレード111が、UAVに揚力を提供するために、原動機109に接続されたダクテッドファン組立体102それぞれに提供されてもよい。プロペラブレード111の数は可変であり、好ましくは原動機負荷の要求条件および毎分回転数(rpm)の効率性に合うように設計される。原動機109は、電気モータ、たとえば、別々に提供されたバッテリによって動力が供給されるブラシレス直流(DC)モータが好適である。
【0026】
図2に示されるように、一般的なエアフロー方向Cに対して翼206を傾けるために、中空テールコーン203、制御翼組立体114、およびサーボ204を含むテールコーン組立体202が提供される。一般的なエアフロー方向Cに対する翼206の傾斜は、流出スラスト方向の変化を生成し、その結果対応する所望の方向にUAV 100を動かす。テールコーン203の下端に配置された制御翼組立体114は、シャフト208を介して接続している、2つの反対側に向かい合った翼206を含む。シャフト208は、好ましくは各翼206の揚力点から前方に偏った点で翼206に接続される。サーボ204は、制御回路から受け取る制御信号に応じて、シャフト208を回転させ、それにより翼206を回転させるように機能する。シャフト208への成型された発泡体の翼206の接続は、音叉構成中の分離したシャフト、または翼に剛性を与えるために翼206内の平らで穿孔された表面を延長するシャフトによって遂行されてもよい。
【0027】
図1および2に示されているように、UAV 100には、2つのダクテッドファン組立体102を剛性に接続するためにダクト連結組立体104が含まれる。ダクト連結組立体104には、複数のダクト間スリップストリーム116および複数のダクト間相互接続118が含まれる。ダクト間相互接続118の各々は、近接に間隔を置いて配置された2つの固定子スリップストリーム212のうちの1つを受け取る固定子取付具113と一方の端で接続し、かつダクト間スリップストリーム116と他方の端で接続する。ダクト間スリップストリーム116は固定子スリップストリーム212が配置された水平面から水平面中で垂直にオフセットするように、1つの代替中のUAV 100のダクト間相互接続118は、垂直の変位特性を含んでいてもよい。
【0028】
ダクト間相互接続118はそれぞれ、さらに着陸脚相互接続としての役目もし、対応する着陸脚120を適所に保持することもできる。2つ以上のダクト間スリップストリーム116が、2つのダクテッドファン組立体102を接続するために使用されてもよい。
【0029】
図3に示されるように、着陸脚120はそれぞれ、スプリングの負荷を掛けた切り欠きを有する方法でダクト間相互接続118に取り付けられ、着陸装置が速やかに90度回転して、UAV 100を格納位置に配置することができる。着陸装置120のシャフト部分121はダクト間相互接続118上で切り欠き(図示せず)と組み合わさるように固定されてもよい。ダクト間相互接続118の反対側のスプリングは、着陸装置を適正な位置に保持し、多少の着陸時の衝撃吸収を提供できる。各シャフト部分121の下端に取り付けられた着陸脚ボール要素123は、着陸の付加的な衝撃吸収を提供するために、たとえば、柔軟な変形可能なゴムから形成されてもよい。
【0030】
図2に戻ると、ダクト間スリップストリーム116は、さらにアビオニクス相互接続124を介して1つまたは複数のアビオニクス取付管122を支持することもできる。アビオニクス取付管122は、アビオニクスペイロード126が搭載されることがあるアビオニクス取付領域を提供することもある。たとえば、アビオニクスペイロード126には、制御システム、ワイヤレスリモコンのインタフェース、バッテリ源、および/または他の飛行を可能にするシステムが含まれてもよい。あるいは、図3に示されるように、アビオニクス相互接続を1つの組立体に統合するアビオニクス取付板302は、ダクト間スリップストリーム116に直接取り付けられてもよい。
【0031】
図4は、ダクトリップ106およびダクトリング108についての詳細図を示す。これまでに示したように、ダクトリップ106は、壁面105の上端に向かって放射状方向でわずかに外側へ張り出す円筒状に成型された下方壁面105を有する。図2に最も良く示されるように、壁面105の上部は、外側かつ下方へ曲がる肩部107へ延長する。ダクトリップ106の下端105は、ダクトリップ106をダクトリング108に対して位置決めをし、固定するために、ダクトリング108の内面、およびダクトリング108の外面上に形成されたフランジ404と組み合わさる。あるいは、ダクトリング108上にフランジ404を突出させる必要性を除去するように、ダクトリップ106は、ダクトリング108と組み合わさるダクトリップの表面に成型したフランジを有してもよい。
【0032】
あるいは、ダクトリップ106は、ダクトリップ106の下部とダクトリング108の外側上部に除去可能な結合剤を塗布して、ダクトリング108に取り付けられてもよい。あるいは、ダクテッドファン組立体102の周りで等間隔に機械的スナップ留めすなわちOリングメカニズムを配置することもできる。もちろん、ダクトリップ106をダクトリング108に固定する他の方法を使用することもできる。
【0033】
ダクトリング108には、固定子スリップストリーム112の配置パターンにより作られた穴402が含まれる。外側に突出するフランジ404は、ダクトリング108の上端近くのダクトリング108の外側の周囲に沿って形成される。フランジ404は、ダクトリング108の外側円筒形表面の壁面への固定子取付具113の配置を助け、ダクトリング108に回転剛性を加える。
【0034】
図5(a)および5(b)はそれぞれ、原動機取付具110の上面および底面斜視図を示す。図5(b)に示されるように、原動機取付具110には、上部表面514と、上部表面514の外側周囲から垂直に延長する第1の外側円筒形壁面510と、外側壁面510内に配置され、外側壁面510と同じ方向に上部表面514から延長している第2の内側円筒形壁面512とが含まれる。貫通穴502および518は、固定子スリップストリーム112の配置に対応するパターンで、相応じて第1および第2壁面に形成される。
【0035】
上部表面514に形成された配線穴506および内側円筒形壁面512に形成された切り欠き516により、配線(図示せず)が原動機取付具110に通されることが可能になる。配線は、原動機から配線穴506を経由し、切り欠き516を横切り、固定子スリップストリーム212の1つまたは複数内へ、次にダクト間スリップストリーム116を経由し、アビオニクスペイロード126に通される。中央に配置された原動機駆動穴504は上部表面514に形成され、原動機109の駆動シャフトが1つまたは複数のプロペラ111を駆動するように原動機取付具110を経由して延長することが可能になる。原動機109を原動機取付具110に確実に取り付けるために、追加の穴508が上部表面514に提供される。Oリングポスト520は、外側壁面510から放射状に外側へ延長し、テールコーン組立体202に取付メカニズムを提供する。アラインメントタブ132は、外側壁面510の底部表面から軸方向に延長し、テールコーン組立体202に形成された対応するアラインメントスロットと組み合わさり、テールコーン組立体202を原動機取付具110およびその結果UAV 100の向きに適切に方向を合わせることができる。
【0036】
図6は、固定子取付具113の斜視図を示す。固定子取付具113は、ダクトリング108の湾曲と調和するようにわずかに内側へ湾曲した、長方形外側バンド枠602を有する。より厚い中央部604は枠602と一体で形成され、穴606および608が含まれる。貫通穴606は、固定子スリップストリーム112の形状と実質的に同じ涙滴形状に形成され、固定子取付具113を固定子スリップストリーム112に剛性に固定する。他の形状を使用することも可能である。あるいは、図11に示されるように、固定子スリップストリーム112は、たとえば、固着剤の塗布または一種の溶接工程によって、直接ダクトリング108に結合されることも可能である。
【0037】
図6に戻ると、固定子取付具113の穴608は、固定子取付具113が、どの固定子スリップストリーム112に固定されるかによって、2つの目的の役目をすることもある。さらに図2に示されるように、2つの近接に角度を成した固定子スリップストリーム212を固定する固定子取付具113は、平行で近接に間隔を置いて配置されたペグ214を介してダクト間相互接続118に接続されてもよい。固定子取付具112の穴608は、ペグ214を受け止めかつ固定するために、それに応じた大きさに作られる。固定子取付具113をダクトリング108に固定するために、ペグ214が使用されることもある。
【0038】
あるいは、他の2つの固定子スリップストリーム212に対して大きな角距離で間隔を置いて配置された固定子スリップストリーム112に対して配置された固定子取付具113のためには、たとえばリベットまたはネジなどのファスナを介して、穴608が固定子取付具113をダクトリング108に固定するのに使用されてもよい。
【0039】
図7は、固定子取付具113に接続されているときのダクト間相互接続118の斜視図を示す。これまでに言及したように、ダクト間相互接続118を固定子取付具113の対応した大きさに作られた穴608と確実に接続するために、ダクト間相互接続118には並列で近接に間隔を置いて配置された2本のペグ214が含まれる。ペグ214はさらに着陸装置取付具701およびアビオニクス取付具706を固定することもできる。図2に示されているように、着陸装置取付具701には、着陸装置120を固定するための穴702が含まれる。図2において見てとれるように、アビオニクス取付具706には、アビオニクス取付130上に形成された類似の形状の突出を受け取るために、上部表面に形成された穴708が含まれる。ダクテッドファン組立体102をダクト連結組立体104に接続し、さらに着陸装置取付具701を含む相互接続構造118を提供することにより、UAV 100が必要とする構成要素の数を削減することもできる。また、UAV 100の全重量およびコストはそれに対応して削減することができる。
【0040】
図8は、固定子スリップストリーム112の斜視図を示す。図8の固定子スリップストリーム112は、図2の固定子スリップストリーム212としても使用することができる。固定子スリップストリーム112は、UAV 100の性能および操作を改善するために、ダクテッドファン組立体102内の原動機109および原動機取付具110を剛性ダクトリング108および固定子取付具113に固定することと、アビオニクスペイロード126からダクテッドファン組立体102内の原動機109およびサーボ204に電源および制御ケーブルを経路指定することと、そこを通過する任意のかつすべての制御および電源ケーブルの電磁遮蔽を提供することと、ダクテッドファン組立体102を経由して流れる空気に空力的スリップストリーム表面を提供することとを含む複数の機能を実施する。
【0041】
原動機取付具110に形成された穴502、ダクトリング108に形成された穴402、および固定子取付具113に形成された穴606の形状が調和するように、固定子スリップストリーム112は涙滴形状に形成されることがある。図8に示されるように、涙滴形状は1つの滑らかで丸い先端802および1つのより尖った下端806からなる。固定子スリップストリーム112の涙滴形状は、ダクテッドファン組立体102内の固定子スリップストリーム112によって生成された空気抵抗を最小限にする。もちろん、他の形状を使用することも可能である。
【0042】
固定子スリップストリーム112は中空になるように形成され、固定子スリップストリーム112内に配線経路804を提供する。アビオニクスペイロード126から固定子スリップストリーム112を経由し原動機109および/またはサーボ204まで配線を経路指定することによって、固定子スリップストリーム112の外側表面に沿って配線を経路指定することと比較して、抗力を除去することができる。また、固定子スリップストリームの壁面はそこを通過する配線を電磁的に遮蔽する機能を果たす。
【0043】
図9は、アビオニクスペイロード126および取付管122の斜視図を示す。取付管122は、相互間で所定の間隔を置いて並列の方法で配置される。外側ケーシング902は、取付管122およびそこに含まれているエレクトロニクスの幅と等しいまたはこれよりわずかに広い幅の大きさであり、取付管122の上を滑り、エレクトロニクスを覆うことができる。外側ケーシング902内に、バッテリ904、1つまたは複数の原動機制御装置906、およびアビオニクス制御システム908が収容されてもよい。アビオニクス制御システム908には、数ある中で、コマンドを受信し情報を送信するための無線RFトランシーバ、受信制御コマンドを原動機および/またはテールコーンサーボを制御する信号に変換するための変換制御システム、飛行安定を維持するための安定制御システム、自律飛行制御システム、全地球測位システム(GPS)、および/または、ビデオ画像符号化システムが含まれることもある。さらに、システムのサブセット、および/または、代替システムもアビオニクス制御システム908に含まれていてもよい。
【0044】
図10は、テールコーン組立体202の斜視図を示す。テールコーン組立体202には、中空テールコーン203、エンドバンパ1012、翼シャフト1002、翼114、サーボ1004および取付板1006が含まれる。中空テールコーン203は、円錐の狭い端がその頂点に達する前に切り取られている線形テーパを有する逆円錐形状を有する。中空テールコーン203の下端で、中空で開放式のコーン203の下端を閉じるために、中実の半球のバンパ1012が提供される。
【0045】
テールコーン203の上端にはテールコーン取付板1006が備えられ、その一方の端にヒンジ1008、他方の端にラッチ1010を有する。図11に示されるように、対応する原動機取付板1102は、原動機取付具110の外側壁面510の下部表面に取り付けられる。ラッチ1010により、テールコーン取付板1006は原動機取付板1102への取り付けおよび取り外しが可能になる。ヒンジ1008により、テールコーン取付板1006はテールコーン202を原動機取付具110に蝶番のあるように取り付けることが可能になり、固定子スリップストリーム112と固定子スリップストリーム212のうちの1つとの間のダクテッドファン組立体内にテールコーンが格納される開放位置と、テールコーンが原動機取付具110に剛性に取り付けられている閉鎖位置との間で、テールコーン202が回転できる。サーボ取付具1013は、サーボ1004を保持するためのテールコーン取付板1006の底面表面上に備えられる。
【0046】
一実施形態によると、上記のそれぞれの空力的および構造的支持要素の構成は選択的に選ばれ、UAV 100の構造的整合性を維持しつつUAV 100の全重量を削減する。
【0047】
ダクトリング108、固定子取付具113、原動機取付具110、固定子スリップストリーム112、ダクト間スリップストリーム116、ダクト間相互接続118、アビオニクス取付管122、着陸装置取付具701、アビオニクス取付具706、アビオニクス相互接続124、翼シャフト1002、テールコーン蓋1006、テールコーンヒンジ1008、テールコーンラッチ1010、サーボギア1014および着陸脚120などの構造支持要素は、高い構造整合性を維持するために木、金属または複合材料で製造されてもよい。木は、たとえば曲げたアカガシワ製だぼが使われることもある。他の木も使用することができる。金属は、たとえば機械加工または押出し加工されたアルミニウムの場合もある。他の金属または合金も使用することができる。複合材料は、たとえば、ポリエーテルエーテルケトン(PEEK)、ポリアミドイミド(たとえば商標名Torlonを有する物質で、Solvay Advanced Polymers,L.L.C.、Alpharetta、Georgia、U.S.A.から入手可能)、非晶質のポリエーテルイミド(たとえば商標名Ultemを有する物質で、SABIC Innovative Plastics Holding BV、Pittsfield、Massachusetts、U.S.A.から入手可能)、ナイロン6、ナイロン12またはナイロン66を含む熱可塑性物質の場合もある。または、たとえば商標名Lytex(Quantum Composites, Inc.、Bay City、Michigan、U.S.A.から入手可能)を有するガラス繊維強化エポキシ樹脂、エポキシ樹脂、またはビスマレイミド(BMI)を含む熱硬化性樹脂の場合もある。他の複合材料も使用することができる。たとえば、複合材料は、射出成形工程、圧縮成形工程、選択的なレーザ焼結工程、熱成形工程、またはオートクレーブ/超硬化工程によって形成されてもよい。
【0048】
たとえば、具体的には、ダクトリング108はプリプレグ平織りエポキシ樹脂織物で形成されてもよい。アビオニクス取付管122、翼シャフト1002、テールコーン蓋1006、固定子スリップストリーム112、およびダクト間スリップストリーム116は、アルミニウムで形成されてもよい。着陸脚120はオーク、複合材料またはアルミニウムで形成されてもよい。テールコーンヒンジ1008、テールコーンラッチ1010、およびサーボギア1014は、ナイロンで形成されてもよい。固定子取付具113、原動機取付具110、ダクト間相互接続118、アビオニクス相互接続124、着陸装置取付具701、およびアビオニクス取付具706は、射出成形複合材料で形成されてもよい。たとえば、射出成形複合材料は、テールコーンヒンジ1008に使用したナイロンに類似のナイロンであることも考えられる。固定子取付具113またはダクト間相互接続118および原動機取付具110のような重要な破砕性位置の材料の選択は、構造の整合性を維持するのに必要な繊維長および樹脂材料を規定する予期される衝撃応力水準に基づいてなされる。衝撃(たとえば、100未満の引張強度を有する)で分解する半剛性の発泡体材料は、ダクトリップ、制御翼およびテールコーンのような空力的表面に適用することができる。衝撃に対して脆い性質(約5.9e+05の剛性率、約6.5e+05の弾性率、約7250の最大引張強度)を示す短繊維複合材料は、高速衝撃で分離する構造的相互接続継手および脚取付具および原動機取付具に適用できる。しかし、これらは単なる例であり、構造的構成要素はこれまでに述べた高剛性材料の任意の1つまたは複数から作られてもよいことを理解されたい。
【0049】
剛性の構造的材料を提供することにより、軽量UAV 100の剛性を増加でき、軽量UAV 100の運用および耐久年数が改善されることもある。
ダクトリップ106、翼114、テールコーン203、およびテールバンパ1012などの空力要素は、発泡体材料で製造されてもよい。発泡体材料は、たとえば、発泡ポリエチレン(EPE)、低密度ポリエチレン(LDPE)、発泡ポリスチレン(EPS)、または発泡ポリプロピレン(EPP)を含む軟質または硬質発泡体であってもよい。発泡体材料は発泡体射出成形工程を介して形成されることもある。たとえば、ダクトリップ106は成形EPE発泡体材料で形成されてもよい。必要なときに軽量の空力的部品を容易に交換できるように、空力要素は、構造的構成要素とは分離して(たとえば、一体型ではなく)、構造的構成要素と分離可能に接続される方法で形成できる。
【0050】
付加的、すなわちUAVの他の構造または空力要素は、対応する構造的または空力的材料からなることもある。
より軽量の空力要素とより剛性の支持要素の混合からなるUAV 100は、約1.81kg(約4ポンド)以下の全システム重量を有することが好ましい。より好ましくは、より軽量の空力要素およびより剛性の支持要素の混合からなるUAV 100は、約0.907kg(約2ポンド)以下の全システム重量を有することが好ましい。しかし重要なことには、開示された軽量かつ破砕性の技術は、より大きな機体にも適用することができる。
【0051】
たとえば、各ダクテッドファン組立体102は、約0.357kg(0.786ポンド)以下の全重量を有することが好ましい。各テールコーン組立体202は、約0.0517kg(0.114ポンド)以下の全重量を有することが好ましい。各ダクト連結組立体104は、約0.0984kg(0.217ポンド)以下の全重量を有することが好ましい。バッテリ904を含むUAV 100の全重量は、約0.925kg(2.04ポンド)以下であることが好ましい。
【0052】
原動機109は、アビオニクスペイロード126に含まれるバッテリ904により動力が供給される電気モータであってもよい。バッテリ904は、たとえば、リチウム、リチウムイオン、リチウムポリマ、および/または水素化アルミニウムリチウムなどのバッテリを含む、リチウムベースの動力源であることが考えられる。もちろん、原動機を駆動する十分な電力および長い運用時間を備える十分な電力密度を提供する限り、燃料電池を含む他のいかなるタイプのバッテリも使用することができる。電気モータを使用することで、振動を最小限にし、UAV 100の維持費を削減することもできる。
【0053】
図12はUAV 1200の代替実施形態を示す。各ダクテッドファン組立体1202は、UAV 100のダクテッドファンアセンブリ102と同じまたは類似である。しかし、UAV 1200には、固定子スリップストリーム1216と同じ水平面で動かされる、平行な1対のダクト間スリップストリーム1210を備えたダクト連結組立体1204が含まれる。図12の実施形態では、UAV 1200の固定子スリップストリーム1216はダクトリング1208を越えて延長し、ダクト間相互接続1218に接続する。
【0054】
図13に示されるように、ダクト間相互接続1218には固定子スリップストリーム接続面1302とダクト間スリップストリーム接続面1304の間に角度オフセットが含まれる。角度オフセットは、たとえば15°〜45°の範囲にあってもよい。最も好ましくは、角度はほぼ30°である。図14(a)および14(b)は、ダクト間相互接続1218についての交互図を示す。各ダクト間相互接続1218は、固定子スリップストリーム接続面1302およびダクト間スリップストリーム接続面1304にそれぞれ形成された着陸脚貫通穴1406および1408を含む。2つの着陸脚貫通穴1406および1408のうちの1つが、ダクト連結組立体1004の4つの位置の各々で利用される。各ダクト間相互接続に2つの脚貫通穴1406/1408を形成することによって、この部品が4つの位置すべてに共通になる。このように、同様の製造設計のダクト間相互接続1218が、着陸脚1220をUAV 1200に接続するためにダクト連結組立体1204のどちらの側にも使用することができる。各着陸装置1220のシャフトは、ダクト間相互接続1218の貫通穴1206および1208の切り欠きに組み合わさるように固定される。ダクト間相互接続の反対側のスプリング(図示せず)は、ワッシャーおよびネジと共に着陸装置1220を適正な位置に保持する。
【0055】
図14(b)に示されるように、各ダクト間相互接続1218には、涙滴形状のダクト間スリップストリーム1210および涙滴形状の固定子スリップストリーム1216と接続するための同様の涙滴形状の穴1402および1404が含まれる。
【0056】
構造および空力要素と、構造要素構成と、空力要素構成と、全重量の選択が含まれる、UAV 100に関する上記の開示は、UAV 1200にも同等に適用することができる。ダクト間相互接続1218は構造要素であり、たとえばナイロンの、射出成形複合材料で作られてもよい。さらに、図12に示されていないが、中心に配置される動力源および飛行制御回路を提供するために、図12のUAV 1200にアビオニクスペイロードおよび取付管を取り付けることもできる。
【符号の説明】
【0057】
100 無人航空機
102 ダクテッドファン組立体
104 ダクト連結組立体
105 下方壁面
106 ダクトリップ
107 上方肩部
108 ダクトリング
109 原動機
110 原動機取付具
111 プロペラブレード
112 固定子スリップストリーム
113 固定子取付具
114 制御翼組立体
116 ダクト間スリップストリーム
118 ダクト間相互接続
120 着陸脚
121 シャフト部分
122 アビオニクス取付管
123 着陸脚ボール要素
124 アビオニクス相互接続
126 アビオニクスペイロード
130 アビオニクス取付
132 アラインメントタブ
202 テールコーン組立体
203 中空テールコーン
204 サーボ
206 翼
208 シャフト
212 固定子スリップストリーム
214 ペグ
302 アビオニクス取付板
402 穴
404 フランジ
502 穴
504 原動機駆動穴
506 穴
508 穴
510 外側壁面
512 内側壁面
514 上部表面
516 切り欠き
518 穴
520 Oリングポスト
602 外側バンド枠
604 中央部
606 穴
608 穴
701 着陸装置取付具
702 穴
706 アビオニクス取付具
708 穴
802 先端
804 配線経路
806 下端
902 外側ケーシング
904 バッテリ
906 原動機制御装置
908 アビオニクス制御システム
1002 翼シャフト
1004 サーボ
1006 テールコーン取付板/テールコーン蓋
1008 ヒンジ
1010 テールコーンラッチ
1012 エンドバンパ/テールバンパ
1013 サーボ取付具
1014 サーボギア
1102 原動機取付板
1200 無人航空機
1202 ダクテッドファン組立体
1204 ダクト連結組立体
1206 貫通穴
1208 ダクトリング
1210 ダクト間スリップストリーム
1216 固定子スリップストリーム
1218 ダクト間相互接続
1220 着陸装置
1302 固定子スリップストリーム接続面
1304 ダクト間スリップストリーム接続面
1402 穴
1404 穴
1406 着陸脚貫通穴
1408 着陸脚貫通穴

【特許請求の範囲】
【請求項1】
軽量の発泡体材料からなる空力的構成要素と、
前記空力的構成要素を支持し、かつ相互接続させ、中実の金属、木または複合材料のうちの少なくとも1つからなる、構造的構成要素とを備える、
無人航空機(UAV)。
【請求項2】
大気中の揚力を生成する1つまたは複数のダクテッドファンであって、前記1つまたは複数のダクテッドファンのそれぞれが、前記ダクテッドファンの内側表面に軽量の発泡体空力的構成要素と、前記軽量の発泡体空力的構成要素に構造的支持を提供する前記軽量の発泡体空力的構成要素の外側表面の周りに構造的構成要素であるダクトリングとを含む、前記1つまたは複数のダクテッドファンをさらに備える、請求項1に記載の無人航空機。
【請求項3】
前記構造的構成要素の少なくとも1つが、第1の所定の限界力を加えられると分解するような繊維長を有する破砕可能な樹脂材料で製造され、前記空力的構成要素の少なくとも1つが、第2の所定の限界力を加えられると分解するような破砕可能な発泡体材料で製造されている、請求項1に記載の無人航空機。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2010−132280(P2010−132280A)
【公開日】平成22年6月17日(2010.6.17)
【国際特許分類】
【外国語出願】
【出願番号】特願2009−268650(P2009−268650)
【出願日】平成21年11月26日(2009.11.26)
【出願人】(500575824)ハネウェル・インターナショナル・インコーポレーテッド (1,504)