説明

微生物測定装置

【課題】食品工場や医薬品工場などの現場でも、化学発光法により、容易かつ迅速に、複数のサンプルを連続的に処理可能な微生物測定装置を提供する。
【解決手段】一部を光透過性部材から形成され、その閉鎖空間内で測定対象の微生物を含むサンプル溶液と試薬溶液とを混合して発光を促進し、当該発光を光学測定することにより微生物測定を行う微生物測定装置は、複数の微生物測定チップ101を配置して回転する回転ディスク105と、回転ディスクの上方にて、微生物測定チップ内に測定試薬を添加する試薬添加ユニット102と、試薬添加ユニットへ測定試薬を送液する送液ユニット104と、回転ディスクの下方にて微生物測定チップの内部での微生物の発光を測定する光学測定ユニット106と、光学測定ユニットからの発光測定信号を受信し、各種の制御を行う処理ユニット107とから構成されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数の微生物サンプルを連続的に処理することが可能であり、かつ、現場で用いるに適した微生物測定装置に関する。
【背景技術】
【0002】
近年、食品工場や医薬品工場などでは、使用する原料や製品中の微生物管理が極めて重要であるため、その製造過程においても、広く、微生物数の測定が行なわれており、かかる微生物数の測定を迅速に行うための手法として、特に、化学発光法が注目されている。
【0003】
この化学発光法は、微生物が保持する物質を複数の試薬で発光させ、その発光量を測定し、もって、微生物の数を算出する方法である。即ち、この化学発光法では、上述したように、微生物の発光を測定するため、S/N比を向上して精度の高い測定を実現するためには、外部からの迷光を遮断する必要がある。また、サンプル中の微生物量を正確に測定するためには、外部から混入する微生物によるサンプル汚染を、確実に、防止する必要がある。
【0004】
また、近年では、物質の混合・反応・分取等の単位操作を、マイクロ加工技術により作製した微細な流路中で行う装置、所謂、マイクロリアクタを、様々な検査へ適用することが盛んに行なわれている。なお、かかるマイクロリアクタは、閉鎖空間を形成しているため、外部からの汚染を防止できるという特長を持っている。
【0005】
従来、例えば、以下の特許文献1には、上述した化学発光法をマイクロリアクタ内で行い、もって、外部からの微生物の混入を防止した自動分析装置が開示されている。
【0006】
また、以下の特許文献2には、他の光測定装置が開示されており、この装置は、複数のウェルを有するマイクロプレートと、当該複数のウェルの各々に、同時に、試薬を分注する分注器とを備えており、もって、複数サンプルを、同時に、一括して処理できる測定装置を構成している。
【0007】
更に、以下の特許文献3には、更に他の光測定装置が開示されており、この特許文献に開示された装置では、サンプルを、連続的に、回転ディスクにセッティングすることで、複数サンプルの連続処理を行っている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2006−246796号公報
【特許文献2】特開平9−26426号公報
【特許文献3】特開平5-80057号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
ところで、上述した自動分析装置を含む微生物測定装置、特に、上述した食品工場や医薬品工場などの現場で用いられるものでは、多数のサンプルが断続的に持ち込まれることから、複数のサンプルについて、連続的に、測定可能な装置が望まれている。
【0010】
しかしながら、上記の従来技術である特許文献1に記載された装置では、工場などで強く望まれている複数のサンプルについての連続的な処理、所謂、フロー処理ができないという課題があった。
【0011】
また、上記特許文献2に記載された装置では、一度に、複数のサンプルについての一括処理、所謂、バッチ処理は可能ではあるが、しかしながら、フロー処理をできないことから、多数のサンプルが断続的に持ち込まれる現場で用いるには、なお、課題がある。また、この文献に記載された装置では、使用されるマイクロプレートは大気中に開放される構造であるため、外部から混入する微生物によってサンプルが汚染されることを防止できないという課題もあった。
【0012】
加えて、上記特許文献3に記載された装置でも、使用されるセルが大気中に開放されている構造となっているため、外部から混入する微生物によるサンプルの汚染を防止できないという課題があった。更には、装置が遮光構造を持たないことから、特に、現場で使用される際、外部からの迷光、所謂、外乱光の侵入を遮断できず、良好な測定結果が得られないという課題もあった。
【0013】
以上のように、上述した従来技術では、(1)複数のサンプルを連続的に処理可能であり、(2)外部からの微生物の混入によるサンプル汚染を防止し、(3)外乱光を確実に遮断する、という3つの課題があり、特に、これらの課題は、上述したように、多数のサンプルが断続的に持ち込まれる食品工場や医薬品工場などの現場で用いられる装置にとって重要であり、そのため、これらの課題を解消した微生物測定装置が強く望まれている。
【0014】
そこで、本発明では、上述した従来技術における課題に鑑みて達成されたものであり、その目的は、(1)複数のサンプルを連続的に処理可能であり、(2)外部からの微生物の混入によるサンプル汚染を防止し、(3)外乱光を確実に遮断することにより、特に、上述した現場等で用いるに適した微生物測定装置を提供することをその目的とする。
【課題を解決するための手段】
【0015】
そこで、上述した目的を達成するため、本発明では、まず、少なくともその一部を光透過性の部材から形成された微生物測定チップの閉鎖空間内で、測定対象である微生物を含むサンプル溶液と試薬溶液とを混合して発光を促進し、当該発光を光学測定することにより微生物測定を行う微生物測定装置であって:前記微生物測定チップを、複数、その上面に配置して回転移動する回転ディスクと;前記回転ディスクの上方に配置され、前記微生物測定チップ内に測定試薬を添加する測定試薬添加ユニットと;少なくとも前記測定試薬添加ユニットへ測定試薬を送液する送液ユニットと;前記回転ディスクの下方に配置され、前記微生物測定チップの内部での微生物の発光を測定する光学測定ユニットと;そして、前記光学測定ユニットからの発光測定信号を受信し、少なくとも、前記回転ディスクの回転と共に、前記測定試薬添加ユニットからの前記微生物測定チップへの測定試薬の添加を制御する処理ユニットとから構成されており、前記光学測定ユニットは、前記回転ディスクを挟んで、前記測定試薬添加ユニットと対向する位置に配置されており、かつ、前記回転ディスクは遮光構造を備えており、もって、連続的な測定を可能にした微生物測定装置が提供される。
【0016】
また、本発明では、前記に記載した微生物測定装置において、前記回転ディスクは、遮光部材から又は遮光部材をその外周に塗布して形成されており、その下方には、更に、前記光学測定ユニットを遮光した状態で収納するための部分をその一部に設けた固定ユニットを設け、前記回転ディスクを当該固定ユニット上に回転可能に支持するように構成することが好ましく、更には、前記回転ディスクと前記固定ユニットとの対向面の周囲には、当該回転ディスクと固定ユニットとの間に形成される隙間への外乱光の侵入を防止するための遮光部材を設けることが、又は、前記処理ユニットは、前記光学測定ユニットによる光学測定の際には、前記回転ディスクと前記固定ユニットとの間の隙間を狭めるようにその位置を制御することが好ましい。
【0017】
そして、本発明では、前記に記載した微生物測定装置において、更に、前記測定試薬添加ユニットを、前記光学測定ユニットによる光学測定の際には、当該光学測定が行われる微生物測定チップを前記回転ディスクの上方から覆うように構成することが好ましい。
【発明の効果】
【0018】
以上述べたように、本発明によれば、化学発光法による微生物測定装置において複数サンプルの連続的な処理、外部から混入する微生物によるサンプル汚染の防止、外乱光の遮断が可能となり、更には、送液手段で自動送液するため手作業工程が削減されることから、食品工場や医薬品工場などの現場においても、容易かつ迅速に微生物数の測定を行うことが出来るという優れた効果を発揮する。また、測定試薬添加手段の下方に光学測定ユニットが配置されていることから、測定試薬添加と発光測定が同時に行うことでき、そのため、消光が早いサンプルの測定も可能である。
【図面の簡単な説明】
【0019】
【図1】本発明の一実施の形態になる微生物測定装置の全体構成を示すブロック図である。
【図2】上記微生物測定装置における回転ディスクの変形例の構造を説明するための斜視図である。
【図3】更に、上記図2の回転ディスクを説明するための上面図である。
【図4】上記図2の回転ディスクの内部詳細を説明するための分解斜視図である。
【図5】上記図2に示した回転ディスクの、A-A断面図である。
【図6】上記微生物測定装置における回転ディスクと固定ユニットの動作を説明するための、上記図2におけるA―A断面図である。
【図7】上記微生物測定装置における回転ディスクと固定ユニットとの間を密閉空間とする他の構造を示す図である。
【図8】本発明の他の実施の形態になる微生物測定装置における、特に、測定試薬添加ユニットと回転ディスクの構造を示す斜視図である。
【図9】上記微生物測定装置における測定試薬添加板の動作を説明するための、上記図8におけるB−B断面図である。
【発明を実施するための形態】
【0020】
以下、本発明の一実施の形態になる微生物測定装置について、添付の図面を用いながら説明する。
【0021】
まず、添付の図1は、本発明の一実施の形態になる微生物測定装置の全体概略構成を示す図であり、この図において、当該微生物測定装置は、複数の微生物測定チップ101と、測定試薬添加ユニット102と、前処理試薬添加ユニット103と、送液ユニット104と、回転ディスク105と、光学測定ユニット106と、そして、例えばパーソナルコンピュータ等による処理ユニット107とを備えて構成される。
【0022】
より詳細には、上記の微生物測定チップ101は、例えば、透光性の樹脂などの光透過性の部材により、箱型に形成されており、その内部には、測定対象であるサンプル溶液と共に、微生物測定に必要な複数種類の試薬溶液を混合するための閉鎖空間を形成した、所謂、非開放型のチップである。なお、好ましくは、この微生物測定チップ101は、その下面の一部(後にも説明するが、光学測定ユニットへの窓部を形成する)を除き、遮光部材が塗布されていることが好ましい。なお、微生物測定チップ101として、このように、非開放型の微生物測定チップ101を採用することによれば、その閉鎖空間内で試薬溶液を混合することができることから、外部からの微生物の混入によるサンプルの汚染を防止することが可能となる。また、ここで、複数種類の試薬とは、微生物の前処理に必要な前処理試薬と共に、測定に必要な測定試薬とを含んでいる。
【0023】
一方、測定試薬添加ユニット102は、処理ユニット107からの駆動指示信号を受信して、その測定試薬添加板108を測定位置まで降下させる(例えば、その添加針をチップ内に挿入する)。そして、当該測定試薬添加板108が降下した後、やはり、処理ユニット107からの駆動指示信号を受信して、送液ユニット104が測定試薬を送液する。
【0024】
次に、前処理試薬添加ユニット103では、処理ユニット107からの駆動指示信号を受信して、その前処理試薬添加板109を前処理試薬添加位置まで降下させ(例えば、その添加針をチップ内に挿入する)、当該降下動作の終了後に、やはり、送液ユニット104が、処理ユニット107からの駆動指示信号を受信して、前処理試薬を送液する。
【0025】
上述したように、上記送液ユニット104は、処理ユニット107からの送液指示に基づいて、測定試薬を測定試薬添加ユニットへ、又は、前処理試薬を前処理試薬添加ユニットへ送液する。なお、この送液ユニット104による試薬の自動送液機能によれば、多数のサンプルが断続的に持ち込まれる食品工場や医薬品工場などの現場で用いた場合の手作業による工程を削減することが可能となる。
【0026】
なお、回転ディスク105は、図示のように、その上面の所定の位置に複数の微生物測定チップ101を配置し、そして、その回転により、当該微生物測定チップ101の位置を移動して、各試薬添加ユニットの下方に移動させる。かかる回転ディスクの動作により、例えば、チップAの測定終了後に、チップBを測定し、更に、チップBの測定終了後に、次のチップCの測定という、所謂、複数サンプルのフロー処理が可能となる。
【0027】
続いて、光学測定ユニット106は、微生物測定チップ101中の光学信号を測定するためのものであり、上記回転ディスク105の下方に配置されている。即ち、図にも明らかなように、回転ディスク105を挟み、光学測定ユニット106を上記測定試薬添加ユニット102の下方に配置することによれば、測定試薬添加と発光測定とを、同時に行うことできることから、特に、試薬添加後の消光が早いサンプルの測定も可能となることから好適である。
【0028】
最後に、処理ユニット107は、上記光学測定ユニット106に対する光学測定開始信号の発信、測定信号の受信・処理などを行う。また、回転ディスク105や試薬添加ユニット102、103の動作制御、更には、送液ユニット104の流量制御などをも行う。
【0029】
続いて、上記にその概略構成を説明した、本発明の一実施の形態になる微生物測定装置における動作、特に、その複数サンプルのフロー処理について、以下に(1)〜(7)で示す。
【0030】
(1) 回転ディスク105に、複数の微生物測定チップ101をセッティングする。
【0031】
(2) 処理ユニット107からの指示で、前処理試薬添加板109が前処理試薬添加位置まで降下する。その後、処理ユニット107からの指示で、送液ユニット104は前処理試薬を送液し、当該送液された前処理試薬は、上記添加板109(より具体的には、その添加針を介して)からチップAに添加される。
【0032】
(3) 回転ディスク105が回転し、もって、隣接位置のチップBを前処理試薬添加ユニット103下方に配置する。
【0033】
(4) 上記(2)と同様の動作により、前処理試薬を添加する(即ち、上記(3)と(4)の動作を繰り返し、複数サンプルについて、フロー処理を行う)。
【0034】
(5) 回転ディスク105の回転により、チップAが測定試薬添加ユニット102下方に移動した後、測定試薬添加板108が測定位置まで降下する。更に、処理ユニット107の指示により、送液ユニット104は測定試薬を送液し、送液された測定試薬は、添加板108から(より具体的には、その添加針を介して)チップAに添加される。なお、光学測定ユニット106は、測定試薬の添加と同時に、その光学測定を開始し、その後、測定信号を処理ユニット107へ出力する。
【0035】
(6) 回転ディスク105が回転し、もって、チップBを測定試薬添加ユニット102下方に配置する。
【0036】
(7) 上記(5)と同様の動作により、チップBの測定を行う(即ち、上記(6)と(7)の動作を繰り返し、複数サンプルをフロー処理する)。
【0037】
このように、上述したように構成された本発明の一実施の形態になる微生物測定装置によれば、外部からの微生物の混入によるサンプルの汚染を防止し、かつ、複数のサンプルについての連続的な処理が可能となる。また、上記の実施の形態では、送液手段により試薬が自動的に送液されてチップ内のサンプルに添加されるため、手作業による工程が削減されるという効果が得られる。更に、光学測定ユニットが測定試薬添加手段の下方に配置されており、そのため、測定試薬添加と発光測定とを、同時に行うことが可能となる。そのため、特に、その消光が早いサンプルであっても、確実に、その測定を可能とするという効果も発揮する。
【0038】
即ち、本発明の一実施の形態になる微生物測定装置によれば、上述した食品工場や医薬品工場などの現場で用いられ、そのため、多数のサンプルが断続的に持ち込まれても、複数のサンプルについて、連続的に、測定可能であることから、特に、現場で用いるに適した微生物測定装置を提供することが可能となる。
【0039】
次に、特に、現場で用いる場合における課題である、光学測定における外乱光の遮断について、以下に説明する。なお、従来技術では、上述したように、外乱光の殆どは、発光体から光学測定ユニットに至る間の開放空間に由来する。
【0040】
そこで、本発明では、かかる外乱光を遮断するには、発光体である微生物測定チップと光学測定ユニットとの間に形成される開放空間内に入射する外乱光を遮断するための構造について検討を行い、その結果、本発明では上記外乱光の遮断を、上記回転ディスクと固定ユニットとを用いて行う構成を採用している。
【0041】
以下、本発明において採用した、回転ディスクと固定ユニットとを用いて構成された外乱光の遮断構造の詳細について、添付の図2〜図5を参照しながら説明する。
【0042】
まず、添付の図2は、上記の回転ディスク201(上記図1では、符号105で示す)と固定ユニット202の斜視図であり、添付の図3は上記回転ディスク201の上面図、添付の図4は上記回転ディスク201と固定ユニット202との分解斜視図、そして、添付の図5は上記図2におけるA−A断面図である。
【0043】
これらの図からも明らかなように、円盤状の回転ディスク201下方には、やはり、円盤状の固定ユニット202が配置されている。この回転ディスク201は、遮光部材から又は遮光部材をその外周に塗布して形成されており、かつ、回転軸203を中心に回転可能に配置されている。また、その上端の面上には、上記微生物測定チップ204(図3を参照、なお、図1では、符号101で示す)を配置するための、断面が矩形状のチップホルダ205が複数(本例では、8個)設けられており、更に、当該チップホルダ205底面には、その下方から光学測定を行うための窓、所謂、光学測定窓206が形成されている。
【0044】
一方、上記固定ユニット202も、上記回転ディスク201と同様に、遮光部材から又は遮光部材をその外周に塗布して形成されており、その内部には、光学測定ユニット207を配置している。なお、この光学測定ユニット207は、上記固定ユニット202の一部に形成された光学測定ユニットホルダ209(図4を参照)内に保持される。なお、以上の説明では、上記の固定ユニット202を、円柱(円盤)構造として示したが、しかしながら、本発明では、必ずしもかかる構造に限定されるものではなく、その内部に光学測定ユニットを配置できる形状であれば良いことは、当業者であれば当然であろう。
【0045】
なお、上述した回転ディスク201と固定ユニット202との構造によれば、微生物測定チップ204と光学測定ユニット207との間に形成される空間から侵入する外乱光を、概ね、遮断することが出来き、もって、光学測定ユニット207による良好な、即ち、精度の高い光学測定を実現することが可能となった。
【0046】
しかしながら、本発明者等による更なる検討によれば、上記の回転ディスク201が回転する時には、その下方に配置された固定ユニット202との間には、僅かではあるが、隙間が必要であり、この隙間からも外乱光が入射し得ることが確認された。そのため、本発明では、当該回転ディスク201と固定ユニット202との間の隙間を密閉する構造を採用し、かかる回転ディスクと固定ユニットとの間を密閉空間とするための構造を、変形例として、以下、添付の図6と7を用いて説明する。
【0047】
まず、添付の図6には、変形例になる回転ディスク201と固定ユニット202との断面構造が示されており、この図からも明らかなように、回転ディスク201の外周を下方に延長して、もって、固定ユニット202側面を囲う構造としている。
【0048】
また、添付の図6には、(a)〜(c)により、回転ディスクと固定ユニットの隙間を、回転時には所定の隙間を形成し、他方、測定時には隙間を無くし、もって、密閉空間とするための動作を示す。即ち、上記の構造を備えた回転ディスク201と固定ユニット202とは、下記のように動作する。なお、かかる回転ディスク201と固定ユニット202の動作は、上記した処理ユニット107(図1を参照)からの制御信号により、ここでは図示しない昇降機構等を介して、実行されることとなる。
【0049】
(a) 回転時には、回転ディスク201を上方に移動し、もって、回転ディスクの底面と固定ユニット202の上面との間に隙間を形成する。
【0050】
(b) 測定時には、回転ディスク201を下方に移動し、回転ディスクの底面を固定ユニット202の上面に密着させ、もって、密閉空間を形成する。その後、光学測定ユニット207による光学測定を実行する。
【0051】
(c) 上記光学測定の終了後、回転ディスク201を、再び、上方に移動して、固定ユニット202の上面との間に隙間を形成し、その回転を行う。
【0052】
上述したように、本発明の変形例になる構造によれば、上記回転ディスク201を所定の位置に(例えば、上記図1において、測定試薬添加ユニット102の下方で、光学測定ユニット207の上方)停止して測定を行う時には、上記回転ディスクと固定ユニットの間には隙間はなく、密閉空間が形成されるため、外部からの光学測定ユニット207への外乱光は、より確実に、遮断されることなる。
【0053】
なお、上記の説明では、密閉空間を形成するための構造として、回転ディスク201の外周を下方に延長して、もって、固定ユニット202側面を囲う構造について説明したが、しかしながら、本発明ではこれに限定されることなく、例えば、固定ユニット202の外周を上方に延長して、もって、回転ディスク201の側面を囲う構造にしてもよい。
【0054】
更には、回転ディスクと固定ユニットとの間を密閉空間とする構造として、添付の図7にも示すように、回転ディスク201と固定ユニット202との対向部の外周側面を、柔軟性のある遮光部材209で覆う構造としても良い。なお、かかる構造によっても、回転ディスクと固定ユニットとの間は密閉空間となり、より確実に、外乱光を遮断することが可能になる。
【0055】
加えて、本発明者等による更なる検討によれば、上記の図2〜7に示す回転ディスクと固定ユニットの構造によれば、これらの間に形成される隙間を介して侵入する外乱光については、概ね、遮断できたが、更に、微生物測定チップ(101又は205)の上面からも、やはり、外乱光入射の可能性があることが分かって。そのため、微生物測定チップ上面にも、外部から光学測定ユニット207へ侵入する外乱光を遮断するため、密閉空間を形成することが好ましいことが分かった。
【0056】
そこで、本発明では、更に、微生物測定チップ上面を密閉空間とするための構造を備えた他の実施の形態になる微生物測定装置について、添付の図8と図9を用いて、以下に詳細に説明する。なお、図8は測定試薬添加ユニットと回転ディスクの斜視図であり、図9は、上記図8におけるB−B断面を示す。
【0057】
この微生物測定チップ上面を密閉空間とするための構造を備えた他の実施の形態になる微生物測定装置では、まず、図8に示すように、その測定試薬添加ユニット301は、遮光部材から、又は、遮光部材を外周面又内周面に塗布してなり、そして、更に、測定試薬添加板302と、支柱303とを備えて構成されている。また、当該支柱303は、それに取り付けられた測定試薬添加板302を上下に駆動するためのモータ(但し、図示せず)を備える。加えて、この測定試薬添加板302は、測定試薬添加針304をその一部に固定している。
【0058】
そして、添付の図9に示すように、上記の測定試薬添加板302は、その板状部材の周辺部を下方に伸ばし、その下面には、例えば、ゴム等からなる、柔軟性を備えた遮光部材305を備えている。このように、上記測定試薬添加板302を、上述した構造とすることにより、光学測定時において、微生物測定チップ306の上面から侵入する外乱光を遮断し、もって、より高精度の光学測定が可能となる。以下には、上記の構成により、光学測定時における微生物測定チップ306の上面に、外部からの外乱光の侵入を防ぐための密閉空間を形成する動作について、図9の(a)〜(c)を用いて説明する。
【0059】
(a) 測定試薬を微生物測定チップ306内に添加するため、測定試薬添加板302が、その回転待機位置307から、測定位置308まで降下する。
【0060】
(b) 遮光部材305が回転ディスク309に密着し、微生物測定チップ上方に密閉空間を形成する。その後、測定試薬添加針304から測定試薬を添加すると同時に、光学測定ユニット310が光学測定を開始する。
【0061】
(c) 測定試薬添加板302が、測定位置308から回転待機位置307に上昇する。
【0062】
上述した通り、測定試薬添加板302の下方に遮光部材305を設け、もって、光学測定ユニット310の光学測定時において、遮光部材305を利用して、上記測定試薬添加板302と回転ディスク309との間の空間を外部からの外乱光の侵入を防ぐための密閉空間とすることによれば、上記微生物測定チップ306の上面から侵入する光学測定ユニット310への外乱光をも確実に遮断が可能となり、もって、光学測定ユニット310による、より高精度な光学測定が可能となる。
【0063】
以上、詳細に述べたように、本発明の実施の形態になる微生物測定装置によれば、特に、化学発光法による微生物の測定において、その上に複数の測定チップを搭載可能な回転ディスクを備えることにより、例えば、チップAの光学測定の終了後にチップBの光学測定を行い、その後、チップBの光学測定の終了後に次のチップCの測定を可能とし、即ち、複数サンプルの連続的な処理が可能となる。また、微生物測定チップの内部を閉鎖空間とすることで、微生物の外部からの混入によるサンプルの汚染を防止しながら、光学測定を行うことが可能になる。
【0064】
更に、本発明の実施の形態になる微生物測定装置では、(i)微生物測定チップを保持する回転ディスクと、回転ディスクの下方に配置され、かつ、光学測定ユニットをその内部に配置した固定ユニットと、遮光部材を用いてなる試薬添加ユニットとを用い、(ii)回転ディスクと固定ユニットの間の隙間を、固定ユニットを囲うような回転ディスクの構造、または側面に遮光部材を設けることで、その対向部から外乱光が侵入し難い密閉空間とすることにより、及び/又は、(iii)光学測定時において、微生物測定チップの上面に配置される測定試薬添加板の下方に遮光部材を設け、もって、微生物測定チップからの外乱光が侵入し難い密閉空間を形成することにより、外乱光による光学測定ユニットでの光学測定の精度の低下を防止することが出来る。
【0065】
加えて、上記回転ディスク上に搭載される微生物測定チップに対し、送液手段を用いることにより、自動的に、必要な試薬を送液することで、手作業による工程を削減するという効果をも達成する。更には、測定試薬の添加手段の下方に光学測定ユニットを配置することにより、測定試薬の添加と発光測定とを、同時に行うこと可能となり、もって、消光が早いサンプルの測定をも可能とする。
【0066】
以上の詳細な説明からも明らかなように、本発明によれば、光透過部材からなり、微生物を含むサンプル溶液と複数種類の試薬溶液を混合して光学的な微生物測定信号を発生する微生物測定チップ、微生物測定チップ上方に配置され、測定試薬を添加する測定試薬添加ユニット、前処理試薬を添加する前処理試薬添加ユニット、該各処理試薬添加ユニットへ試薬を送液する送液ユニット、複数の微生物測定チップを上方へ配置して回転する回転ディスク、該回転ディスクの下方に配置され微生物測定チップ中の信号を測定する光学測定ユニット、光学測定ユニットからの測定信号を受信し、反応ディスクと試薬添加ユニットと送液ユニットの動作を制御する処理ユニットから構成され、複数の微生物測定チップが回転ディスクで光学測定ユニットに逐次移動し光学測定される微生物測定装置が提供される。
【0067】
そして、上記の微生物測定装置において、回転ディスク下方には固定ユニットが配置され、該回転ディスクは遮光部材からなり光学測定窓を有し、該固定ユニットは遮光部材からなり光学測定ユニットを内部に配置する。そして、上記の微生物測定装置において、更に、回転ディスクが固定ユニットの側面を囲う構造を有し、該固定ユニットの側面を囲う構造と装置底面で間隙を形成したときに回転し、密着したときに光学測定する。又は、固定ユニットと回転ディスクが向かい合う面で形成された間隙の側面に遮光部材を配置する。更には、上記の微生物測定装置において、測定試薬添加ユニットは、遮光部材からなり光学測定時に下方に移動して測定試薬を添加する試薬添加板と、試薬添加板を上下に移動させる支柱から構成され、該測定試薬添加板は下方に遮光部材を有し、該遮光部材は光学測定時に回転ディスクと密着する。
【符号の説明】
【0068】
101:微生物測定チップ、102:測定試薬添加ユニット、103:前処理試薬添加ユニット、104:送液ユニット、105:回転ディスク、106:光学測定ユニット、107:処理ユニット、108:測定試薬添加板、109:前処理試薬添加板、201:回転ディスク、202:固定ユニット、203:回転軸、204:微生物測定チップ、205:チップホルダ、 206:光学測定窓、207:光学測定ユニット、208:光学測定ユニットホルダ、209:遮光部材、301:測定試薬添加ユニット、302:測定試薬添加板、303:支柱、304:測定試薬添加針、305:遮光部材、306:微生物測定チップ、307:回転待機位置、308:測定位置、309:回転ディスク、310:光学測定ユニット。

【特許請求の範囲】
【請求項1】
少なくともその一部を光透過性の部材から形成された微生物測定チップの閉鎖空間内で、測定対象である微生物を含むサンプル溶液と試薬溶液とを混合して発光を促進し、当該発光を光学測定することにより微生物測定を行う微生物測定装置であって:
前記微生物測定チップを、複数、その上面に配置して回転移動する回転ディスクと;
前記回転ディスクの上方に配置され、前記微生物測定チップ内に測定試薬を添加する測定試薬添加ユニットと;
少なくとも前記測定試薬添加ユニットへ測定試薬を送液する送液ユニットと;
前記回転ディスクの下方に配置され、前記微生物測定チップの内部での微生物の発光を測定する光学測定ユニットと;そして、
前記光学測定ユニットからの発光測定信号を受信し、少なくとも、前記回転ディスクの回転と共に、前記測定試薬添加ユニットからの前記微生物測定チップへの測定試薬の添加を制御する処理ユニットとから構成されており、
前記光学測定ユニットは、前記回転ディスクを挟んで、前記測定試薬添加ユニットと対向する位置に配置されており、かつ、前記回転ディスクは遮光構造を備えており、もって、連続的な測定を可能にしたことを特徴とする微生物測定装置。
【請求項2】
前記請求項1に記載した微生物測定装置において、前記回転ディスクは、遮光部材から又は遮光部材をその外周に塗布して形成されており、その下方には、更に、前記光学測定ユニットを遮光した状態で収納するための部分をその一部に設けた固定ユニットを設け、前記回転ディスクを当該固定ユニット上に回転可能に支持するように構成したことを特徴とする微生物測定装置。
【請求項3】
前記請求項2に記載した微生物測定装置において、前記回転ディスクと前記固定ユニットとの対向面の周囲には、当該回転ディスクと固定ユニットとの間に形成される隙間への外乱光の侵入を防止するための遮光部材を設けたことを特徴とする微生物測定装置。
【請求項4】
前記請求項2に記載した微生物測定装置において、前記処理ユニットは、前記光学測定ユニットによる光学測定の際には、前記回転ディスクと前記固定ユニットとの間の隙間を狭めるようにその位置を制御することを特徴とする微生物測定装置。
【請求項5】
前記請求項2に記載した微生物測定装置において、更に、前記測定試薬添加ユニットを、前記光学測定ユニットによる光学測定の際には、当該光学測定が行われる微生物測定チップを前記回転ディスクの上方から覆うように構成したことを特徴とする微生物測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2010−183866(P2010−183866A)
【公開日】平成22年8月26日(2010.8.26)
【国際特許分類】
【出願番号】特願2009−29822(P2009−29822)
【出願日】平成21年2月12日(2009.2.12)
【出願人】(000233228)日立協和エンジニアリング株式会社 (35)
【Fターム(参考)】