説明

所持している者の運動強度及び/又は消費カロリーを推定する装置

【課題】所定方向に固定する必要がなく、精度の高い運動強度の推定装置を提供する。
【解決手段】推定装置は、複数の変換期間を互いにその開始位置をずらして所定数だけ設定し、各変換期間に含まれる加速度をそれぞれフーリエ変換して、複数のスペクトラムを求め、求めた複数のスペクトラムのそれぞれを、あらかじめ定めた複数の代表スペクトラムの中で、誤差の最も少ない代表スペクトラムに置換する手段と、前記複数の代表スペクトラムからあらかじめ選択した複数の特徴スペクトラムそれぞれについて、前記置換して得た複数の代表スペクトラムでの出現確率を求め、求めた各特徴スペクトラムの出現確率を含む推定用データを生成する手段と、各状態において1回以上測定した、前記推定用データと同じデータを含む学習データに基づき、前記推定用データに対応する状態を判定する手段と、判定した状態に基づき運動強度を決定する手段とを備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、装置に搭載された加速度センサを利用して、当該装置を所持している者の運動強度及び消費カロリーを推定する技術に関する。
【背景技術】
【0002】
日々の生活における運動強度や消費カロリーを推定する携帯型の装置について各種の提案が行われている(例えば、特許文献1、2及び3、参照。)。
【0003】
特許文献1によると、推定装置が有する加速度センサの一定期間における出力値の標準偏差値に基づき運動強度を推定している。また、特許文献2によると、推定装置は3軸加速度センサを備えており、3軸加速度センサの各軸方向の出力値から、姿勢成分及び合成加速度の運動成分の平均値を演算し、これら演算した値から、利用者が現在、走行、歩行、階段上昇、階段下降、立位、座位、臥位のいずれの状態にあるかを判定し、さらに、判定した状態に基づきエネルギー消費量を算出している。さらに、特許文献3によると、推定装置は3軸加速度センサを備えており、3軸加速度センサの各軸方向の一定時間における出力値から、各軸方向の代表値を算出し、水平成分の代表値と垂直成分の代表値に基づいて運動強度を推定している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2006−204446号公報
【特許文献2】特開2007−160076号公報
【特許文献3】特開2009−028312号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
例えば、静止して体を動かしている状態と走っている状態では運動強度は異なることになるが、特許文献1に記載の方法は、利用者の状態を判定することなく、測定した加速度の一定期間における標準偏差値のみを利用して運動強度を推定するものであり、推定精度が低いという問題がある。また、特許文献2及び3に記載の推定装置は、3軸加速度センサの各軸が所定の方向となる様に利用者に固定する必要があり不便である。特に、推定装置を、他の機能を有する装置、例えば、移動通信端末と一体の装置として実装することを考えると、推定装置のその利用者への固定により、他の機能の利用ができなくなる、あるいは、利用しずらくなるという問題が生じる。つまり、この場合、特許文献2及び3に記載の構成を採用することはできない。
【0006】
さらに、例えば、自転車、電車、自動車等に乗っている状態においては、利用者自身の動作以外の加速度も加速度センサは検出するが、上記従来技術は、利用者が何らかの乗り物を利用している状態を判別できないため、乗り物を利用している状態における推定精度が劣化するという問題がある。
【0007】
したがって、本発明は、所定方向に固定して所持する必要がなく、従来技術より推定精度が高い、運動強度及び/又は消費カロリーの推定装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明における運動強度の推定装置によれば、
加速度を測定する加速度測定手段と、所定長の推定期間内に、所定長の変換期間を互いにその開始位置をずらして所定数だけ設定し、加速度測定手段が前記推定期間内に測定した加速度のうち、各変換期間に含まれる加速度をそれぞれフーリエ変換して、複数のスペクトラムを求めるフーリエ変換手段と、フーリエ変換手段が求めた複数のスペクトラムのそれぞれを、あらかじめ定めた複数の代表スペクトラムの中で、誤差の最も少ない代表スペクトラムに置換する量子化手段と、前記複数の代表スペクトラムからあらかじめ選択した複数の特徴スペクトラムそれぞれについて、量子化手段が置換して得た複数の代表スペクトラムでの出現確率を求め、求めた各特徴スペクトラムの出現確率を含む推定用データを生成する推定用データ生成手段と、各状態において1回以上測定した、前記推定用データと同じデータを含む学習データを有し、前記学習データに基づき、前記推定用データに対応する状態を判定する分類手段と、判定した状態に基づき運動強度を決定する運動強度決定手段とを有することを特徴とする。
【0009】
本発明における推定装置の他の実施形態によれば、
前記所定数だけ設定した変換期間それぞれにおいて、加速度の分散値を求める手段を備えており、前記推定用データは、前記求めた所定数ある分散値の平均値及び分散値を含んでいることも好ましい。
【0010】
また、本発明における推定装置の他の実施形態によれば、
前記推定用データは、量子化手段が置換して得た複数の代表スペクトラムにおいて、最大の振幅を有する周波数を示す情報を含んでいることも好ましい。
【0011】
さらに、本発明における推定装置の他の実施形態によれば、
位置情報を取得する手段を備えており、分類手段は、位置情報を状態の判定に利用することも好ましい。
【0012】
さらに、本発明における推定装置の他の実施形態によれば、
前記位置情報は、無線通信により通信している基地局を示す情報であり、分類手段は、前記基地局の変更頻度を状態の判定に利用することも好ましい。
【0013】
さらに、本発明における推定装置の他の実施形態によれば、
運動強度決定手段は、運動強度の決定に、前記分散値の平均値を利用することも好ましい。
【0014】
さらに、本発明における推定装置の他の実施形態によれば、
前記装置に対する操作についての操作情報を収集する手段を備えており、運動強度決定手段は、前記装置に対する操作が行われた場合、前記加速度測定手段が測定した加速度のうち、操作が行われた前後一定期間の加速度に対してフィルタを適用し、フィルタ後の加速度から、前記分散値の平均値を計算して、運動強度の決定に利用することも好ましい。
【0015】
さらに、本発明における推定装置の他の実施形態によれば、
分類手段が判定する状態は、電車又は自動車に乗っている状態を含み、運動強度決定手段は、状態が電車又は自動車に乗っている状態である場合、前記加速度測定手段が測定した加速度に対してフィルタを適用し、フィルタ後の加速度から、前記分散値の平均値を計算して、運動強度の決定に利用することも好ましい。
【0016】
さらに、本発明における推定装置の他の実施形態によれば、
運動強度決定手段は、運動強度の決定に、量子化手段が置換して得た複数の代表スペクトラムの中に、最も多く出現する代表スペクトラムを示す情報を利用することも好ましい。
【0017】
さらに、本発明における推定装置の他の実施形態によれば、
分類手段は、複数の分類器が多段接続されたものであり、各段の分類器は、その1つ前の段の分類器が判定した状態を、さらに分類した状態を判定することも好ましい。
【0018】
本発明における消費カロリーの推定装置によれば、
前記運動強度の推定装置が決定した運動強度に基づき、消費カロリーを計算することを特徴とする。
【発明の効果】
【0019】
本発明においては、推定期間内の加速度から代表スペクトラム列を求め、あらかじめ測定した各状態における特徴スペクトラムの出現確率と、求めた代表スペクトラム列における特徴スペクトラムの出現確率により状態を判定する。したがって、ある瞬間に観測されるかもしれない特異なスペクトラムの影響を防ぐことができ、事前に測定した学習データにより正確に状態判定を行うことができる。また、本発明においては、加速度の方向についての情報を推定に利用しないため、装置を利用者に固定する必要もない。
【図面の簡単な説明】
【0020】
【図1】本発明による運動強度及び/又は消費カロリーを推定する装置の簡略化した構成図である。
【図2】データ変換部の構成図である。
【図3】データ収集方法を説明する図である。
【図4】測定したスペクトラム系列を示す図である。
【図5】代表スペクトラム・テーブルを示す図である。
【図6】事前データを示す図である。
【図7】特徴スペクトラムの決定を説明する図である。
【図8】特徴スペクトラム・テーブルを示す図である。
【図9】学習データを示す図である。
【図10】運動強度の決定を説明する図である。
【図11】本発明による推定装置の他の実施形態を示す図である。
【発明を実施するための形態】
【0021】
本発明を実施するための形態について、以下では図面を用いて詳細に説明する。
【0022】
本発明による推定装置は、例えば、当該推定装置を携帯している利用者の状態を、“停止状態”、“歩行状態”、“走行状態”、“自転車を運転している状態”、“電車又は自動車に乗っている状態”に分類して、運動強度及び消費カロリーを推定する。図1は、本発明による推定装置の簡略化した構成図であり、推定装置は、加速度センサ1と、合成加速度計算部2と、データ変換部3と、分類器4と、運動強度決定部5と、消費カロリー計算部6とを備えている。
【0023】
加速度センサ1は、本実施形態においては3軸加速度センサであり、互いに直交する3方向それぞれの加速度を周期的に測定し、測定した値を合成加速度計算部2に出力する。合成加速度計算部2は、加速度センサ1が同時に収集した3方向の加速度から、各時刻の合成加速度、つまり、実際の加速度の大きさを、以下の式により算出する。
合成加速度=(x+y+z0.5 (1)
ここで、x、y、zは、それぞ、各方向の加速度である。
【0024】
データ変換部3は、合成加速度計算部2が算出した各時刻の合成加速度から、状態を推定するための推定用データを生成して分類器4に出力する。図2は、データ変換部3の構成図であり、データ変換部3は、フーリエ変換部31と、分散計算部32と、量子化部33と、代表スペクトラム・テーブル34と、推定用データ生成部35と、特徴スペクトラム・テーブル36とを備えている。
【0025】
図3の上段に示す様に、各加速度測定時刻における合成加速度がデータ変換部3に入力されるが、フーリエ変換部31は、複数のFFT期間、図3においては、符号60−1から符号60−LのL個のFFT期間に含まれる合成加速度を、それぞれ、フーリエ変換して、合成加速度のスペクトラムを算出する。なお、各FFT期間の開始位置は、図3に示す様に、シフト期間Tsだけずらして設定する。また、総てのFFT期間を包含する期間を、図3に示す様に、推定期間と呼ぶものとする。フーリエ変換部31は、図4に示す様に、FFT期間60−1に含まれる合成加速度から求めたスペクトラム70−1、FFT期間60−2に含まれる合成加速度から求めたスペクトラム70−2、最後に、FFT期間60−Lに含まれる合成加速度から求めたスペクトラム70−Lを含む、スペクトラムの系列を量子化部33に出力する。
【0026】
量子化部33は、入力されたスペクトラム70−1〜70−Lのそれぞれについて、代表スペクトラム・テーブル34に記載されている複数の代表スペクトラムから、所定の基準において一番近いスペクトラムを選択し、選択した代表スペクトラムでスペクトラム70−1〜70−Lを置換する。図5は、代表スペクトラム・テーブル34を示す図である。なお、代表スペクトラム・テーブル34の生成については後述する。図5によると、代表スペクトラム・テーブル34は、S〜Sの識別子が付与された合計N個の代表スペクトラムを有しており、例えば、識別子としてSが付与されている代表スペクトラムは、直流成分(周波数番号0)が3であり、第1番目、第2番目、第3番目の周波数成分が、それぞれ、6、1、9であることが示されている。
【0027】
量子化部33は、入力された各スペクトラム70−1〜70−Lのそれぞれを、一番近い、言い換えると、誤差が最も少ない代表スペクトラムと置換して、置換後のスペクトラム系列を出力する。ここで誤差は、例えば、対応する周波数成分の振幅差の絶対値又は振幅差の2乗を、全周波数に渡り合計した値等により評価する。例えば、スペクトラム70−1に最も近い代表スペクトラムがS34であり、スペクトラム70−2に最も近い代表スペクトラムがS184であり、スペクトラム70−Lに最も近い代表スペクトラムがS10である場合、量子化部33は、(S34、S184、・・・、S10)の様に、置換した代表スペクトラムの識別子の系列を推定用データ生成部35に出力する。なお、この置換操作は、複数のスペクトラム状態を、1つの代表スペクトラムに集約するものであり、1種の量子化である。これにより、測定したスペクトラムの系列を、代表スペクトラムの識別子の系列で表現可能となる。
【0028】
また、分散計算部32は、各FFT期間に含まれる合成加速度の分散値を計算し、推定用データ生成部35に出力する。つまり、合計L個の分散値を推定用データ生成部35に出力する。
【0029】
推定用データ生成部35は、量子化部33からのスペクトラム系列と、分散計算部32からの分散値に基づき、特徴スペクトラム・テーブル36を利用して分類器4へ出力する推定用データを生成する。ここで、特徴スペクトラムとは、代表スペクトラムの内、各状態を判別するのに重要となる代表スペクトラムであり、事前に各状態それぞれで測定した多数の測定データより、各状態において、出現確率が所定値より高いと判定した代表スペクトラムを、特徴スペクトラムとしている。なお、特徴スペクトラム決定の詳細については後述する。図8は、特徴スペクトラム・テーブル36を示す図であり、事前の測定により合計7個の代表スペクトラムが、特徴スペクトラムとして選定されている。
【0030】
図8に示す様に、7個の特徴スペクトラムが設定されている場合、本実施形態において、推定用データ生成部35は、9つのデータを含む推定用データを生成する。推定用データの第1番目のデータは、入力されたL個の代表スペクトラムにおける、第1番目の特徴スペクトラムS21の出現確率である。推定用データの第2番目のデータは、入力されたL個の代表スペクトラムにおける、第2番目の特徴スペクトラムS31の出現確率である。以下、同様に、推定用データの第7番目までのデータが計算される。
【0031】
さらに、推定用データの第8番目のデータは、分散計算部32からのL個の分散値の平均値(以後、V平均値と呼ぶ。)であり、最後のデータは、分散計算部32からのL個の分散値の分散値(以後、V分散値と呼ぶ。)である。つまり、例えば、量子化部33からのL個の代表スペクトラムにおいて、S21の出現確率が0.3、S31の出現確率が0.2、S10の出現確率が0.1、S66の出現確率が0、S72の出現確率が0、S33の出現確率が0、Sの出現確率が0であり、分散計算部32からのL個の分散値の平均値及び分散値が、6及び4である場合、推定用データ生成35は、(0.3,0.2,0.1,0,0,0,0,6,4)を出力する。なお、各FFT期間内の合成加速度の平均ではなく、合成加速度の分散値を求め、この分散値の推定期間に渡る平均値及び分散値を使用するのは、重力加速度成分を除去するためであり、本願発明において、合成加速度の分散値は、合成加速度の強さを表す値として利用している。つまり、V平均値は、推定期間内の合成加速度の強さの平均を示す値である。
【0032】
分類器4は、例えば、単純ベイズ分類器や、ナイブ・ベイズ・ツリー分類器であり、あらかじめ作成され、分類器4に設定されている各状態に対する1つ以上の学習データに基づき、データ変換部3から入力される推定用データに対応する状態を判定する。図9は、分類器4に設定されている学習データを示す図である。なお、図9においては、簡単のため、状態を“A状態”、“B状態”、“C状態”の3つとしている。図9においては、第1番目の学習データは、A状態において測定されたものであり、図8に示す7つの特徴スペクトラムそれぞれの出現確率と、V平均値及びV分散値が示されている。なお、学習データの生成については後述する。
【0033】
分類器4は、入力された推定用データと各学習データを比較し、推定用データとの尤度が最も高い学習データを選択して、選択した学習データに対応する状態を運動強度決定部5に出力する。また、運動強度決定部5には、データ変換部3から推定用データの生成に使用したL個の代表スペクトラムとV平均値が入力され、合成加速度計算部2から、同じく推定用データの生成に使用した合成加速度が入力される。
【0034】
運動強度決定部5は、各状態とV平均値に基づきメッツ値を決定する。また、状態が歩行及び走行である場合には、単位時間当たりの歩数によりメッツ値が異なることから、運動強度決定部5は、合成加速度に基づき単位時間当たりの歩数を決定してメッツ値の決定に利用する。なお、合成加速度から歩数を決定する方法は、公知の種々の方法を利用できる。また、例えば、同じ状態であっても、出現するスペクトラムが異なることは状態の差異があることを意味し、当然メッツ値も異なるものとなる。このため、推定用データの元となったL個の代表スペクトラムの内、最も多く出現している代表スペクトラムを主要スペクトラムとし、主要スペクトラムもメッツ値の決定に使用することが好ましい。この場合、状態及びV平均値が同じであったとしても、主要スペクトラムが異なれば、異なるメッツ値が出力されることになる。図10に、運動強度決定部5がメッツ値を決定するために使用するテーブルの例を示す。なお、図10において、a0〜a2及びb0〜b2は、所定の係数である。なお、メッツ値決定に利用する各値及び/又は式と、メッツ値との関係は、事前に行う多数の測定により求めたものである。
【0035】
さらに、運動強度決定部5は、状態が、“電車又は自動車に乗っている状態”である場合、データ変換部3から受信するV平均値を使用するのではなく、合成加速度計算部2から入力される当該推定期間の合成加速度をフィルタ処理し、これにより、合成加速度に含まれている乗り物からの振動等により生じた加速度成分を除去し、フィルタ後の合成加速度からV平均値を求めて、これをメッツ値への変換に利用することが好ましい。
【0036】
さらに、本発明による推定装置が、移動通信端末の様な、他の機能を有する装置に実装される場合、他の機能に対する操作、例えば、移動通信端末の開閉や、ボタンの押下等による加速度成分が生じ、メッツ値の判定に影響が出る。このため、利用者の操作情報を取得する機能を設けておき、利用者が何らかの操作を行った場合、運動強度決定部5は、その前後一定期間の合成加速度をフィルタ処理して、操作による加速度成分を除去し、フィルタ後の合成加速度からV平均値を求めて、これをメッツ値への変換に利用することが好ましい。
【0037】
最後に、消費カロリー計算部6は、運動強度決定部5が決定したメッツ値と、あらかじめ利用者が入力した利用者の体重と、そのメッツ値の継続時間を乗じて消費カロリーを求める。
【0038】
続いて、代表スペクトラム・テーブル34の作成について述べる。代表スペクトラム・テーブル34は、量子化ステップに相当するものであり、代表スペクトラムの数Nは、スペクトラムの周波数の数(図5におけるK)と、各周波数成分において取り得る振幅値から、適当な数を選択する。なお、各代表スペクトラムが似通ったものとならない様に、代表スペクトラム間の誤差の総和ができるだけ大きな値となる様に選択することが好ましい。また、以下に説明する学習データの作成の際には、各状態において多数の測定を行うが、このとき取得した各状態における多数のスペクトラムから遺伝的アルゴリズムにより代表スペクトラムを決定しても良い。
【0039】
続いて、特徴スペクトラム・テーブル36及び分類器4に設定する学習データの作成について説明する。学習データを作成するために、まず、測定者は、本発明による推定装置と同様の大きさ、重さ及び形状であり、かつ、3軸加速度センサを含む装置を携帯し、所定の状態にて実際の推定の時と同様に各方向の加速度を収集し、収集した各方向の加速度から式(1)により合成加速度を求める。そして、合成加速度から、実際の推定の時と同様にL個のスペクトラムの系列を求め、これを、L個の代表スペクトラムの系列に置換する。さらに、実際の推定の時と同様に、V平均値及びV分散値を計算し、L個の代表スペクトラムの系列と、V平均値及びV分散値を、当該状態に対する事前データの1つとして記録する。なお上記事前データの取得については、各状態それぞれに対して複数回実施して、各状態について、それぞれ複数の事前データを取得する。なお、このとき、同一の測定者により測定するのではなく、複数の測定者が、各状態について、それぞれ、複数回実施することが好ましい。また、装置の所持方法も種々の形態にて測定し、測定の環境、例えば、歩行や走行の場合における道路状態、乗り物に乗っている場合における乗り物種別についても、種々の状態にて測定する。
【0040】
図6は、事前データを示す図である。なお、図6においては、簡単のため、状態を“A状態”、“B状態”、“C状態”の3つとしている。図6によると、1番目の学習データは、A状態において測定されたものであり、L個のスペクトラク系列が、代表スペクトラムS21、S10、S83、・・・、S91であることと、V平均値及びV分散値が、それぞれ、MとDであることが示されている。
【0041】
続いて、取得した事前データから、特徴スペクトラムを決定する。図7は、特徴スペクトラムの決定を説明する図である。まず、図6の事前データの各状態それぞれについて、各スペクトラムの出現確率を計算する。具体的には、例えば、A状態の事前データが150個あるとすると、1つの事前データはL個のスペクトラムを含むため、A状態全体では、合計150L個の代表スペクトラムを含むことになる。例えば、この150L個のスペクトラムに含まれている代表スペクトラムS26の数が15個であるとすると、S26の出現確率は15/(150L)である。そして、図7に示す様に、各状態別に、出現確率の大きいものから順に並べ、出現確率が所定の閾値以上である代表スペクトラムを、特徴スペクトラムに決定する。例えば、図7において閾値を0.1とすると、図8に示す様に、S21、S31、S10、S66、S72、S33、Sの7つの代表スペクトラムが特徴スペクトラムとして選択される。なお、各状態においてほぼ同じ出現確率となる代表スペクトラムは、各状態の判定に役立つものではないため、閾値以上の出現確率であったとしても特徴スペクトラムから除外できる。
【0042】
また、以下の式で定義される各代表スペクトラムの情報量利得を基準として特徴スペクトラムを選択することもできる。
【0043】
【数1】

ここで、cは分類すべき各状態、Cは全状態、Pr(S)はSの出現確率、Pr(S|c)は状態cのときにおけるSの出現確率、Pr(c|S)はSが出現したときに状態cである確率を示している。具体的には、Pr(S|C)>0.01を満たし、かつ、InfoGain(S)の上位所定数の代表スペクトラムを特徴スペクトラムとする。
【0044】
最後に、各事前データに含まれる代表スペクトラムでの、特徴スペクトラムの出現確率を求め、図9に示す学習データを作成する。つまり、図6の2番目の事前データにおいて、特徴スペクトラムS21、S31、S10、S66、S72、S33、Sそれぞれの出現確率が、0.2、0.19、0.12、0、0、0、0.01であり、この2番目の事前データから、図9に示す2番目の学習データが生成される。
【0045】
以上、本発明においては、加速度の分散値に加えて、推定期間内の各スペクトラムの出現頻度を状態判定に利用する。したがって、ある瞬間に観測されるかもしれない特異なスペクトラムの影響を防ぐことができ、事前に測定した学習データにより正確に状態判定を行うことができる。また、本発明においては、3軸加速度センサの各軸の方向についての情報を推定に利用しないため、装置を利用者に固定する必要もない。
【0046】
なお、上記実施形態においては、特徴スペクトラムの出現確率と、加速度の分散に基づく値を推定用データとしていたが、量子化部33が出力するL個の代表スペクトラムの内、振幅値が最大の周波数を示す情報を推定用データに追加しても良い。これは、最も強い加速度を有する周波数成分は、状態により異なるからであり、さらに、推定精度を高くすることができる。なお、このとき当然であるが、学習データにも振幅値が最大の周波数を追加することになる。
【0047】
また、本発明の推定装置が、移動通信端末に実装される場合、移動通信端末が周期的に取得する基地局を特定する情報を、分類器4に供給し、分類器4がこの情報を状態の判定に利用する形態であっても良い。具体的には、接続している基地局変更の頻度を、その頻度が多い程、大きくなる係数に変換し、この係数で“電車又は自動車に乗っている状態”の学習データに対する尤度が大きくなる様に調整する。“停止状態”と“電車又は自動車に乗っている状態”については、特徴スペクトラムの出現確率として互いに似た値となる場合があり、基地局変更の頻度を考慮することで、より正確に“停止状態”と“電車又は自動車に乗っている状態”を区別することができる。なお、移動通信端末がGPSを利用して位置情報を取得する機能を備えているのであれば、基地局変更の頻度に代えて、取得した位置情報から求めた速度を利用しても良い。
【0048】
さらに、分類器4を多段構成とし、より詳しい分類を行うことも可能である。具体的には、図11に示す様に、分類器4と運動強度決定部5の間に4つの分類器41〜44を追加する。本実施形態において、分類器41は、歩行状態の詳細状態を判定する分類器であり、分類器42は、走行状態の詳細状態を判定する分類器であり、分類器43は、自転車を運転している状態の詳細状態を判定する分類器であり、分類器44は、電車又は自動車に乗っている状態の詳細状態を判定する分類器である。分類器4は、推定用データから歩行状態と判定した場合には分類器41に推定用データを出力し、走行状態と判定した場合には分類器42に推定用データを出力し、自転車を運転している状態と判定した場合には分類器43に推定用データを出力し、電車又は自動車に乗っている状態と判定した場合には分類器44に推定用データを出力し、停止状態と判定した場合には、運動強度決定部5に停止状態との結果を出力する。
【0049】
分類器41は、歩行状態を、“通常”、“坂道上り”、“坂道下り”、“階段上り”、“階段下り”のいずれかに分類し、分類器42は、走行状態を、“通常”、“坂道上り”、“坂道下り”、“階段上り”、“階段下り”のいずれかに分類し、分類器43は、自転車を運転している状態を、“通常”、“坂道上り”、“坂道下り”のいずれかに分類し、分類器44は、電車又は自動車に乗っている状態を、“座位”、“立位”
のいずれかに分類し、運動強度決定部5に決定した詳細状態を出力する。運動強度決定部5は、詳細状態に基づきメッツ値を決定するため、例えば、歩行状態であり歩数が同じであっても、通常状態、つまり、平坦な道路を歩行している状態と、階段上り状態では、異なるメッツ値が算出される。
【0050】
なお、各分類器41から44には、分類器4と同様に、事前に測定した各詳細状態の学習データがあらかじめ設定されている。分類器を多段接続構成にし、最初に大きく異なる状態を判定し、その後、各状態をさらに細かく分類した状態に対する学習データに基づき、これら詳細状態の判定を行うことで、詳細状態を精度高く推定することが可能になる。
【符号の説明】
【0051】
1 加速度センサ
2 合成加速度計算部
3 データ変換部
4、41、42、43、44 分類器
5 運動強度決定部
6 消費カロリー計算部
31 フーリエ変換部
32 分散計算部
33 量子化部
34 代表スペクトラム・テーブル
35 推定用データ生成部
36 特徴スペクトラム・テーブル
60−1〜60−L FFT期間
70−1〜70−L スペクトラム

【特許請求の範囲】
【請求項1】
加速度を測定する加速度測定手段と、
所定長の推定期間内に、所定長の変換期間を互いにその開始位置をずらして所定数だけ設定し、加速度測定手段が前記推定期間内に測定した加速度のうち、各変換期間に含まれる加速度をそれぞれフーリエ変換して、複数のスペクトラムを求めるフーリエ変換手段と、
フーリエ変換手段が求めた複数のスペクトラムのそれぞれを、あらかじめ定めた複数の代表スペクトラムの中で、誤差の最も少ない代表スペクトラムに置換する量子化手段と、
前記複数の代表スペクトラムからあらかじめ選択した複数の特徴スペクトラムそれぞれについて、量子化手段が置換して得た複数の代表スペクトラムでの出現確率を求め、求めた各特徴スペクトラムの出現確率を含む推定用データを生成する推定用データ生成手段と、
各状態において1回以上測定した、前記推定用データと同じデータを含む学習データを有し、前記学習データに基づき、前記推定用データに対応する状態を判定する分類手段と、
判定した状態に基づき運動強度を決定する運動強度決定手段と、
を備えている装置。
【請求項2】
前記所定数だけ設定した変換期間それぞれにおいて、加速度の分散値を求める手段を備えており、
前記推定用データは、前記求めた所定数ある分散値の平均値及び分散値を含んでいる、
請求項1に記載の装置。
【請求項3】
前記推定用データは、量子化手段が置換して得た複数の代表スペクトラムにおいて、最大の振幅を有する周波数を示す情報を含んでいる、
請求項1又は2に記載の装置。
【請求項4】
位置情報を取得する手段を備えており、
分類手段は、位置情報を状態の判定に利用する、
請求項1から3のいずれか1項に記載の装置。
【請求項5】
前記位置情報は、無線通信により通信している基地局を示す情報であり、
分類手段は、前記基地局の変更頻度を状態の判定に利用する、
請求項4に記載の装置。
【請求項6】
運動強度決定手段は、運動強度の決定に、前記分散値の平均値を利用する、
請求項2から5のいずれか1項に記載の装置。
【請求項7】
前記装置に対する操作についての操作情報を収集する手段を備えており、
運動強度決定手段は、前記装置に対する操作が行われた場合、前記加速度測定手段が測定した加速度のうち、操作が行われた前後一定期間の加速度に対してフィルタを適用し、フィルタ後の加速度から、前記分散値の平均値を計算して、運動強度の決定に利用する、
請求項6に記載の装置。
【請求項8】
分類手段が判定する状態は、電車又は自動車に乗っている状態を含み、
運動強度決定手段は、状態が電車又は自動車に乗っている状態である場合、前記加速度測定手段が測定した加速度に対してフィルタを適用し、フィルタ後の加速度から、前記分散値の平均値を計算して、運動強度の決定に利用する、
請求項6又は7に記載の装置。
【請求項9】
運動強度決定手段は、運動強度の決定に、量子化手段が置換して得た複数の代表スペクトラムの中に、最も多く出現する代表スペクトラムを示す情報を利用する、
請求項1から8のいずれか1項に記載の装置。
【請求項10】
分類手段は、複数の分類器が多段接続されたものであり、
各段の分類器は、その1つ前の段の分類器が判定した状態を、さらに分類した状態を判定する、
請求項1から9のいずれか1項に記載の装置。
【請求項11】
請求項1から10のいずれか1項に記載の装置が決定した運動強度に基づき、消費カロリーを計算する装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2011−45524(P2011−45524A)
【公開日】平成23年3月10日(2011.3.10)
【国際特許分類】
【出願番号】特願2009−196503(P2009−196503)
【出願日】平成21年8月27日(2009.8.27)
【出願人】(000208891)KDDI株式会社 (2,700)
【Fターム(参考)】