説明

拡散乾燥による吸収性ポリマーの製造方法

【課題】吸収性ポリマーの製造方法を提供する。
【解決手段】吸収性ポリマーの製造方法は、i)モノマー水溶液を重合してポリマーゲルを得る工程と、ii)ポリマーゲルを粉砕してゲル粒子を得る工程と、iii)ゲル粒子を乾燥する工程と、を含み、工程ii)後のゲル粒子が拡散性を有することを特徴とする。特に効率的な乾燥工程iii)によって特徴付けられ、ゲル粒子の特に穏やかで均一な乾燥が可能となる。このようにして得られた吸収性ポリマーや吸収性ポリマーから製造される製品や物品は特に均一な品質と一定の物理的・化学的特性を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、吸収性ポリマーの製造方法、吸収性ポリマー、複合体、複合体の製造方法、吸収性ポリマーを含む化学製品、吸収性ポリマーと複合体の使用、ポリマーの粉砕/乾燥装置および重合装置に関する。
【背景技術】
【0002】
いわゆる「吸収性」ポリマーを形成するためには、各種水溶性モノマーを、多くの場合には非水溶性コモノマーと共に架橋剤の存在下で重合させることが必要である。架橋剤は重合時または重合後に添加する。この種の吸収性ポリマーは、架橋度が低く、非水溶性のヒドロゲルポリマーであり、乾燥し、実質的に水を含んでいない状態で高い吸水容量を有する。吸収性ポリマーは自らの重量の何倍もの重量の水を含むことができる。高い吸水容量のために、吸収性ポリマーは、吸水構造体、例えば、おしめ、失禁用品または生理用ナプキンに好適に組み込むことができる。吸収性ポリマーは文献において「超吸収体」とも記載されている。ここでは、F.L.ブーフホルツ(Buchholz)、A.T.グレアム(Graham)著「現代の超吸収性ポリマー技術(Modern Superabsorbent Polymer Technology)」、ワイリー(Wiley)VCH社、1998年を参照する。
【0003】
この種のポリマーは溶媒、好ましくは水の存在下で製造されるため、得られるポリマーゲルを乾燥するための乾燥工程が必要となる。乾燥の種類および方法は製造されるポリマーのミクロ構造や物理的・化学的特性に大きな影響を及ぼすため、ポリマーの乾燥には特別な注意が必要となる。
【0004】
毛管浸透力、双極子相互作用や水素結合により生じる力や付着力に抗してポリマーから水を取り除かなければならないため、乾燥工程はコストのかかる工程となる。通常は、乾燥させるポリマーをゲル粒子に粉砕し、層状にして穴あきベルトに送り、気流乾燥させる。
【0005】
乾燥の効率を高めると大きなコストの節約となる。しかし、乾燥の効率は穏やかで均一な乾燥を犠牲にすることなく高めることはできない。公知の乾燥方法では、乾燥させるゲル粒子の層厚のばらつきおよび/または層内のゲル粒子の密度のばらつきが原因で乾燥が不均一になることが多かった。不均一な乾燥は、製品の品質、吸収性ポリマーおよびポリマーを含有する製品、例えば各種衛生用品の吸収性に影響を与える。さらに、ゲル粒子の乾燥が不均一であると、不十分に乾燥され粘着性を有するゲル粒子が乾燥装置に接続された粉砕装置の表面に付着したままとなり、しばしば粉砕装置の運転を中止しなければならない。
【0006】
また、不適切な乾燥により乾燥させるポリマー粒子が凝集し、ケークが形成される。ケークの不均一性により乾燥が不均一となり、ケーク内に空気の通過が困難な中実な部分が形成される。これらの部分を粉砕するにはポリマーに大きな機械圧力をかけなくてはならない。この際に、望ましくない粉塵が大量に形成される。
【0007】
これらの問題を解決するために、特開平8−73518号はベルト乾燥機上でゲル層の厚みを連続的に測定し、ゲル層の厚みに乾燥条件を合わせることを提案している。米国特許第6,291,636 B1号は、粉砕工程前に行なわれる分離工程で乾燥が不十分な粒子を分離することを提案している。
【0008】
国際公開第WO03/051939 Al号の教示によれば、重合に使用されるアクリル酸に最少量のフルフラールを加えることで、米国特許第6,291,636 Bl号に提案されている不十分に乾燥された粒子の分離は不要となる。しかし、この方法には重合阻害剤として作用するフルフラールが毒性を有するという欠点があり、衛生用品にポリマーを使用する場合には特に問題となる。
【特許文献1】特開平8−73518号
【特許文献2】米国特許第6,291,636 B1号
【特許文献3】国際公開第WO03/051939 Al号
【発明の開示】
【発明が解決しようとする課題】
【0009】
本発明の全体としての目的は、従来技術から生じる欠点を克服することにある。
【0010】
具体的には、本発明の目的は、吸収性ポリマーの製造方法であって、中間生成物として得られるゲル材料を特に効率的かつ均一に乾燥することができる方法を提供することにある。この方法では、可能な限り少数の工程で、均一な品質を有し、出来る限り毒性不純物を少量に抑えた超吸収性ポリマーを製造することができる。
【0011】
また、本発明の目的は、吸収性ポリマーまたはこの種のポリマーを含む複合体の製造方法であって、吸収性ポリマーが均一な品質と、使用に応じた物理的・化学的特性(特に吸収特性)を有する方法を提供することにある。
【0012】
本発明のさらなる目的は、特に均一な物理的・化学的特性を有し、毒性不純物の含有量を最少に抑えた吸収性ポリマー、吸収性ポリマーを含む複合体および吸収性ポリマーを含む化学製品を提供することにある。
【0013】
本発明のさらなる目的は、特に均一な物理的特性を有する吸収性ポリマーをコスト効率良く製造することができる装置を提供することにある。
【0014】
本発明のさらなる目的は、重合反応装置に接続された加工装置の機械的ストレスを減少させ、故障の発生を減らして運転寿命を延ばすことにある。
【0015】
また、本発明の目的は、毒性不純物の含有量が少なく、衛生用品の吸収特性に有利に作用し、特に良好に衛生用品に組み込むことができる超吸収性ポリマーを提供することにある。
【課題を解決するための手段】
【0016】
本発明によれば、これらの目的は、各独立請求項に記載の吸収性ポリマーの製造方法、吸収性ポリマー、吸収性ポリマーを含む複合体、複合体の製造方法、吸収性ポリマーまたは複合体を含む化学製品、吸収性ポリマーの使用、ポリマーの粉砕/乾燥装置および重合装置によって達成される。単独または組み合わせによる有利な実施形態やその他の形態は各従属請求項の目的である。
【0017】
本発明に係る吸収性ポリマーの製造方法は、
i)モノマー水溶液を重合してポリマーゲルを得る工程と、
ii)ポリマーゲルを粉砕してゲル粒子を得る工程と、
iii)ゲル粒子を乾燥する工程と、を含み、
工程ii)の後、好ましくは工程ii)の後であって工程iii)の開始前、または工程ii)の後であって工程iii)時、または工程ii)の後であって工程iii)の前および工程iii)時、
特に好ましくはゲル粒子が、ゲル粒子の全重量の20〜90重量%、好ましくは40〜70重量%、特に好ましくは45〜65重量%、さらに好ましくは50〜60重量%の水分を有し、20〜150℃、特に好ましくは30〜100℃、さらに好ましくは40〜80℃、最も好ましくは50〜70℃の温度TGP(GP=ゲル粒子)を有する時に、ゲル粒子が本明細書に記載する試験方法による拡散性(spread behaviour)を有することを特徴とする。
【発明を実施するための最良の形態】
【0018】
工程iii)の開始は、吸収性ポリマーの製造において、重合後に得られるポリマーゲルを、粉砕後、好ましくは熱または放射線(赤外線が好ましい)のエネルギー伝導により、60℃、好ましくは少なくとも100℃、特に好ましくは少なくとも150℃まで、ポリマーの水分が連続的に減少し、乾燥が可能となるまで加熱した時点である。
【0019】
拡散性は、ゲル粒子が能動的に層厚のばらつきを平均しようとする性質である。この点においては、重力だけではなく弾性力も影響する。例えば、ゲル粒子が水平面に保持されている場合に、ゲル粒子は平面上で分散し、凹凸を平均し、ゲル粒子を水平にしようとする。弾性力でゲル粒子は分離され、各ゲル粒子は自発的に緩和しようとする。ゲル粒子が自発的に緩和すると、通常のゲル粒子のような動きをする。各ゲル粒子の弾性力によりゲル粒子はリビング性を示す。
【0020】
ゲル粒子の拡散性により層厚がさらに均一になるため、乾燥が容易となる。乾燥させるために、この種のゲル粒子を20〜80cm、特に30〜50cmの落下高さから乾燥ベルト(ベルト乾燥機)へ振り落とすと、ゲル粒子の拡散性により乾燥ベルト上のゲル粒子の層厚のばらつき(乾燥ベルト上の平均層厚は5〜20cm、特に10〜15cm)が、30%未満、特に20%未満、好ましくは10%未満になる。例えば、10%未満のばらつきとは、ゲルが最小の厚みを有する位置における高さと最大の厚みを有する位置における高さとの差が10%未満であるという意味である。このように層厚を平均することにより、ゲル粒子を特に均一に乾燥させることができる。
【0021】
通常、重合後の水分が20〜90重量%、好ましくは40〜70重量%、特に好ましくは45〜65重量%、さらに好ましくは50〜60重量%である吸収性ポリマーのゲル粒子は、拡散によるレベリング作用により、非常に効率的に乾燥させることができる。このように乾燥させた吸収性ポリマーは特に均一な物理的・化学的特性を有する。
【0022】
本発明に係る方法の一実施形態において、ゲル粒子は、以下の特性の少なくとも1つ、好ましくは全ての特性を有する。
a.粉砕後であって上述した乾燥工程iii)開始前に得られるゲル粒子の状態で、ポリマーゲルは工程ii)の粉砕後に自発的に分散し、分散ゲル粒子が得られ、分散ゲル粒子が本明細書に記載した試験方法により測定した拡散性を有する。
b.乾燥工程iii)時、好ましくは乾燥工程iii)の開始前にポリマーゲルが含む水分の少なくとも5重量%、特に好ましくは少なくとも10重量%、さらに好ましくは少なくとも20重量%、最も好ましくは少なくとも30重量%を蒸発させた後、ポリマーゲルはまず自発的に分散し、分散ゲル粒子が得られ、得られた分散ゲル粒子は本発明に記載した試験方法による拡散性を有する。
【0023】
ただし、上述した実施形態aおよびbにおけるゲル粒子の分散は、ゲル粒子が上述した水分および温度を有している時点で生じることが好ましい。
【0024】
従って、ゲル粒子の分散は乾燥工程iii)前または乾燥工程iii)時に生じる。また、乾燥工程前および乾燥工程時にゲル粒子を分散させることも可能である。ゲル粒子の
拡散性は自発的分散により生じる。ERT460.1−99により測定した未乾燥ゲル粒子の嵩密度は、分散により、好ましくは800g/l未満、特に好ましくは750g/l未満、さらに好ましくは700g/l未満、より好ましくは650g/l未満、最も好ましくは600g/l未満に減少する。未乾燥ゲル粒子の嵩密度は、分散により少なくともl%、特に好ましくは少なくとも5%、さらに好ましくは少なくとも10%、より好ましくは少なくとも20%、最も好ましくは少なくとも30%減少することがさらに好ましい。本発明に係る方法の別の実施形態において、未乾燥ゲル粒子の嵩密度は分散により10〜50%、さらに好ましくは20〜30%減少する。ここでは、例えば5%の嵩密度の減少は、分散後の未乾燥粒子の嵩密度が分散前の嵩密度より少なくとも5%小さくなることを意味する。本発明に係る方法の一実施形態において、嵩密度の減少は10〜50%、さらに好ましくは20〜40%である。
【0025】
本発明に係る乾燥方法のさらに別の実施形態においては、工程ii)の後、好ましくは工程ii)の後であって工程iii)の開始前、または工程ii)の後であって工程iii)時、または工程ii)の後であって工程iii)前および工程iii)時、好ましくはゲル粒子が上述した水分および温度を有している時に、ゲル粒子または分散ゲル粒子の拡散性は以下の特性(δ1)〜(δ4)の少なくとも1つ、好ましくは全てを有する。
(δ1)ゲル粒子の第一の圧縮指数K1が10〜40%、特に15〜30%、特に好まし
くは18〜25%。
(δ2)ゲル粒子の第二の圧縮指数K2が3×10−5Pa−1〜6×l0−5Pa−1
、特に3.5×10−5Pa−1〜5×l0−5Pa−1、特に好ましくは3.9×l0−5Pa−1〜4.3×l0−5Pa−1
(δ3)ゲル粒子の第一の伸張指数K1’が3〜15%、特に4〜10%、特に好ましく
は5〜8%。
(δ4)ゲル粒子の第二の伸張指数K2’が3×10−5Pa−1〜7×l0−5Pa
、特に4×10−5Pa−1〜8×l0−5Pa−1、特に好ましくは5×l0−5Pa−1〜6.5×l0−5Pa−1
【0026】
上記の各特性は本発明に係る別の実施形態を示している。その中でも、以下の特性の組み合わせが好ましい実施形態を示している:δ1δ2δ3,δ1δ2δ4,δ1δ3δ4,δ1δ2,δ1δ3,δ1δ4,δ2δ3,δ2δ4,δ3δ4,δ1,δ2,δ3,δ4,δ1δ2δ3δ4。特にδ1δ2δ3δ4が好ましい。
【0027】
ゲル粒子の乾燥に有利である拡散性は、上述したような圧縮および伸張指数で示される。
【0028】
本発明に係る方法のさらに別の実施形態においては、工程ii)の後、好ましくは工程ii)の後であって工程iii)の開始前、または工程ii)の後であって工程iii)時、または工程ii)の後であって工程iii)の前および工程iii)時、好ましくはゲル粒子が上述した水分および温度を有している時に、ゲル粒子が以下の特性の少なくとも1つを有す。
(ε1)合計質量1185gの荷重下において本明細書に記載の試験方法により測定した断面拡散指数Qが、少なくとも3、特に少なくとも5、好ましくは少なくとも7、特に好ましくは少なくとも7.5、さらに好ましくは少なくとも7.82であり、好ましくは20未満。
(ε2)合計質量2175gの荷重下において本明細書に記載の試験方法により測定した断面拡散指数Qが、少なくとも3、特に少なくとも5、好ましくは少なくとも7、特に好ましくは少なくとも7.5、さらに好ましくは少なくとも7.56であり、好ましくは20未満。
(ε3)合計質量3185gの荷重下において本明細書に記載の試験方法により測定した
断面拡散指数Qが、少なくとも3、特に少なくとも5、好ましくは少なくとも6、特に好ましくは少なくとも7、さらに好ましくは少なくとも7.23であり、好ましくは20未満。
(ε4)合計質量6185gの荷重下において本明細書に記載の試験方法により測定した断面拡散指数Qが、少なくとも3、特に少なくとも4、好ましくは少なくとも5、特に好ましくは少なくとも6、さらに好ましくは少なくとも6.57であり、好ましくは20未満。
【0029】
上記の各特性は本発明に係る実施形態をさらに示している。この中でも、以下の組み合わせが好ましい実施形態を示している:εlε2ε3,εlε2ε4,ε1ε3ε4,ε1c2,ε1c3,ε1c4,ε2ε3,ε2ε4,ε3ε4,ε1,ε2,ε3,ε4,ε1ε2ε3ε4。特にε1ε2ε3ε4が好ましい。
【0030】
本発明に係る方法の好ましい実施形態においては、工程ii)の後、好ましくは工程ii)の後であって工程iii)の開始前、または工程ii)の後であって工程iii)時、または工程ii)の後であって工程iii)の前および工程iii)時、好ましくはゲル粒子が上述した水分および温度を有している時に、合計質量6185gの荷重下において本明細書に記載の試験方法により測定したゲル粒子の拡散時間定数τが、少なくとも2秒、好ましくは少なくとも4秒、さらに好ましくは少なくとも6秒、特に好ましくは10秒である。拡散時間定数τは60秒未満であることがさらに好ましい。
【0031】
ゲル粒子の第一および第二の圧縮指数K1K2と第一および第二の伸張指数K1’,K2’は、試験方法に記載した圧縮および伸張実験で定義する。また、断面拡散指数Qおよび拡散時間定数τの測定も試験方法に規定する。
【0032】
工程ii)において、ゲルを少なくとも3段階で粉砕することが有利である。すなわち、切断装置、好ましくはナイフによりゲルを平らなゲルストリップに切断し、ストリップの長さが5〜50mm、好ましくは8〜40mm、特に好ましくは10〜30mmで、高さが1〜30mm、好ましくは5〜25mm、特に好ましくは10〜20mm、幅が1〜40mm、好ましくは5〜30mm、特に好ましくは10〜20mmであることが好ましい。破砕装置、好ましくは破砕機により、ゲルストリップをゲルピースに破砕し、ピースの長さが2.5〜25mm、好ましくは1〜12.5mm、高さが0.5〜15mm、好ましくは0.25〜7.5mm、幅が0.5〜20mm、好ましくは0.25〜10mmであることが好ましい。「ウルフ(wolf)」(粉砕)装置、好ましくはスクリューと穴プレートを有するウルフ(肉挽き器)により、スクリューを穴プレートに移動させ、ゲルピースを粉砕および圧搾し、好ましくはゲルピースより小さいゲルパーツにする。
【0033】
これによって最適な表面−体積比が達成され、乾燥性に有利に作用する。このように粉砕されたゲルは特に乾燥ベルトに適している。3段階の粉砕により、粒子の間に空気流路が形成され、さらに優れた「通気性(airabi1ity)」が生じる。
【0034】
本発明に係る方法における工程ii)の後に得られるゲル粒子が、ゲル粒子の全重量の少なくとも10重量%、好ましくは少なくとも20重量%、特に好ましくは少なくとも30重量%の吸収性ポリマーを含み、吸収性ポリマーが、それぞれ乾燥した吸収性ポリマーに対し、
(α1)0.1〜99.999重量%、好ましくは20〜97.98重量%、特に好ましくは60〜93.95重量%のエチレン性不飽和酸性基含有モノマーまたはその塩、またはプロトン化または第4級化窒素含有エチレン性不飽和モノマー、またはそれらの混合物、特に好ましくは、少なくともエチレン性不飽和酸性基含有モノマー、好ましくはアクリル酸を含む混合物と、
(α2)0〜70重量%、好ましくは1〜60重量%、特に好ましくは1〜40重量%の、(α1)と共重合可能なエチレン性不飽和モノマーと、
(α3)0.001〜10重量%、好ましくは0.01〜7重量%、特に好ましくは0.05〜5重量%の1種以上の架橋剤と、
(α4)0〜30重量%、好ましくは1〜20重量%、特に好ましくは5〜10重量%の水溶性ポリマーと、
(α5)0〜20重量%、好ましくは0.01〜7重量%、特に好ましくは0.05〜5重量%の1種以上の添加剤と、
からなる((α1)〜(α5)の合計重量は100重量%である)。
【0035】
吸収性ポリマーは水溶性モノマー溶液の全量の90〜50重量%、好ましくは88〜55重量%、特に好ましくは70〜60重量%の水を含む水溶性モノマー溶液から得られるため、通常、ゲル粒子は大量の水を含む。
【0036】
モノエチレン性不飽和酸性基含有モノマー(α1)は、部分的または完全に中和されていてもよく、部分的に中和されていることが好ましい。モノエチレン性不飽和酸性基含有モノマーは、少なくとも25モル%、特に好ましくは少なくとも50モル%、さらに好ましくは50〜90モル%が中和されていることが好ましい。モノマー(α1)の中和は、重合前または重合後に行なうことができる。また、中和は、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アンモニア、炭酸塩、重炭酸塩を使用して行うことができる。また、酸とともに水溶性塩を形成する塩基を使用することができる。各種塩基を使用した混合中和でもよい。アンモニアまたはアルカリ金属水酸化物を用いた中和が好ましく、水酸化ナトリウムまたはアンモニアを使用した中和が特に好ましい。
【0037】
遊離酸基がポリマー中に多く含まれるため、ポリマーのpHは酸性領域にある。この酸性吸水性ポリマーは、遊離塩基、好ましくはアミノ基を有し、酸性ポリマーと比較すると塩基性であるポリマーによって少なくとも部分的に中和することができる。これらのポリマーは「混合床イオン交換吸収性ポリマー(MBIEAポリマー)」として文献に記載されており、特に国際公開第WO99/34843号に開示されている。国際公開第WO99/34843号に記載されている開示内容は、この参照によって本明細書の開示の一部をなすものとする。通常、MBIEAポリマーは、アニオンを交換できる塩基性ポリマーと、塩基性ポリマーと比較すると酸性であって、カチオンを交換できるポリマーとからなる組成物である。塩基性ポリマーは塩基性基を有し、塩基性基または塩基性基に転換できる基を有するモノマーを重合することによって通常は得られる。これらのモノマーは、第1級、第2級または第3級アミン、あるいは対応するホスフィン、または上述した官能基を少なくとも2つ有するモノマーである。これらのモノマーとしては、エチレンアミン、アリルアミン、ジアリルアミン、4−アミノブテン、アルキルオキシサイクリン、ビニルホルムアミド、5−アミノペンテン、カルボジイミド、ホルマールダシン、メラミン、それらの第2級または第3級アミン誘導体等が挙げられる。
【0038】
ドイツ特許出願公開第102 23 060 A1号の開示、特にモノマー(α1)および(α2)、架橋剤(α3)、開始剤および開始剤の使用量に関する開示内容は、この参照によって本明細書の開示の一部をなすものとする。
【0039】
好ましいモノエチレン性不飽和酸性基含有モノマー(α1)は、好ましいモノマー(α1)としてドイツ特許出願公開第102 23 060 A1号に記載されており、アクリル酸が特に好ましい。
【0040】
本発明では、吸水性ポリマーがカルボキシル基含有モノマーを乾燥重量の少なくとも50重量%、好ましくは少なくとも70重量%、より好ましくは少なくとも90重量%含む
ことが好ましい。本発明では、吸収性ポリマーが、少なくとも50重量%、好ましくは少なくとも70重量%の少なくとも20モル%、特に好ましくは少なくとも50モル%が中和されたアクリル酸から形成されることが好ましい。
【0041】
(α1)と重合可能なモノエチレン性不飽和モノマー(α2)は、好ましいモノマー(α2)としてドイツ特許出願公開第102 23 060 A1号に記載されているモノマーが好ましく、アクリルアミドが特に好ましい。
【0042】
本発明に係る好ましい架橋剤(α3)は、1分子中に少なくとも2つのエチレン性不飽和基を有する化合物(架橋剤I)、縮合反応によってモノマー(α1)または(α2)の官能基と反応できる官能基を少なくとも2つ有する化合物(=縮合架橋剤)や、付加反応または開環反応によってモノマー(α1)または(α2)の官能基と反応できる官能基を少なくとも2つ有する化合物(架橋剤II)、少なくとも1つのエチレン性不飽和基と、縮合反応、付加反応、または開環反応によってモノマー(α1)または(α2)の官能基と反応できる官能基を少なくとも1つ有する化合物(架橋剤III)、または多価金属カチオン(架橋剤IV)である。架橋剤Iの化合物を使用したポリマーの架橋は、架橋剤分子のエチレン性不飽和基とモノエチレン性不飽和モノマー(α1)または(α2)とのラジカル重合によって行われる。一方、架橋剤IIの化合物及び架橋剤IVの多価金属カチオンを使用したポリマーの架橋は、モノマー(α1)または(α2)の官能基の縮合反応(架橋剤II)または多価金属カチオン(架橋剤IV)とモノマー(α1)または(α2)の官能基との静電相互作用によって行われる。架橋剤IIIの化合物を使用したポリマーの架橋は、エチレン性不飽和基のラジカル重合または架橋剤の官能基とモノマー(α1)または(α2)の官能基との縮合反応によって行われる。
【0043】
好ましい架橋剤(α3)は、架橋剤I、II、IIIまたはIVのいずれかの架橋剤(α3)としてドイツ特許出願公開第102 23 060 A1号に記載されている全ての化合物であり、
架橋剤Iの化合物としては、N,N’−メチレンビスアクリルアミド、ポリエチレングリコールジ(メタ)アクリレート、塩化トリアリルメチルアンモニウム、塩化テトラアリルアンモニウム、アクリル酸1モル当たり9モルのエチレンオキシドを使用して製造されたアリルポリエチレングリコールアクリレートが特に好ましく、
架橋剤IVの化合物として、Al(SOとその水和物が特に好ましい。
【0044】
好ましい吸収性ポリマーは、以下の架橋剤または架橋剤の組み合わせを使用して架橋されたポリマーである。I,II,III,IV,I II,I III,I IV,I II III, I II IV,I III IV,II III IV,II IVまたはIII IV。これらの架橋剤の組み合わせは、それぞれがポリマーの架橋剤の好ましい実施形態である。
【0045】
吸収性ポリマーのさらに好ましい実施形態は、架橋剤Iの架橋剤としてドイツ特許出願公開第102 23 060 A1号に開示されている架橋剤のいずれかにより架橋されたポリマーであり、N,N’−メチレンビスアクリルアミド、ポリエチレングリコールジ(メタ)アクリレート、塩化トリアリルメチルアンモニウム、塩化テトラアリルアンモニウム、アクリル酸1モル当たり9モルのエチレンオキシドを使用して製造されたアリルポリエチレングリコールアクリレートが架橋剤Iの架橋剤として特に好ましい。
【0046】
吸収性ポリマーは、従来技術から公知の様々な重合手段により、上記モノマーと架橋剤から製造することができる。例えば、好ましくは押出機等の混錬反応器内で行う塊状重合、ベルト重合、溶液重合、噴霧重合、逆乳化重合、逆懸濁重合が挙げられる。本発明での溶液重合は水を溶媒として行うことが好ましい。溶液重合は連続的または断続的に行うこ
とができる。従来技術においては、開始剤と反応溶液の温度、種類、量などの反応条件に関して、幅広い様々な可能性があることが開示されている。代表的な方法は、米国特許第4,286,082号、ドイツ特許第27 06 135号、米国特許第4,076,663号、ドイツ特許第35 03 458号、ドイツ特許第40 20 780号、ドイツ特許第42 44 548号、ドイツ特許第43 23 001号、ドイツ特許第43
33 056号、ドイツ特許第44 18 818号に記載されている。これらの開示内容は、この参照によって本明細書の開示の一部をなすものとする。
【0047】
通常、重合は開始剤を使用して開始させる。重合を開始させるための開始剤としては、重合条件下でラジカルを生成する開始剤が使用でき、それらの開始剤は従来から超吸収体の製造に使用されている。また、重合性水性混合物に対する電子線の作用によって重合を開始させることも可能である。また、上記の開始剤を使用せずに、光開始剤の存在下におけるエネルギー放射線の作用によって重合を開始させることもできる。重合開始剤は、本発明に係るモノマーの溶液に溶解または分散させて使用することができる。開始剤としては、ラジカルに分解する当業者に公知の化合物を使用することができる。特に好ましい開始剤と好ましい開始剤の使用量はドイツ特許出願公開第102 23 060 A1号に参照されている。
【0048】
本発明によれば、過酸化水素、ペルオキソ二硫酸ナトリウム、アスコルビン酸を含むレドックス系が好ましく使用される。本発明では、開始剤としてはアゾ化合物が通常好ましく、アゾビス−アミジノプロパン二塩酸塩が特に好ましい。通常、重合は0〜90℃の温度範囲で開始剤を使用して開始させる。
【0049】
水溶性ポリマー(α4)として、部分または完全ケン化ポリビニルアルコール、ポリビニルピロリドン、デンプン、デンプン誘導体、ポリグリコール、またはポリアクリル酸等を含む水溶性ポリマーを重合させて本発明の吸水性ポリマーを得ることが好ましい。これらのポリマーの分子量は、ポリマーが水溶性であれば限定されない。好ましい水溶性ポリマーは、デンプン、デンプン誘導体、ポリビニルアルコールである。水溶性ポリマー、好ましくはポリビニルアルコールなどの合成ポリマーは、重合されるモノマーのグラフト基材としても機能する。
【0050】
添加剤(α5)としては、懸濁化剤、消臭剤、界面活性剤、酸化防止剤が好ましく吸水性ポリマーに使用される。添加剤(α5)は、好ましくは、重合前にモノマー溶液に添加するか、ポリマー製造後にポリマーに混合する。混合には、当業者に公知のミキサー、例えば、パターソン・ケリー(Patterson−Kelley)ミキサー、DRAIS乱流ミキサー、ロディジ(Lodige)ミキサー、ルベルク(Ruberg)ミキサー
、スネイルミキサー、プレートミキサー、流動床ミキサー、回転刃によって高周波でポリマー粒子と添加剤(α5)を混合する連続垂直ミキサー(シュージ(Schugi)ミキサー)を使用することができる。
【0051】
工程iii)において、ポリマーケークとして乾燥されるゲル粒子が以下の特性の少なくとも一つを有することが有利である。
(φ1)ERT440.1−99による0.9重量%食塩水の最大吸収量が10〜1000g/gSAP(Superabsorbent polymer:超吸収性ポリマー)粒子。
(φ2)ERT470.1−99による0.9重量%食塩水で抽出可能な部分がSAP粒子の30重量%未満。
(φ3)ERT460.1−99による嵩密度が300〜1000g/l。
(φ4)SAP粒子1gの1リットル水溶液のERT470.1−99によるpHが4〜10。
(φ5)ERT441.1−99によるCRC(Centrifugation retention capacity:遠心分離保持容量)値が10〜100g/g。
(φ6)ERT442.1−99による0.3psiの圧力下におけるAAP(Absorbancy against pressure:圧力下吸収率)値が10〜60g/g。
【0052】
少なくとも30重量%、好ましくは少なくとも60重量%、特に好ましくは少なくとも80重量%の吸収性ポリマー粒子の粒径が150〜850μmであることがさらに好ましい。本発明では、粒径が300〜600μmである粒子に対して、ゲル粒子が少なくとも50重量%、好ましくは少なくとも75重量%であることがさらに好ましい。
【0053】
本発明に係る方法及び本発明に係る方法により得られる吸収性ポリマーでは、本発明に係る特性値は、下限値のみを示す場合には、上限値は最も好ましい下限値の20倍、好ましくは10倍、最も好ましくは5倍であることが好ましい。
【0054】
本発明に係る方法により得られる吸収性ポリマー、好ましくはポリマー粒子は、以下の特性の少なくとも1つを有することがさらに好ましい。
(A)ERT440.1−99による0.9重量%食塩水の最大吸収量が少なくとも10〜1000g/g、好ましくは15〜500g/g、特に好ましくは20〜300g/g。
(B)ERT470.1−99による0.9重量%食塩水で抽出可能な部分が吸収性ポリマーの30重量%未満、好ましくは20重量%未満、特に好ましくは10重量%未満。
(C)ERT460.1−99による嵩密度が300〜1000g/l、好ましくは310〜800g/l、特に好ましくは320〜700g/l。
(D)ERT400.1−99による吸収性ポリマー1gの1リットル水溶液のpHが4〜10、好ましくは5〜9、特に好ましくは5.5〜7.5。
(E)ERT441.1−99によるCRC値が10〜100g/g、好ましくは15〜80g/g、特に好ましくは20〜60g/g。
(F)ERT442.1−99による0.3psiの圧力下におけるAAP値が10〜60g/g、好ましくは15〜50g/g、特に好ましくは20〜40g/g。
【0055】
上記特性の2つ以上の組み合わせは、それぞれ本発明の方法により得られるポリマーの好ましい実施形態である。本発明に係る特に好ましい実施形態は、得られる吸収性ポリマーが以下の、アルファベットまたはアルファベットの組み合わせで示される特性または特性の組み合わせを有する方法である。A,B,C,D,E,F,AB,AC,AD,AE,AF,EF,ABC,ABD,ABE,ABF,ACD,ACE,ACF,ADE,ADF,AEF,CEF,ABCD,ABCE,ABCF,ABDE,ABDF,ACDE,ACDF,ACEF,ADEF,ACDEF,ABDEF,ABCEF,ABCDF,ABCDE,ABCDEF。CEFの組み合わせが特に好ましく、EFの組み合わせがさらに好ましい。
【0056】
本発明に係る方法の別の実施形態では、本発明に係る方法により得られる吸収性ポリマーの外側部分をAl3+イオン含有化合物と接触させる。Al3+イオン含有化合物は、吸収性ポリマーの重量に対して、0.01〜30重量%、特に好ましくは0.1〜20重量%、さらに好ましくは0.3〜5重量%の量でポリマーと接触させることが好ましい。
【0057】
溶媒(好ましくは水、メタノール、エタノール等の水混和性の有機溶媒またはそれらの少なくとも2種の混合物)を含む流体のAl3+イオン含有化合物およびAl3+イオン含有化合物をポリマーと接触させることがさらに好ましい。Al3+イオン含有化合物は、結晶化の水を考慮せずに、流体の合計重量に対して、0.1〜50重量%、好ましくは
1〜30重量%の量で流体に含まれていることが好ましい。また、流体は、吸収性ポリマーの重量に対して、0.01〜15重量%、好ましくは0.05〜6重量%の量で吸収性ポリマーと接触させることが好ましい。
【0058】
好ましいAl3+イオン含有化合物は、AlCl・6HO、NaAl(SO・12HO、KAl(SO・12HO、Al(SO・14−18HOである。
【0059】
本発明によれば、本発明に係る方法により得られるポリマー、好ましくはポリマー粒子は、内側部分と、内側部分を取り囲む外側部分と、外側部分を取り囲む表面部分とを有し、外側部分は内側部分よりも高い架橋度を有し、コアシェル構造が形成されていることが好ましい。また、外側部分の半径は、少なくとも内側部分の半径の2倍であることがさらに好ましい。ポリマー、好ましくはポリマー粒子の表面部分における架橋度の向上は、表面部分での反応基の後架橋により達成されることが好ましい。この後架橋は熱的、光化学的、または化学的に行うことができる。化学的後架橋のための後架橋剤としては、架橋剤II,IVの架橋剤(α3)として言及した化合物が好ましい。後架橋剤としては、炭酸エチレンが特に好ましい。
【0060】
後架橋剤は、本発明に係る方法により使用される吸収性ポリマーの重量に対して、0.01〜30重量%、好ましくは0.1〜20重量%、特に好ましくは0.5〜10重量%、さらに好ましくは0.3〜50重量%の量で後架橋に使用することが好ましい。
【0061】
後架橋は、溶媒、好ましくは水、メタノール、エタノール等の水混和性の有機溶媒またはそれらの少なくとも2種の混合物と、後架橋剤とを含む後架橋流体を、30〜300℃、特に好ましくは100〜200℃の温度でポリマー、好ましくはポリマー粒子の外側部分に接触させることによって行うことが好ましい。接触は、好ましくは、ポリマーに後架橋流体を噴霧し、後架橋流体と接触したポリマーを混合することによって行う。後架橋剤は、後架橋流体の合計重量に対して、0.01〜20重量%、特に好ましくは0.1〜10重量%の量で後架橋流体に存在することが好ましい。また、後架橋流体は、ポリマーの重量に対して、0.01〜50重量%、特に好ましくは0.1〜30重量%の量でポリマーと接触させることが好ましい。
【0062】
上述のように架橋された吸収性ポリマー、好ましくはポリマー粒子は、「後架橋ポリマー」または「後架橋ポリマー粒子」と称される。本発明に係る方法の別の実施形態では、後架橋ポリマー、好ましくはポリマー粒子の外側部分をAl3+イオン含有化合物と接触させる。Al3+イオン含有化合物に関しては、上記の詳細を参照するものとする。また、Al3+イオン含有化合物を他の上述した後架橋剤の流体中で吸収性ポリマーに塗布し熱処理するのが好ましい。
【0063】
後架橋ポリマー、好ましくはポリマー粒子は、以下の特性の少なくとも1つ、好ましくは全てを有する。
(N1)ERT441.1−99によるCRC値が20〜40g/g、特に好ましくは25〜35g/g。
(N2)ERT442.1−99による0.3psiの圧力下でのAAP値が20〜35g/g、特に好ましくは25〜30g/g。
(N3)ERT442.1−99による0.7psiの圧力下でのAAP値が20〜27g/g、特に好ましくは22〜25g/g。
【0064】
特定の乾燥方法により、特に均一の物理的・化学的特性を有する吸収性ポリマーを製造する。その乾燥方法により吸収性ポリマーの効果的な製造が可能となる。本発明に係る製
造によって得られる本発明に係る吸収性ポリマーは、特に均一の物理的・化学的特性によって特徴付けられる。
【0065】
本発明は、本発明に係る吸収性ポリマーと基材とを含む複合体にも関する。本発明に係る吸水性ポリマーと基材は互いに固く結合していることが好ましい。好ましい基材としては、ポリエチレン、ポリプロピレン、ポリアミドなどのポリマーから形成されるシート、金属、不織布、綿毛、薄織物、織布、天然繊維、合成繊維、または他の発泡体が挙げられる。
【0066】
本発明での好ましい複合体は、シール材、ケーブル、吸収性コア、それらを含むおむつ、衛生用品、好ましくは生理用ナプキンである。
【0067】
もし複合体が吸収性ポリマーや繊維材料を含む吸収性コアであれば、吸収性ポリマーは、コアに対して10〜90重量%、好ましくは20〜80重量%、特に好ましくは40〜70重量%の量で組み込まれることが好ましい。コアの一実施形態では、吸収性ポリマーは粒子としてコアに組み込まれる。このように、ポリマー粒子は繊維材料に均一に分散されるか、繊維材料間に層状に存在するか、繊維材料中で濃度勾配を有する。コアの別の実施形態では、吸収性ポリマーは繊維としてコアに組み込まれる。吸収性コアの正確な性質および構造に関しては、米国特許第5,562,646号に詳細が記載されており、この参照によって本明細書の開示内容の一部をなすものとする。
【0068】
本発明は、本発明に係る吸収性ポリマー、好ましくはポリマー構造体、基材、必要に応じて好適な添加剤を互いに接触させる複合体の製造方法にも関する。接触は、特に複合体がコアの場合、ウェットレイド法、エアレイド法、圧縮、押出、混合によって行うことが好ましい。
【0069】
また、本発明は上記方法によって得られる複合体にも関する。
【0070】
また、本発明は、本発明に係る吸収性ポリマーまたは上述した複合体を含む、発泡体、成形体、繊維、シート、フィルム、ケーブル、シール材、吸液性衛生用品(例えば、おむつや生理用ナプキン)、植物・菌類生育調節剤用または植物防疫剤用の担体、建設材料用の添加剤、包装材料、土壌添加剤などの化学製品に関する。
【0071】
また、本発明は、本発明に係る吸収性ポリマーまたは上述した複合体の、発泡体、成形体、繊維、シート、フィルム、ケーブル、シール材、吸液性衛生用品(例えば、おむつや生理用ナプキン)、植物・菌類生育調節剤用または植物防疫剤用の担体、建設材料用の添加剤、包装材料、土壌添加剤などの化学製品への使用に関する。
【0072】
植物・菌類生育調節剤用または植物防疫剤用の担体としての使用では、植物・菌類生育調節剤または植物防疫剤は、担体によって制御される時間が経過した後に放出できることが好ましい。
【0073】
本発明に係る方法に係るポリマーを粉砕/乾燥するための装置は、未乾燥のポリマーをゲル粒子に粉砕する粉砕装置と、ゲル粒子を分散させる分散装置と、ゲル粒子を乾燥させる乾燥装置とを含み、粉砕装置、分散装置および乾燥装置は互いに連通接続されている。未乾燥の重合ポリマーを粉砕装置で粉砕する。分散装置により、粉砕したポリマー、特にゲル粒子の嵩密度は、少なくともl%、好ましくは少なくとも5%、さらに好ましくは少なくとも10%、さらに一層好ましくは少なくとも20%、最も好ましくは少なくとも30%減少する。乾燥装置により、未乾燥ゲル粒子の水分が減少する。
【0074】
粉砕装置が切断装置、引き裂き(ripping)装置および「ウルフ」(粉砕)装置を含むことが有利である。吸収性ポリマーを切断装置で切断する。引き裂き装置で、重合ポリマーを引き裂く(張力が加えられる)。ウルフ装置を使用して、重合ポリマーを粉砕する。これらの3種類の粉砕の組み合わせにより、特に乾燥に都合のよいゲル粒子を得る。分散装置は回転ドラム、好ましくはドラム、好ましくはドラム回転式ミキサーであることが有利である。ドラム回転式ミキサーにより、ゲル粒子、特に未乾燥ゲル粒子の嵩密度が減少する。分散はゲル粒子の拡散性に有利に作用する。
【0075】
また、本発明は、
モノマー溶液用導管を有するモノマー溶液用容器と、
開始剤用導管を有する開始剤用容器と、
重合部と、
本発明に係るポリマーの粉砕/乾燥装置と、
を含み、モノマー溶液用導管と開始剤用導管が重合部の入口部に接続されており、ポリマー乾燥装置が出口部に配置されている重合装置に関する。
【0076】
モノマー溶液用容器として、プラスチック製や鋼鉄製のタンクなど、当業者に公知の容器が考えられる。開始剤用容器に関しても同様である。導管は好ましくはモノマーや開始剤に対して不活性であるプラスチックや鋼などの材料からできているものが好ましい。重合部としては、混練反応装置やベルト重合反応装置を使用することが好ましく、特にベルト重合反応装置が好ましい。本発明に係る方法による処理に特に適した吸収性ポリマーは、ベルト重合反応装置から得ることができる。また、ベルト重合反応装置により本発明に係る処理の連続的流れ作業が可能となる。混練反応装置ではウォームシャフトを運搬に使用し、ベルト重合反応装置では、1以上のコンベヤーベルトまたは近接するモノマー溶液および開始剤用容器を使用する。この場合、下降するコンベアベルトが好ましい。
【0077】
本発明に係る吸収性ポリマーの製造方法は、工程ii)後のゲル粒子の拡散性に特徴付けられる。吸収性ポリマーの製造方法は、特に効率的な乾燥工程iii)によって特徴付けられ、ゲル粒子の特に穏やかで均一な乾燥が可能となる。このようにして得られた吸収性ポリマーや吸収性ポリマーから製造される製品や物品は特に均一な品質と一定の物理的・化学的特性を有する。
【0078】
本発明の詳細および利点を以下の図および例を用いて詳しく説明する。図および例を概略図で示す。
【0079】
図1は重合部2を有する重合装置1の概略図であり、重合部2は出口部3において化合物用導管4を介してポリマー乾燥装置5に接続されている。モノマー溶液用容器6はモノマー溶液用導管7を介して重合部2の入口部10に接続され、開始剤用容器8は開始剤用導管9を介して重合部2の入口部10に接続されている。
【0080】
図2〜6の詳細については、試験方法および実施例と共に以下に記載する。
【0081】
試験方法
【0082】
ERT法
【0083】
ERT法はEDANA(欧州不織布協会:European Non−woven and Diaper Association)により開発された試験法であり、別段の記載がない限り、ここではERT法を適用する。
【0084】
第一および第二の圧縮指数K1K2の測定、第一および第二の伸張指数K1’,K2’の測定、断面拡散指数Qと拡散時間定数τの測定は、拡散性を測定するゲル粒子が拡散性の測定時に有する温度で行われる。後述する測定方法により上述したパラメータの測定が不可能なゲル粒子は、本発明に係る好ましいゲル粒子とはみなさない。
【0085】
第一および第二の圧縮指数K1K2
【0086】
第一および第二の圧縮指数(K1K2)の測定は図2a〜図2dに示す測定装置によって行う。
【0087】
第一および第二の圧縮指数を測定するために、プレキシグラス製の外径120mm、内径110mm、壁の厚さ5mm、内部断面積9503mmの円筒形ジャケット12と、プレキシグラス製の直径130mm、厚さ6mm(図2aを参照)の丸底13とを含む、容量2リットルの上部が開口した円筒形容器11を使用する。円筒形ジャケット12は丸底13上に互いの中心が一致するように固定されている。
【0088】
厚さ12mmのディスク15と、ディスク15の中央に固定された直径19.5mmで長さ190mmのロッド16とを有するポリプロピレン製のピストン14(図2aと図2cを参照)を円筒形容器11内に挿入することができる。ディスク15の直径は、ディスク15とピストン14が摩擦なしに円筒形容器11内を滑動できるように選択される。ピストンの質量mpistonは190gである。ディスク15は直径9.5mmの穴17を合計32個と図2bに示す配置を有す。ピストン14を挿入すると、ディスク15の下にある円筒形容器内の空気は穴を介し抜けることができる。ロッド16とは反対側のディスク15の面上には、ディスク15の直径に対応する直径と50μmのメッシュサイズを有するステンレス鋼製の円形ふるい18が中心合わせして取り付けられている。ふるい18はディスク15の穴17の底となる。ピストン14によってゲル粒子を圧縮する際に、ふるい18は穴17を介してゲル材料が押圧されることを防ぐ。ピストン14には質量mを有する異なる重り19を設けることができる。重り19は直径100mmで厚さ17〜50mm(重りの質量mによる)の鋼製のディスク型の物体である。重りは中央に直径19.5mの穴20をさらに有する。図2aに示すように、穴20を介してロッド16を貫通させることによりピストン14に重り19を固定することができる。重り19を有するピストン14の総質量(mtot=mpiston+m)は約1〜約6kgの間で選択可能である。ピストン14のディスク15は直径15mmで高さ10mmの小型の4つの円筒形突起21と、を図2bに示すディスク15上の配置をさらに有する。突起21により、重り19がディスク15上に直接位置することを防ぐ(図2aを参照)。重りがディスクに直接接すると穴20を塞いでしまい、ピストン14を円筒形容器11に挿入すると、空気が抜けることができなくなってしまうからである。
【0089】
円筒形容器11と最初に使用する重り19を有するピストン14を、(例えば、対応する温度制御されたインキュベーターによって)拡散性を測定するゲル粒子の温度に予め温めた後、容器11を拡散性を測定する吸収性ポリマーのゲル粒子22で平均充填高さhがh=150mmになるまで満たす(図2d(A)を参照)。充填後に、各重り19を有する予め温めたピストン14を挿入して、ゲル粒子22を押し下げる。合計質量(ピストンと重りの質量)を有するピストン14が最初にゲル粒子22に接触した時間を記録する。接触してから15秒後に、ピストン14の重量下にあるゲル粒子22が押し下げられた圧縮距離x(単位:mm)を測定する(図2d(B)参照)。
【0090】
その後ピストン14とゲル粒子22を円筒形容器11から除去し、円筒形容器11とピストン14を調査するゲル粒子の温度に再度温める。新しいゲル粒子を平均充填高さhがh=150mmとなるように容器11に配置し、第二の(例えば、第一の合計質量よりも
重い)合計質量を有するピストン14を容器11内に慎重に挿入し、15秒後にピストン14の重量によって押し下げられたゲル粒子の圧縮距離x(単位:mm)を再度測定する。このようにして、残りの合計質量の各圧縮距離を測定する。各圧縮距離xと充填高さ(150mm)から、各質量の正規化体積減少をΔV/V=x/hで表される百分率として決定する。正規化は非圧縮時の体積Vに基づく。各合計質量mtotと円筒形容器11の内部断面積A’から、各合計質量の圧縮圧力ΔpをΔp=mtot・9.81m/s/A’で計算する。異なる合計質量の正規化体積減少ΔV/Vを、各圧縮圧力Δpに対してグラフにプロットする。線形回帰を使用して決定する回帰直線を正規化体積減少の値を通るように描く。線形回帰は1000〜7000Paの間隔の圧縮圧力について決定する。回帰直線の傾きが第二の圧縮指数K2である。回帰直線のオフセットが第一の圧縮
指数K1である(図4を参照)。
【0091】
第一および第二の伸張指数K1’,K2
【0092】
伸張実験を圧縮実験後に行う。圧縮実験の測定と同様の測定装置を用いる。
【0093】
第一の合計質量を有するピストン14の重量下で、上述した方法でゲル粒子22を圧縮し、その後伸張させる(緩和させる)。これは、重りmを有するピストン14をゲル粒子22から除去した時に生じる。このような解放作用により、圧縮されたゲル粒子は伸張距離x’(単位:mm)で緩和する(図2d(C)を参照)。ゲル粒子の温度に予め温めた容器11に平均充填高さhがh=150mmになるようにゲル粒子22を配置し、充填直後に重り19を有する同様に予め温めたピストン14を容器11に挿入する。ピストン14を15秒間ゲル粒子22に押圧した後、ピストン14を除去し、ピストン14の除去から15秒後に伸張距離x’を測定する(図2d(C)を参照)。ゲル粒子22を円筒形容器11から除去し、平均充填高さhがh=150mmとなるように、新しいゲル粒子22を予め温めた容器11に配置する。第二の(例えば、第一の合計質量よりも重い)合計質量を有するピストン14を容器11内に慎重に挿入し、ゲル粒子22を圧縮する。ピストン14を除去した後、ゲル粒子22の圧縮を解除し、ピストン14の除去から30秒後に第二の合計質量に対応する伸張距離x’(単位:mm)を測定する。このようにして、残りの合計質量の各伸張距離を測定する。各伸張距離から、正規化体積増加ΔV’/Vl(単位:パーセント)をΔV’/V1=x’/(h−x)で表し、各合計質量に対しそれぞれ決定する。ここでの正規化はピストン14によって予め圧縮された体積V1に基づく。正規化体積増加デルタV’/Vlを圧縮圧力解放Δp’=mtot・9.81m/s/Aに対して1000〜7000Paの値でプロットする。線形回帰により決定する回帰直線を点を通るように描く。第二の伸張指数K2’が回帰直線の傾きである。第一の伸張
指数K1’が回帰直線のオフセットである(図5参照)。
【0094】
断面拡散指数Qおよび拡散時間定数τ
【0095】
断面拡散指数Qおよび拡散時間定数τはいわゆる逆転(putting−over)実験による測定である。この目的のために、圧縮および伸張指数の測定で説明した装置に対応する装置を使用するが、円筒形容器11は円底13を有しておらず、下部が開口している。
【0096】
断面拡散指数Qおよび拡散時間定数τを測定するために、円筒形容器11をポリプロピレン製の平坦な基板プレート24上に配置し、基板プレート24が円筒形容器11の底となる。円筒形容器11と基板プレート24を、拡散性を測定するゲル粒子の温度に予め温めておく。ゲル粒子を平均充填高さ150mmになるように円筒形容器11に配置し、その直後に予め温めた第一の重り19を有する予め温めたピストン14をゲル粒子上に配置する。30秒後、ピストン14を円筒形容器から除去し円筒形容器を持ち上げると、ゲル
粒子の円筒形のプレス成形体23が基板プレート24上に残る(図3aを参照)。
【0097】
この実験では、円筒形容器11を持ち上げた直後にプレス成形体23が形状を維持できず、基板プレート24の比較的広い範囲に分散することで拡散性が示される(図3bを参照)。水平面上でのゲル粒子の分散には数秒を要する。ゲル粒子または分散(loosened)ゲル粒子の拡散性は拡散時間定数τで決定する。拡散時間定数τは、円筒形にプレス成形されたゲル粒子がその形状を崩し拡散運動を終了する時間で測定する。断面拡散指数は、拡散運動の終了後(拡散運動は分散するプレス成形体の任意の境界点において30秒以内に拡散を目視により観察できない時に終了したものとする)、ゲル粒子により覆われた面積(=F’)を測定することによって決定する。断面拡散指数の定義は以下のとおりである: Q=F’/F。Fは容器11を持ち上げる前のプレス成形体の断面積である(F=9503mm)。
【比較例】
【0098】
組成(投入1:kg)
【0099】
4000.0:水
2030.0:50%水酸化ナトリウム
2610.0:アクリル酸
105.0:メトキシポリエチレングリコール(17EO)メタクリレート
15.7:ポリエチレングリコール(10EO)アリルエーテルアクリレート
8760.7:投入1のモノマー溶液
【0100】
このモノマー溶液400kg/hを熱交換器内で1℃に冷却し、3m/hの窒素を通過させてストリッパー内で溶存酸素の残存量が0.9ppmになるまで減少させた。重合ベルト上に供給する前に、以下の量の溶液と投入1を混合した。
投入2:8.8l/h 0.75%ペルオキソ二硫酸ナトリウム溶液
投入3:8.8l/h 二塩酸2,2’−アゾビス(2−メチルプロピオンアミジン)
投入4:8.8l/h 0.5%過酸化水素溶液
投入5:8.8l/h 0.075%アスコルビン酸溶液
投入6:10kg/h 200kgの水に15kgのポリエチレングリコール−400ジメタクリレートを溶解した溶液
【0101】
40分の滞留時間後、「Fleischwolf」(肉挽き器)を使用し、固体で熱いポリマーゲルを大きさが150〜3000μmのゲル粒子に粉砕し(予備粉砕)、ゾーン1および2では160℃、ゾーン3では140℃、ゾーン4および5では130℃の供給空気温度でベルト乾燥機上で乾燥した。乾燥したゲル粒子をベルト乾燥機に付属したカッティングミルで粉砕した。粉砕時のカッティングミルの電力消費量を図6に示す(図6の右半分の「ゲルを分散させない場合の」電力消費量を参照)。
【実施例1】
【0102】
比較例1を繰り返した。ゲルの粉砕後、ベルト乾燥機上で乾燥させる前に、長手軸を中心として毎分7.1回転で回転するドラム(長さ300cm、直径80cm)内で、ゲル粒子を約2〜3分間分散させる。その後、比較例に示した方法でゲルを乾燥および粉砕した。粉砕時のカッティングミルの電力消費量を図6に示す(図6の左半分の「ゲルを分散させた場合」の電力消費量を参照)。図6から、乾燥前のゲル粒子の分散により、乾燥したゲルを粉砕するカッティングミルの電力消費量が著しく減少することが分かった。
【実施例2】
【0103】
温度62℃を有する、分散後および乾燥前の実施例1で得たゲル粒子の拡散性を測定し
た。
【0104】
圧縮性および伸張性
【0105】
圧縮および伸張実験において、圧縮による移動が伸張による移動よりも大きいことが分かる(すなわち、圧縮距離xの値が伸張距離x’よりも大きい)。以下の表1に、最初の充填高さh=150mmに対して実験で得られた各2つの値を示す。
【0106】
【表1】

1)5回の測定の平均値
【0107】
断面拡散指数Qおよび拡散時間定数τ
【0108】
分散ゲル粒子の断面拡散指数Qおよび拡散時間定数τを決定するために行なった実験の結果を以下の表2に示す。面積F’だけではなく、拡散運動を終了したプレス成形体の高さh’も測定した。拡散面積は、透明な基板プレートの下に配置したグラフ用紙を用いて測定した。
【0109】
【表2】

1)5回の測定の平均値
【0110】
図4に、圧縮により生じた正規化体積減少を圧縮圧力に対してプロットした。測定値の間を通るように回帰直線を描いた。線の傾きは4.12×10−5Pa−1であった。線のオフセットは21%であった。
【0111】
図5に、正規化体積増加を伸張性測定時の圧力に対してプロットした。測定値を通るように回帰直線を描いた。線の傾きは5.9×10−5Pa−1であり、オフセットは6.4%であった。伸張力、すなわち、重り19を有するピストン11の除去後の力は圧縮力よりも弱い。特に、圧縮と伸張はオフセットが異なるが、測定エラーバー内の回帰直線の傾きは同じである。
【0112】
図6は、本発明に係る方法を使用した場合と使用しない場合、つまりゲル粒子を分散させた場合と分散させない場合のカッティングミルの電力消費量を示す。カッティングミルは乾燥装置5に接続されており、乾燥したポリマーを粉砕するために使用される。
【0113】
ベルト乾燥機に接続されたカッティングミルは、乾燥前に行われる分散による均一な乾燥を示す均一な電気/電力を示している。
【図面の簡単な説明】
【0114】
【図1】ポリマー乾燥装置を有する重合装置の概略図である。
【図2a】圧縮および伸張指数の測定装置であり、(全重りを有する)ピストンが挿入された円筒形容器(容器内にゲル粒子はない)の側面図である。
【図2b】ピストンのディスクの上面図である。
【図2c】ピストン全体の側面図である。
【図2d】(A)はピストン挿入前の円筒形容器内に位置するゲル粒子を示し、(B)はピストンが搭載され、距離xだけ圧縮された円筒形容器内のゲル粒子を示し、(C)は円筒形容器内で伸張させたゲル粒子を示す。
【図3a】断面拡散指数Qおよび拡散時間定数τの測定手順であり、円筒形容器を上から除去した直後のゲル粒子のプレス成形体を示す。
【図3b】断面でのプレス成形体の「流動」を示す。
【図4】圧縮実験における測定結果のプロットである。
【図5】伸張実験における測定結果のプロットである。
【図6】乾燥前のゲル粒子の分散の有無によるカッティングミルの電力消費量を示す。
【符号の説明】
【0115】
1 重合装置
2 重合部
3 出口部
4 化合物用導管
5 乾燥装置
6 モノマー溶液用導管
7 モノマー溶液用容器
8 開始剤用容器
9 開始剤用導管
10 入口部
11 円筒形容器
12 円筒形ジャケット
13 丸底
14 ピストン
15 ディスク
16 ロッド
17 ディスク15の穴
13 50μmのメッシュサイズを有するふるい
19 重り
20 重りの穴
21 突起
22 ゲル粒子
23 ゲル粒子からなるプレス成形体
d 円筒形容器11の直径
d’ ピストン14の直径
A’ ピストン14の内部断面積
x 圧縮距離
x’ 伸張距離
h 圧縮実験前の容器11内におけるゲル粒子22の充填高さ
h’ 圧縮実験後の容器11内におけるゲル粒子22の最終充填高さ
F 成形体の断面積
F’ 分散後の基板プレート上の「流動した」成形体の面積

【特許請求の範囲】
【請求項1】
吸収性ポリマーを製造する方法であって、
i)モノマー水溶液を重合してポリマーゲルを得る工程と、
ii)前記ポリマーゲルを粉砕してゲル粒子を得る工程と、
iii)前記ゲル粒子を乾燥する工程と、を含み、
前記工程ii)後の前記ゲル粒子が明細書に記載した試験方法により測定した拡散性を有する方法。
【請求項2】
前記粉砕後であって前記乾燥工程iii)の開始前に得られる前記ゲル粒子の状態の前記ポリマーゲルが、前記工程ii)の粉砕後に分散し、自発的分散ゲル粒子が得られ、前記分散ゲル粒子が明細書に記載した試験方法により測定した拡散性を有する請求項1に記載の方法。
【請求項3】
前記工程ii)後の前記ゲル粒子の前記拡散性が以下の特性;
(δ1)ゲル粒子の第一の圧縮指数K1が10〜40%、特に15〜30%、特に好まし
くは18〜25%
(δ2)ゲル粒子の第二の圧縮指数K2が3×10−5Pa−1〜6×l0−5Pa−1
、特に3.5×10−5Pa−1〜5×l0−5Pa−1、特に好ましくは3.9×l0−5Pa−1〜4.3×l0−5Pa−1
(δ3)ゲル粒子の第一の伸張指数K1’が3〜15%、特に4〜10%、特に好ましく
は5〜8%
(δ4)ゲル粒子の第二の伸張指数K2’が3×10−5Pa−1〜7×l0−5Pa
、特に4×10−5Pa−1〜8×l0−5Pa−1、特に好ましくは5×l0−5Pa−1〜6.5×l0−5Pa−1
の少なくとも一つ、好ましくは全てによって特徴付けられる請求項1または2に記載の方法。
【請求項4】
前記工程ii)後の前記ゲル粒子または前記分散ゲル粒子の前記拡散性が、合計質量1185gの荷重下において、少なくとも3の断面拡散指数Qによって特徴付けられる前記請求項のいずれか1項に記載の方法。
【請求項5】
前記工程ii)後の前記ゲル粒子または前記分散ゲル粒子の前記拡散性が、6185gの合計質量の荷重下において、少なくとも2秒、特に少なくとも4秒、好ましくは少なくとも6秒の拡散時間定数τによって決定される前記請求項のいずれか1項に記載の方法。
【請求項6】
前記工程ii)後の前記未乾燥ゲル粒子の密度が0.7g/cm未満、特に0.6g/cm未満、好ましくは0.55g/cm未満である前記請求項のいずれか1項に記載の方法。
【請求項7】
前記工程ii)において前記ゲル粒子を切断装置、引き裂き装置および「ウルフ」(粉砕)装置を使用して少なくとも3段階で粉砕する前記請求項のいずれか1項に記載の方法。
【請求項8】
前記ゲル粒子が、前記ゲル粒子の少なくとも10重量%の吸収性ポリマーを含み、前記吸収性ポリマーが、乾燥状態の前記吸収性ポリマーに基づいて、
(α1)0.1〜99.999重量%のエチレン性不飽和酸性基含有モノマーまたはその塩、プロトン化または四級化窒素を含有するエチレン性不飽和モノマー、またはそれらの混合物と、
(α2)0〜70重量%の、(α1)と共重合可能なエチレン性不飽和モノマーと、
(α3)0.001〜10重量%の1種以上の架橋剤と、
(α4)0〜30重量%の水溶性ポリマーと、
(α5)0〜20重量%の1種以上の添加剤と、
からなる((α1)〜(α5)の合計重量は100重量%である)前記請求項のいずれか1項に記載の方法。
【請求項9】
前記乾燥ゲル粒子が、以下の特性;
(φ1)0.9重量%食塩水の最大吸収量が10〜1000g/gSAP粒子
(φ2)0.9重量%食塩水で抽出可能な部分がSAP粒子の30重量%未満
(φ3)嵩密度が300〜1000g/l
(φ4)SAP粒子1gの1リットル水溶液のpHが4〜10
(φ5)CRC値が10〜100g/g
(φ6)0.3psiの圧力下におけるAAP値が10〜60g/g
の少なくとも1つを有する前記請求項いずれか1項に記載の方法。
【請求項10】
前記請求項のいずれか1項に記載の方法によって得られる吸収性ポリマー粒子。
【請求項11】
請求項10に記載の吸収性ポリマーと基材とを含む複合体。
【請求項12】
請求項10に記載の吸収性ポリマーと、基材と、必要に応じて添加剤とを接触させることを特徴とする複合体の製造方法。
【請求項13】
請求項10に記載の吸収性ポリマーまたは請求項11に記載の複合体を含む化学製品。
【請求項14】
請求項10に記載の吸収性ポリマーまたは請求項11に記載の複合体の化学製品における使用。
【請求項15】
請求項1〜9に記載の方法の工程ii)およびiii)を実施するための装置であって、未乾燥ゲルをゲル粒子に粉砕するための粉砕装置と、前記ゲル粒子を分散させるための分散装置と、前記ゲル粒子の乾燥装置とを含み、前記粉砕装置、前記分散装置および前記乾燥装置が互いに連通接続されている装置。
【請求項16】
前記粉砕装置が、切断装置と、引き裂き装置と、「ウルフ」(粉砕)装置とを含む、請求項15に記載の装置。
【請求項17】
前記分散装置が回転ドラムである、請求項15または16に記載の装置。
【請求項18】
モノマー溶液用導管(12)を有するモノマー溶液用容器(11)と、
開始剤用導管(14)を有する開始剤用容器(13)と、
重合部(15)と、
請求項15〜17のいずれか1項に記載の前記工程ii)およびiii)を実施するための装置(16)と、を含み、
前記重合部(15)の入口部(9)に前記モノマー溶液用導管(11)および前記開始剤用導管(14)が取り付けられ、出口部(10)に前記工程ii)およびiii)を実施するための装置(16)が配置されている重合装置。

【図1】
image rotate

【図2a】
image rotate

【図2b】
image rotate

【図2c】
image rotate

【図2d】
image rotate

【図3a】
image rotate

【図3b】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−97273(P2012−97273A)
【公開日】平成24年5月24日(2012.5.24)
【国際特許分類】
【出願番号】特願2012−116(P2012−116)
【出願日】平成24年1月4日(2012.1.4)
【分割の表示】特願2007−508835(P2007−508835)の分割
【原出願日】平成17年4月20日(2005.4.20)
【出願人】(504341139)エボニック ストックハウゼン ゲーエムベーハー (35)
【Fターム(参考)】