説明

排気装置の出口部における圧力を決定するための方法

【課題】
排気装置の最終部における排気ガス圧力の適切な適合を実施することができるように、排気装置の出口部における圧力を決定する方法を提供することである。
【解決手段】
車両の内燃機関システムの排気装置の出口部における圧力の測定方法であって、以下のステップを含む方法により課題は解決される。
・ 内燃機関システム(1)を通過するマスフローを検出する
・ 内燃機関システム(1)の新気供給部(8)における周囲圧を検出する、および
・ 排気装置(6)の出口部における圧力を、マスフロー、周囲圧および内燃機関システムを通過するマスフローの絞りに応じて決定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両の内燃機関システムの排気装置の出口部における圧力の決定のための方法、特に排ガスターボチャージャーおよび高圧排ガス再循環機構ならびに低圧排ガス再循環機構を有する内燃機関システムのものに関する。
【背景技術】
【0002】
例えばディーゼルエンジンのような内燃機関システムにおいては、内燃機関の燃焼排気ガスの一部を内燃機関の新気供給部に戻し、燃焼排気ガスを新気とともに内燃機関に新たに供給するために、排ガス再循環が使用される。排ガスターボチャージャーを有する内燃機関システム、特にディーゼルエンジンにおいては、高圧排ガス再循環機構と低圧排ガス再循環機構が区別される。高圧排ガス再循環機構は、高圧排ガス再循環バルブを介して、排ガスターボチャージャーの排ガスタービン容器を内燃機関のインテークパイプと接続する。低圧排ガス再循環機構は、例えばパティキュレートフィルターの後方の、内燃機関の排気装置の出口部を、排ガスターボチャージャーのコンプレッサーの前の新気供給部に接続する。排ガス再循環の正確な制御のために、排ガス再循環の流れ特性と排ガス再循環の中での圧力状況が可能な限り正確にわかっていることとはとても重要である。
【0003】
このような関係で、特許文献1から、電気的に制御される内燃機関を作動させるための方法であって、高圧排ガス再循環機構の差圧センサーが自動的に較正される方法が公知である。このため、停止されたエンジンにおいて、差圧センサーの出力が監視され、および実際のばらつきが決定され、および場合によっては適当なオフセット値がすくなからず保存される。特許文献2は、高圧排ガス再循環機構および低圧排ガス再循環機構を有する内燃機関の制御方法に関する。その際、排ガス再循環量は、排ガス触媒の温度が、目標範囲内にあるように調整される。高圧排ガス再循環バルブと低圧排ガス再循環バルブの開き具合を学習するために、燃料供給が遮断されているかどうかや、内燃機関がアイドル運転しているかが決定される。この決定に応じて、学習サイクルが実施される。この学習サイクルにおいては、低圧排ガス再循環バルブと高圧排ガス再循環バルブが完全に閉じられ、およびその後、所定のステップで完全に開かれる。特許文献3は、排ガスターボチャージャー、低圧排ガス再循環機構および高圧排ガス再循環機構を有する内燃機関の排ガス再循環装置に関する。一つの実施形に従い、空気供給量と排ガス再循環レートが参照値に調整され、および差圧センサーによって検出されたバルブに関する差圧に基づいて、低圧排ガス再循環機構を通って流れる低圧排ガス再循環量と、排ガス再循環量を調整する状態にある装置の開口度合の間の関係が学習され、および修正される。最後に特許文献4は、内燃機関のための排ガス再循環装置であって、高圧排ガス再循環機構および低圧排ガス再循環機構を備えるものを開示する。高圧排ガス再循環機構は、シリンダー内に吸入された酸素濃度が、内燃機関の運転状態に応じて調整される目標値に相当するように制御される。低圧排ガス再循環機構は、低圧排ガス再循環ガスが、目標フローレートでもってインレットに供給されるように制御される。
【0004】
低圧排ガス再循環機構は、絶えず改良開発が続けられており、その際、開発課題は、低圧排ガス再循環機構サーキットによる流れ損失を減少することである。しかし、流れ損失が最適化されたシステムにおいては、低圧排ガス再循環ガスの調節(Zumessung)のロバストネスに関して問題が生じる。このようなシステムが、例えばエンジンテストベンチやローラーベンチ上で、例えば認証等のために作動されると、それは排ガス計測技術によって妨害を受ける。排気ガスの吸入または希釈によって、排気装置の最終部において、車両が停止しているときに生じるものと別の負圧が生じる恐れがある。この負圧は、コンプレッサーの前のインレット領域の新気さえも、低圧排ガス再循環機構により直接排気装置へと至らしめる、という事態を引き起こす可能性がある。全体として、流れ損失を最適化されたシステムは、排気装置の最終部における圧力変化に敏感に反応する。たとえば10hPaの低い排気ガス圧の障害が、すでに低圧排ガス再循環を著しく阻害する。なぜなら、このような障害は、低圧排ガス再循環の必要なフロードロップ(Spuhlgefalle)と同じような程度だからである。圧力センサーを使った排気装置の出口部における圧力の検出は、技術的には困難を伴ってのみ実現可能である。なぜならセンサーは、例えば1000hPaの燃焼圧力において好ましくは1hPaより小さい正確性を備えなければならないからであり、その上、排気装置という技術的に困難な環境で使用可能でなければならないからである。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】米国特許 第 7,474,954 B1号明細書
【特許文献2】米国特許出願公開第2008/0295514 A1号明細書
【特許文献3】欧州特許出願公開第1 870 584 A2号明細書
【特許文献4】国際公開第2009/037543 A1号明細書
【発明の概要】
【発明が解決しようとする課題】
【0006】
よって、本発明の課題は、排気装置の最終部における排気ガス圧力の適切な適合を実施することができるように、排気装置の出口部における圧力を決定することである。
【課題を解決するための手段】
【0007】
この課題は、本発明に従い、請求項1に記載の内燃機関システムの排気装置の出口部における圧力を決定するための方法、および請求項15に記載の車両のための内燃機関システムによって解決される。従属請求項は、本発明の有利かつ好ましい実施形を定義する。
【0008】
発明に従い、車両の内燃機関システムの排気装置の出口部における圧力の決定のための方法が提供される。この方法において、内燃機関システムを通過するマスフローと内燃機関システムの新気供給部の周囲圧が検出される。マスフロー、周囲圧および内燃機関を通過するマスフローの絞りに応じて、排気装置の出口部における圧力が自動的に決定される。よって、排気装置の出口部における圧力センサーは必要ない。内燃機関システムを通過するマスフローを検出することは、例えば、ホットフィルム空気質量測定装置を使って新気供給部内燃機関で可能である。このようなホットフィルム空気質量測定装置は、通常、内燃機関システム内にいずれにせよ組み込まれている。内燃機関システムを通過するマスフローの絞りは、以下に示すように、内燃機関システムの運転状態を決定することによって比較的簡単かつ正確に決定されることができるので、排気装置の出口部における圧力は、この情報に基づいて高い正確性で決定可能である。
【0009】
一つの実施形に従い、内燃機関システムを通過するマスフローの絞りは、内燃機関システムの流れモデルを使って決定される。流れモデル内には、例えばエンジン充填、高圧排ガス再循環マスフロー、新気質量、低圧排ガス再循マスフローが流入することができる。その際、エンジン充填は、インテークパイプ圧力およびインテークパイプ温度より決定され、高圧排ガス再循環マスフローは、内燃機関の排ガスターボチャージャーのタービンの前の圧力、インテークパイプ内燃機関の圧力およびバルブ位置から決定され、新気質量はホットフィルム空気質量センサーを使って決定される。よって、流れモデル、新気供給部における周囲圧、および低圧排ガス再循環バルブのバルブ位置から、排気装置の出口部における圧力が決定可能である。
【0010】
別の実施形に従い、方法は内燃機関システムの内燃機関の静止状態において実施される。これによって流れモデルが簡易化され、および内燃機関システムを通過するマスフローの絞りが、著しく簡単かつ正確に決定可能である。
【0011】
一つの実施形に従い、内燃機関システムは、低圧排ガス再循環バルブを有する低圧排ガス再循環機構を備えている。低圧排ガス再循環機構は、新気供給部を排気装置の出口部に連結する。内燃機関システムを通過するマスフローの絞りは、低圧排ガス再循環機構を通過するマスフローの絞りが決定されることにより、決定される。低圧排ガス再循環機構を通過するマスフローは、その際、低圧排ガス再循環バルブの調整に依存する。低圧排ガス再循環機構を通過するマスフローの絞りは、例えば、特性マップまたは特性線中に保管されていることが可能であり、およびこれに対応して特性マップまたは特性線から読み出すことにより決定されることが可能である。
【0012】
さらに内燃機関システムは、新気供給部から内燃機関のインテークパイプへのマスフローに影響を与えるためのスロットルバルブを備えていることが可能である。内燃機関を通過するマスフローの絞りは、この場合、スロットルバルブの調整に応じて内燃機関とスロットルバルブを通過するマスフローの絞りが決定されることによって決定されることができる。
【0013】
さらに車両は排ガスターボチャージャーと高圧排ガス再循環機構を備えていることが可能である。排ガスターボチャージャーは、タービンおよびこのタービンと連結されるコンプレッサーを備え、このタービンは内燃機関の排ガス排出部と排気装置の間に設けられており、およびコンプレッサーは、新気供給部とインテークパイプの間に設けられている。高圧排ガス再循環機構は、高圧排ガス再循環バルブを介して、内燃機関の排ガス排出部をインテークパイプと連結している。内燃機関システムを通過するマスフローの絞りを決定するために、コンプレッサー、タービンおよび高圧排ガス再循環機構を高圧排ガス再循環バルブの調整に応じて通過するマスフローの絞りが決定される。
【0014】
止まっているエンジンに対して、内燃機関システムを通過するマスフローの絞りは、相応するバルブ、例えば低圧排ガス再循環バルブ、スロットルバルブ、および高圧排ガス再循環バルブの調整のみに依存する。よって、内燃機関システムの様々な分岐を通過するマスフローの絞りは、比較的簡単かつ正確に決定することができる。内燃機関システムを通過するマスフローの絞りの決定のさらなる簡易化は、内燃機関システムの個々の分岐が閉じられるか、またはこれら分岐を通過するマスフローが近似的にゼロであるように閉じられるとき生じる。
【0015】
例えば、本発明の実施のために、スロットルバルブと高圧排ガス再循環バルブが閉じられることが可能である。低圧排ガス再循環バルブは、逆に開いたままであるので、内燃機関システムを通過するマスフローは基本的に低圧排ガス再循環機構を通って進行する。低圧排ガス再循環機構を通過するマスフローの相応する絞りは、低圧排ガス再循環バルブの調整に応じて比較的正確に決定可能である。さらにこの方法は、低圧排ガス再循環バルブが完全に開かれる結果、内燃機関システムを通過するマスフローの絞りが、低圧排ガス再循環バルブが完全に開いている低圧排ガス再循環機構を通過するマスフローの絞りによってのみ決定されることによって簡易化が可能である。絞りは、例えば、低圧排ガス再循環機構の構造データより前もって決定可能である。
【0016】
別の実施形に従い、スロットルバルブ、高圧排ガス再循環バルブおよび低圧排ガス再循環バルブが開かれる。好ましくはこれらバルブとスロットルバルブが完全に開かれる。静止状態の内燃機関において、このように調整された内燃機関システムを通過するマスフローの絞りは、例えば構造データまたは計測データから前もって決定されることが可能であるので、内燃機関システムを通過するマスフローの絞りは、高い正確性を有している。
【0017】
別の実施形に従い、排気装置の出口部における複数の圧力が、スロットルバルブ、高圧排ガス再循環バルブおよび低圧排ガス再循環バルブの様々な調整状態で相次いで決定される。複数の圧力から、排気装置の出口部における圧力が、平均により決定される。バルブおよびスロットルバルブの様々な調整のもと排気装置の出口部の圧力を決定することにより、エラー、例えば相応に構築された内燃機関システムを通過するマスフローの絞りに関するものや、周囲圧または内燃機関システムを通過するマスフローの検出に関するものが、平均化されることができ、よって排気装置の出口部における圧力が高い正確性のもと決定される。
【0018】
別の実施形に従い、この方法は内燃機関のエンジンブレーキ作動時(in einem Schubbetrieb)に実施される。内燃機関のエンジンブレーキ作動時中は、燃焼過程の影響が考慮される必要がないので、流れモデルが簡易化される。それゆえ、内燃機関システムを通過するマスフローの絞りは、より簡単でより正確に決定可能である。
【0019】
一つの実施形に従い、内燃機関システムは、低圧排ガス再循環バルブを有する低圧排ガス再循環機構を備えている。低圧排ガス再循環機構は、新気供給部を排気装置の出口部に連結する。さらに内燃機関システムは、新気供給部から内燃機関のインテークパイプへのマスフローに影響を与えるためのスロットルバルブを備えている。スロットルバルブは、エンジンブレーキ作動時における方法の実施のために閉じられ、および内燃機関システムを通過するマスフローの絞りは、低圧排ガス再循環バルブの調整に依存して低圧排ガス再循環機構を通過するマスフローの絞りが決定されることにより、決定される。スロットルバルブを閉じることにより、内燃機関システムを通過するマスフローは、基本的に低圧排ガス再循環機構を通って動く。これによって流れモデルが簡易化され、および内燃機関システムを通過するマスフローの絞りは、低圧排ガス再循環機構内のマスフローの絞りのみによって決定される。これらは、例えば完全に開いた低圧排ガス再循環バルブにおける、例えば前もっての計測や、または構造データから得ることができる。
【0020】
別の実施形に従い、車両が排ガスターボチャージャーおよび高圧排ガス再循環機構を備えている。排ガスターボチャージャーは、内燃機関の排ガス排出部と排気装置の間に設けられるタービンと、このタービンに連結されているコンプレッサーであって、新気供給部とインテークパイプの間に設けられるコンプレッサーとを備えている。高圧排ガス再循環機構は、高圧排ガス再循環バルブによって、排ガス排出部をインテークパイプと連結する。方法をエンジンブレーキ作動時に実施するために、高圧排ガス再循環バルブが開かれる。これによって、エンジン内に存在する充填物、例えば空気または排ガスが、車両のエンジンブレーキ作動時における閉じられたスロットルバルブによって、エンジンおよび高圧排ガス再循環機構を通って循環し、その際、内燃機関システムを通過するマスフローに影響を与えることはない。よって、内燃機関システムを通過するマスフローは基本的に低圧排ガス再循環機構のみを通って動き、これによって、上述したように、内燃機関システムを通過するマスフローの絞りが比較的簡単かつ正確に決定されることができ、よって排気装置の出口部における圧力も正確に決定可能である。
【0021】
さらに別の実施形に従い、内燃機関システムを通過するマスフローは、ホットフィルム空気質量測定装置を使って検出される。このホットフィルム空気質量測定装置は内燃機関の新気供給部中に設けられている。この実施形に従い、スロットルバルブが閉じられ、高圧排ガス再循環バルブが開かれ、および低圧排ガス再循環バルブが閉じられることにより、ホットフィルム空気質量測定装置が較正される。スロットルバルブと低圧排ガス再循環機構を閉じることにより、内燃機関システムを通過するマスフローは、基本的に完全に中断されるので、ホットフィルム空気質量測定装置はこの状態で自身のゼロ値に較正されることが可能である。
【0022】
さらに本発明に従い、車両のための内燃機関システムが提供される。この内燃機関システムは、内燃機関システムを通過するマスフローを検出するための第一の検出手段、内燃機関システムの新気供給部における周囲圧を検出するための第二の検出手段および処理ユニットを備えている。処理ユニットは、内燃機関システムの排気装置の出口部における圧力を、マスフロー、周囲圧、および内燃機関システムを通過するマスフローの絞りに応じて決定する。好ましくは、内燃機関システムは、上述した方法またはその実施形の実施に適しており、よって、この方法および実施形と関連して記載されたメリットを有している。
【0023】
添付の図面を参照しつつ有利な実施形に基づいて、本発明を以下に詳細に説明する。
【図面の簡単な説明】
【0024】
【図1】本発明の一つの実施形に係る内燃機関システムを簡略的に示す図。
【発明を実施するための形態】
【0025】
図は、内燃機関システム1を示す。この内燃機関システムは、内燃機関2および排ガスターボチャージャー3を備えている。排ガスターボチャージャー3は、タービン4を備えている。このタービンは、内燃機関2の排ガス排出部5と内燃機関システム1の排気装置6の間に設けられている。さらに排ガスターボチャージャー3は、コンプレッサー7を備えている。このコンプレッサーは、タービン4と機械的に連結されており、および、内燃機関2のインテークパイプ9と新気供給部8の間に設けられている。さらに内燃機関システム1は、高圧排ガス再循環機構10および低圧排ガス再循環機構11を備えている。高圧排ガス再循環機構10は、排ガス排出部5をインテークパイプ9と連結し、および高圧排ガス再循環バルブ12を備えている。この高圧排ガス再循環バルブは、高圧排ガス再循環機構10を通過するマスフローに影響を与えることが出来る。低圧排ガス再循環機構11は、排気装置6を新気供給部8と連結し、および低圧排ガス再循環バルブ13を備えている。この低圧排ガス再循環バルブは、低圧排ガス再循環機構11を通過するマスフローに影響を与えることができる。新気供給部8の入口部には、装置14が設けられている。この装置は、新気供給部8を通過するマスフローを決定し、および新気供給部8の入口部における圧力を測定することができる。装置14は、新気マスフローの決定のために、例えばホットフィルム空気質量測定装置を備え、および空気圧の決定のために、空気圧センサーを備えている。最後にコンプレッサー7とインテークパイプ9の間には、スロットルバルブ15が設けられている。このスロットルバルブは、コンプレッサー7からインテークパイプ9へのマスフローに影響を与えることができる。内燃機関システム1は、さらに別のセンサーを備えていることがある。これらセンサーは、見易さの観点から図には表されていない。これら別のセンサーとしては、例えばインテークパイプ圧力の決定のためにインテークパイプ9内に設けられる圧力センサー、インテークパイプ温度を決定するためにインテークパイプ9内に設けられる温度センサー、およびタービン4の前の圧力を検出するために排ガス排出部5に設けられる圧力センサーが含まれる。
【0026】
内燃機関2の入口側のマスフローバランスから、低圧排ガス再循環機構11を通過するマスフローが原理的に以下のように決定される。
【0027】
低圧排ガス再循環機構のマスフロー =
エンジン充填物 − 高圧排ガス再循環機構のマスフロー − 新気マスフロー
【0028】
エンジン充填物は、例えばインテークパイプ圧力とインテークパイプ温度から決定することができ、高圧排ガス再循環機構のマスフローは、タービン3の前の圧力、インテークパイプ9中の圧力および高圧排ガス再循環バルブ12のバルブ位置から決定することができ、そして新気マスフローはホットフィルム空気質量測定装置14を使って決定することができる。もっとも、このマスフローバランス中には、多大なる計測エラーとモデリングエラーが含まれることがすぐにわかる。例えば、エンジン充填物中には、インテークパイプ圧力エラーと混合物温度エラーが含まれ、新気マスフロー中には、ホットフィルム空気質量測定装置14のエラーと脈動エラーが含まれ、高圧排ガス再循環バルブのバルブ位置には、汚れ付着や構造公差に基づくバルブの有効面積エラーが含まれ、そしてタービン4の前の圧力には、ホットフィルム空気質量測定装置14のエラーおよびタービンのモデルエラーが含まれる。
【0029】
内燃機関システム1のモデルに基づく制御のために、特に、低圧排ガス再循環機構11によるマスフローのモデルに基づく制御のために、低圧排ガス再循環バルブ13の前後の圧力に関する情報と、低圧排ガス再循環バルブ13のバルブ位置に関する情報が必要である。排気装置5の出口部において負圧が存在していない限り、排気装置6の最終部における圧力は、周囲圧から、排気装置の流れ損失分だけ異なっている。しかし排気装置6の最終部において例えば吸入によって負圧が発生しているとき、排気装置の最終部における周囲圧に対する圧力差(この圧力差は例えば装置14のセンサーによって取得される)を考慮し、および適当な制御によって適合することが絶対的に必要となる。このため一般的に、モデリングされた低圧排ガス再循環機構のマスフローとマスフローバランスの比較が使用されることが可能である。モデリングされた低圧排ガス再循環機構のマスフローは、低圧排ガス再循環バルブの前の圧力、つまり排気装置6内の道の圧力、低圧排ガス再循環バルブの後ろの圧力、つまり新気供給部8内の圧力つまり周囲圧、および低圧排ガス再循環バルブのバルブ位置に依存する。マスフローバランスのための上記した式は、よって、エンジンの運転中の各時間に対する排気装置6の最終部における負圧を考慮し、そしてこれによってエンジン2の制御を適合するために使用される。しかしこの場合、すべての上述したエラーが重なりあい、これらは同時にマスフローバランスへと含まれ、よって適合結果は大きな不明確性を有している。
【0030】
よって本発明に従い、排気装置6の出口部における圧力を決定するための特別なエンジン状態が使用され、よって内燃機関システム1の制御の適合に使用される。例えば、上述したエラー源の多くは、圧力決定がエンジン静止状態、例えばエンジンの始動前またはスタート/ストップシステムにおけるストップ運転中に実施されるとき排除される。エンジン静止状態中には例えばエンジン充填物は、各クランク軸位置に応じて一定であるか、またはゼロでさえある。さらにエンジン充填物は、もはや混合物温度に依存しない。なぜなら高温のガスが高圧排ガス再循環機構により戻って案内されることができないからである。さらにホットフィルム空気質量測定装置における脈動エラーも生じない。内燃機関のピストンが静止しているからである。その上、エンジン静止状態においてはバルブ、例えば排ガス再循環機構バルブ12,13、およびスロットルバルブ15や排ガス用バルブ16のようなフラップは、燃焼が存在していないので、任意に制御されうる。例えばスロットルバルブ15と高圧排ガス再循環バルブ12を閉じることは、マスフローバランス中に、ホットフィルム空気質量測定装置と低圧排ガス再循環バルブの値のみが含まれることに通じる。
【0031】
排気装置6の出口部にける圧力を決定するため、および内燃機関システム1の制御の適合のために適した別の特別なエンジン状態は、エンジンのエンジンブレーキ作動時である。なぜならこの運転状態中にも、高温の排ガスが高圧排ガス再循環機構を介してインテークパイプに戻り案内されることがなく、およびバルブ12,13とフラップ15,16が任意に制御されることができるからである。
【0032】
以下に、図を参照しつつ例示的にいくつかのエンジン運転状態を説明する。これら運転状態において、排気装置6の出口部における圧力が、高い正確性をもって決定可能であり、よって内燃機関システム1の制御を排気装置6の出口部における圧力に適合することが実施可能である。
【0033】
第一の例においては、内燃機関2は静止状態である。低圧排ガス再循環バルブ13は完全に開かれ、排ガス用バルブ16は開かれ、スロットルバルブ15は閉じられおよび高圧排ガス再循環バルブ12は閉じられている。排気装置6の最終部を、負圧が支配している。これは例えばローラーベンチ上において吸入(Absaugung)により発生する可能性がある。ホットフィルム空気質量測定装置14によって計測されるマスフローは、直接低圧排ガス再循環機構11を通って排気装置6へと至る。低圧排ガス再循環バルブを閉じることにより、ホットフィルム空気質量測定装置のマスフローは減少可能である。低圧排ガス再循環バルブ13を完全に閉じた場合、マスフローは少なくとも理論的には略ゼロである。そうでない場合、ホットフィルム空気質量測定装置が不適正に較正されているか、または例えばブローバイ配管や排ガスターボチャージャー3を通って部分マスフローが流れているかである。このようなシステムの影響は、システムの全ての箇所を閉じることによって検出可能である。よって閉じられた低圧排ガス再循環バルブにおいてホットフィルム空気質量測定装置14が較正可能であり、特にオフセットの修正が実施可能である。開かれた低圧排ガス再循環バルブ13においては、新気供給部8における周囲圧、および、新気供給部8、低圧排ガス再循環バルブ13および排気装置6を含めた低圧排ガス再循環機構11を通過するマスフローの絞り、ホットフィルム空気質量測定装置14によって決定されるマスフローに基づいて、検出される。排気装置6の最終部における過圧においては、ホットフィルム空気質量測定装置14を通過するマスフローが、低圧排ガス再循環バルブを閉じることにより上昇し、つまりネガティブマスフローが、低圧排ガス再循環バルブ13を閉じることによりゼロの方向へと変化する。
【0034】
第二の例示的な方法の実施においては、内燃機関2は静止状態にあり、低圧排ガス再循環バルブ13は完全に開かれ、排ガス用バルブ16は、開かれ、スロットルバルブ15は閉じられ、および高圧排ガス再循環バルブ12は閉じられている。排気装置6の最終部を負圧が支配していると想定される。ホットフィルム空気質量測定装置14によって計測されるマスフローは、ここでもまた、直接低圧排ガス再循環バルブ11を通って排気装置6へと至る。排ガス用バルブ16を閉じることにより、このマスフローは変化する。排ガス用バルブ16は、例えば、マスフローが低圧排ガス再循環機構11を通って流れない程度、または、最小限のマスフローのみが流れる程度に閉じられる。この状態においてもまた、ホットフィルム空気質量測定装置14のオフセットエラーの較正を行うことができる。開かれた排ガス用バルブにおいて、ホットフィルム空気質量測定装置14によって計測されるマスフロー、新気供給部8における周囲圧、および新気供給部8、低圧排ガス再循環機構11および排気装置6を通過するマスフローから、排気装置6の最終部における負圧が決定可能である。新気供給部8、低圧排ガス再循環機構11および排気装置6を通過するマスフローの絞りは、例えば内燃機関システム1の構造データ、または、事前に実施された計測における一つの固定値としてまたは特性マップとして予め定められることが可能であり、および内燃機関システム1の適当な制御装置中に保管しておくことができる。
【0035】
排気装置6の出口部における圧力の、別の例示的な決定においては、内燃機関2は静止状態にあり、低圧排ガス再循環バルブ13は完全に開かれ、排ガス用バルブ16は開かれ、スロットルバルブ15は開かれ、および高圧排ガス再循環バルブ12は開かれている。排気装置の最終部を負圧が支配していると想定される。ホットフィルム空気質量測定装置14により計測されるマスフローは、一部は、低圧排ガス再循環機構11を通って、別の部分はコンプレッサー7、スロットルバルブ15、高圧排ガス再循環機構10およびタービン4を通って排気装置6に至る。排ガス用バルブ16を閉じることにより、ホットフィルム空気質量測定装置14のマスフローは変化可能である。閉じた排ガス用バルブにおいて、マスフローはより低圧排ガス再循環バルブ11と高圧排ガス再循環バルブ12を通って流れるので、この状態でホットフィルム空気質量測定装置14は較正されることができる。開かれた排ガス用バルブ16において、排気装置6の出口部における負圧は、ホットフィルム空気質量測定装置14により計測されるマスフローと内燃機関システム1を通過するマスフローの絞りから決定されることができる。内燃機関システム1を通過するマスフローの絞りは、新気供給部8、排ガス再循環機構10,11、スロットルバルブ15、コンプレッサー7、タービン4および排気装置6を通過する絞りによって決定される。この絞りは、例えば、構造データから、または予め実施された計測を使って提供されることが可能である。この例においては、前述した両方の例においてよりも著しく大きなマスフローが、内燃機関システム1を通って案内されることが可能である。これによってホットフィルム空気質量測定装置14の計測の正確性が減少する可能性がある。排気装置の最終部に過圧が生じている場合、排ガス再循環機構バルブ13,12を通過するマスフローの流れ方向は基本的に逆転する、つまりマスフローは、実際のエンジン運転においてもそうであるように、排ガス側から新気側へと流れる。これによって排ガス再循環機構12,13または排ガス用バルブ16の開口の作用方向は変化し、つまり、排ガス再循環機構バルブ12,13または排ガス用バルブ16の開口は、今やホットフィルム空気質量測定装置14におけるマスフローを減少させる。
【0036】
上述したすべての例において、エンジンの静止状態中に、すべてのバルブとフラップが、絞りまたは流れ機能の周知の描写によってモデルに基づいて計算される。モデル演算の入力値は、ホットフィルム空気質量測定装置14および周囲圧の値である。ホットフィルム空気質量測定装置14は、排気装置6の最終部における負圧と過圧の間の区別を実施することができるように、逆流を検出しかつ計測できるべきである。モデルに基づく描写によって、バルブの一方の側の既知のマスフローおよび既知の圧力によって、および既知のバルブ位置によって、バルブの他方の側の未知の圧力が計算可能である。
【0037】
排気装置6の最終部における圧力状態を検出するために、内燃機関システム1を通過するマスフローの絞りが経験的に描写される。例えば、例えば低圧排ガス再循環バルブ13と排ガス用バルブ16が開きおよび高圧排ガス再循環バルブ12とスロットルバルブ15が閉じるといった所定のバルブ状態のために、ホットフィルム空気質量測定装置のマスフローに依存し、周囲圧と排気装置6の最終部の間の圧力差を保持する特性線が定義されることができる。バルブおよびフラップについて所定の位置の組合せのみが提供されるとき、絞り中の可変値が著しく変化するので、低圧排ガス再循環経路および排気装置の振る舞いは、特性線のみによって描写可能である。
【0038】
要約すると、本発明に従い、排気装置の最終部における排ガス圧力がモデルに基づいく適合により決定される。バルブおよびフラップは、内燃機関システム内でスロットルモデルにより描写される。その際、低圧排ガス再循環機構または排ガス用バルブを通過する既知のマスフローから出発して、例えば、オフセットを修正された、止まっているエンジンにおけるホットフィルム空気質量測定装置のマスフローから出発して、低圧排ガス再循環バルブ及び/又は排ガス用バルブのモデルにより周囲圧から、排気装置の最終部における圧力がモデル化される。モデリングの結果と計測された周囲圧の差は、排気装置6の最終部における状態のための適合値である。この適合は、止まっているエンジンにおいて実施される。その上、内燃機関システム1のバルブおよびフラップは、所定の位置にもたらされることが可能であり、これによって適合は、例えばエンジンブレーキ作動中など、エンジンの運転中も実施可能である。しかしこの場合、エラー付随に関して結果はより不正確であり、位置基準値は、内燃機関システムのエミッションと走行態様に影響を与えるかも知れない。ホットフィルム空気質量測定装置のマスフローのオフセットの較正は、止まっているエンジンにおいて極めて簡略化された経験的モデル、例えば特性線に通じる。
【符号の説明】
【0039】
1 内燃機関システム
2 内燃機関
3 排ガスターボチャージャー
4 タービン
5 排ガス排出部
6 排気装置
7 コンプレッサー
8 新気供給部
9 インテークパイプ
10 高圧排ガス再循環機構
11 低圧排ガス再循環機構
12 高圧排ガス再循環バルブ
13 低圧排ガス再循環バルブ
14 ホットフィルム空気質量測定装置
15 スロットルバルブ
16 排ガス用バルブ

【特許請求の範囲】
【請求項1】
車両の内燃機関システムの排気装置の出口部における圧力の測定方法であって、以下のステップを含む方法。
・ 内燃機関システム(1)を通過するマスフローを検出する
・ 内燃機関システム(1)の新気供給部(8)における周囲圧を検出する、および
・ 排気装置(6)の出口部における圧力を、マスフロー、周囲圧および内燃機関システムを通過するマスフローの絞りに応じて決定する。
【請求項2】
内燃機関システム(1)を通過するマスフローの絞りが、内燃機関システム(1)の流れモデルによって決定されることを特徴とする請求項1に記載の方法。
【請求項3】
方法が、内燃機関システム(1)の内燃機関(2)の静止状態において実施されることを特徴とする請求項1または2に記載の方法。
【請求項4】
内燃機関システム(1)が、低圧排ガス再循環バルブ(13)を有する低圧排ガス再循環機構(11)を備え、この低圧排ガス再循環機構が、新気供給部(8)と排気装置(6)の出口部を連結すること、内燃機関システム(1)を通過するマスフローの絞りが、低圧排ガス再循環バルブ(13)の調整に応じた低圧排ガス再循環機構(11)を通過するマスフローの絞りの決定によって決定されることを特徴とする請求項3に記載の方法。
【請求項5】
低圧排ガス再循環機構(11)を通過するマスフローの絞りが、特性線または特性マップによって決定されることを特徴とする請求項4に記載の方法。
【請求項6】
内燃機関システム(1)が、新気供給部(8)から内燃機関(2)のインテークパイプ(9)へのマスフローに影響を与えるためのスロットルバルブ(15)を備えていること、内燃機関システム(1)を通過するマスフローの絞りの決定が、スロットルバルブ(15)の調整に応じて内燃機関(2)およびスロットルバルブ(15)を通過するマスフローの絞りの決定を含んでいることを特徴とする請求項4または5に記載の方法。
【請求項7】
車両が排ガスターボチャージャー(3)および高圧排ガス再循環機構(10)を備えていること、排ガスターボチャージャー(3)が、内燃機関(2)の排ガス排出部(5)および排気装置(6)の間に設けられるタービン(4)、およびこのタービン(4)と連結され、新気供給部(8)およびインテークパイプ(9)の間に設けられるコンプレッサー(7)を備えていること、高圧排ガス再循環機構(10)が、高圧排ガス再循環バルブ(12)を介して排ガス排出部(5)をインテークパイプ(9)に連結していること、内燃機関システム(1)を通過するマスフローの絞りの決定が、コンプレッサー(7)、タービン(4)および高圧排ガス再循環機構(10)を通過するマスフローの絞りの、高圧排ガス再循環バルブ(12)の調整に応じた決定を含んでいることを特徴とする請求項6に記載の方法。
【請求項8】
方法の実施のために、スロットルバルブ(15)が閉じられ、高圧排ガス再循環バルブ(12)が閉じられ、および低圧排ガス再循環バルブ(13)が開かれることを特徴とする請求項7に記載の方法。
【請求項9】
方法の実地のために、スロットルバルブ(15)が開かれ、高圧排ガス再循環バルブ(12)が開かれ、および低圧排ガス再循環バルブ(13)が開かれることを特徴とする請求項7に記載の方法。
【請求項10】
排気装置(6)の出口部における複数の圧力が、スロットルバルブ(15)、高圧排ガス再循環バルブ(12)および低圧排ガス再循環バルブ(13)の様々な調整によって相次いで決定されること、および排気装置(6)の出口部における圧力が、これら複数の圧力の平均を取ることにより決定されることを特徴とする請求項7に記載の方法。
【請求項11】
方法が、内燃機関システム(1)の内燃機関(2)のエンジンブレーキ運転中に実施されることを特徴とする請求項1または2に記載の方法。
【請求項12】
内燃機関システム(1)が、低圧排ガス再循環バルブ(13)を有する低圧排ガス再循環機構(11)を備え、この低圧排ガス再循環機構が新気供給部(8)を排気装置(6)の出口部と連結すること、および内燃機関システム(1)が、新気供給部(8)から内燃機関(2)のインテークパイプ(9)へのマスフローに影響を与えるためのスロットルバルブ(15)を備えていること、スロットルバルブ(15)が方法の実施のために閉じられ、および内燃機関システム(1)を通過するマスフローの絞りが、低圧排ガス再循環機構(10)を通過するマスフローの絞りの、低圧排ガス再循環バルブ(12)の調整に応じた決定により決定されることを特徴とする請求項11に記載の方法。
【請求項13】
車両が、排ガスターボチャージャー(3)および高圧排ガス再循環機構(10)を備えていること、排ガスターボチャージャー(3)が、タービン(4)およびこのタービン(4)と連結されるコンプレッサーを備え、このタービンが内燃機関(2)の排ガス排出部(5)と排気装置(6)の間に設けられ、前記コンプレッサーが、新気供給部(8)とインテークパイプ(9)の間に設けられていること、高圧排ガス再循環機構(10)が、高圧排ガス再循環バルブ(13)を介して排ガス排出部(5)をインテークパイプ(9)に連結していること、方法の実施のために高圧排ガス再循環バルブ(13)が開かれることを特徴とする請求項12に記載の方法。
【請求項14】
内燃機関システム(1)を通過するマスフローが、ホットフィルム空気質量測定装置(14)によって検出されること、方法が、ホットフィルム空気質量測定装置(14)のキャリブレーションを含んでいること、方法の実施のためにスロットルバルブ(15)が閉じられ、高圧排ガス再循環バルブ(12)が開かれ、および低圧排ガス再循環バルブ(13)が閉じられることを特徴とする請求項7または13に記載の方法。
【請求項15】
車両のための内燃機関システムであって、
・ 内燃機関システム(1)を通過するマスフローを検出するための第一の検出手段(14)
・ 内燃機関システム(1)の新気供給部(8)における周囲圧を検出するための第二の検出手段(14)、および
・ 内燃機関システム(1)の排気装置(6)の出口部における圧力を、マスフロー、周囲圧、および内燃機関システム(1)を通過するマスフローの絞りに応じて決定するための処理ユニット、
を備えていることを特徴とする内燃機関システム。
【請求項16】
内燃機関システム(1)が、請求項1から14のいずれか一項に記載の方法の実施のために設けられていることを特徴とする請求項15に記載の内燃機関システム。

【図1】
image rotate


【公開番号】特開2012−98280(P2012−98280A)
【公開日】平成24年5月24日(2012.5.24)
【国際特許分類】
【出願番号】特願2011−232462(P2011−232462)
【出願日】平成23年10月24日(2011.10.24)
【出願人】(591037096)フオルクスワーゲン・アクチエンゲゼルシヤフト (56)
【氏名又は名称原語表記】VOLKSWAGEN AKTIENGESELLSCHAFT
【Fターム(参考)】