説明

撮像方法及び撮像装置

【課題】
SEMを用いて試料を撮像するための撮像レシピの自動生成において、(1)検査を要する箇所が増大すると,撮像レシピの生成に膨大な労力と時間を要する。(2)生成された撮像レシピの正確さ,そして生成時間が問題となる。(3)作成時に予想できなかった現象により,作成した撮像レシピによる撮像あるいは処理が失敗する場合がある。
【解決手段】
試料上の複数の評価ポイントの座標を入力するステップと、撮像時のスループットに基づき該複数の評価ポイントを撮像するための撮像シーケンスを決定するステップと、を有する撮像方法である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は,試料上の任意の評価ポイントを自動で撮像可能な走査型電子顕微鏡(Scanning Electron Microscope:SEM)およびその方法に関するものであり,具体的には任意の評価ポイントを高画質,高精度に観察するための撮像レシピを,回路設計データから実ウェーハを用いず,かつ自動で決定する撮像レシピ自動生成機能を備えたSEM装置およびその方法に関するものである。前記撮像レシピには,アドレッシングあるいはオートフォーカスあるいはオートスティグマあるいはオートブライトネス・コントラスト用の撮像ポイントの座標,(撮像領域の)サイズ・形状,撮像シーケンス,撮像位置変更方法,撮像条件等の撮像パラメータおよび,評価ポイントあるいは撮像ポイントのテンプレートが登録されている。
【背景技術】
【0002】
半導体ウェーハに配線パターンを形成するに際しては,半導体ウェーハ上にレジストと呼ばれる塗布材を塗布し,レジストの上に配線パターンの露光用マスク(レチクル)を重ねてその上から可視光線,紫外線あるいは電子ビームを照射し,レジストを感光することによって配線パターンを形成する方法が採用されている。このようにして得られた配線パターンは照射する可視光線,紫外線あるいは電子ビームの強度や絞りによってパターンの形状が変化するため,高精度の配線パターンを形成するには,パターンの出来栄えを検査する必要がある。この検査には,従来から測長走査型電子顕微鏡(Critical Dimension Scanning Electron Microscope:CD−SEM)が広く用いられている。検査を要する半導体パターン上の危険ポイントを評価ポイント(以降,EPと呼ぶ)としてSEMにより観察し,その観察画像からパターンの配線幅などの各種寸法値を計測し,これらの寸法値からパターンの出来栄えを評価している.
EPを位置ずれなく,かつ高画質で撮像するため,アドレッシングポイント(以降,APと呼ぶ)あるいはオートフォーカスポイント(以降,AFと呼ぶ)あるいはオートスティグマポイント(以降,ASTと呼ぶ)あるいはオートブライトネス・コントラストポイント(以降,ABCCと呼ぶ)の一部又は全ての撮像ポイントを設定し,それぞれの撮像ポイントにおいて,アドレッシング,オートフォーカス調整,オートスティグマ調整,オートブライトネス・コントラスト調整を行っている。前記アドレッシングにおける撮像位置のずれ量は,事前に登録テンプレートとして登録された座標既知のAPにおけるSEM画像と,実際の撮像シーケンスにおいて観察されたSEM画像(実撮像テンプレート)とをマッチングし,前記マッチングの位置ずれ量として推定している。
【0003】
前記EP,AP,AF,AST,ABCCをまとめて撮像ポイントと呼び,前記撮像ポイントの一部または全てを含むポイントの座標,サイズ・形状,撮像シーケンス,撮像条件と,前記登録テンプレートは撮像レシピとして管理される。従来,撮像レシピの生成はSEMオペレータがマニュアルで行っており,労力と時間を要する作業であった。また,各撮像ポイントの決定や登録テンプレートを撮像レシピに登録するためには,実際にウェーハを低倍で撮像する必要があることから,撮像レシピの生成がSEMの稼働率低下の一因となっていた。更に,パターンの微細化に伴うOPC(Optical Proximity Correction)技術等の導入により,評価を要するEPの点数は爆発的に増加し,前記撮像レシピのマニュアル生成は非現実的になりつつある。
【0004】
そこで,例えばGDS2形式で記述された半導体の回路設計データ(以降,CADデータ(Computer Aided Design)と呼ぶ)を基にAPを決定し,さらにCADデータからAPにおけるデータを切り出して前記登録テンプレート(以降,CADデータを切り出して生成したテンプレートをCADデータテンプレートと呼ぶ)として撮像レシピに登録する半導体検査システムが、特開2002−328015号公報に開示されている。そこでは,APの決定ならびに登録テンプレートの登録の目的のみで実ウェーハを撮像する必要がなく,SEMの稼働率向上が実現する。また,実際の撮像シーケンスにおいてAPにおけるSEM画像(実撮像テンプレートと呼ぶ)を取得した際,前記実撮像テンプレートとCADデータテンプレートとのマッチングを行い,前記CADデータテンプレートの位置に対応するSEM画像をSEM画像テンプレートとして撮像レシピに再登録し,以降,前記再登録したSEM画像テンプレートをアドレッシング処理に使用する機能を有する。さらにCADデータから特徴のあるパターン部分を自動的に検出し,APとして登録する機能を有する。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2002−328015号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
走査型電子顕微鏡装置を用いて試料上の複数の観察点を順次撮像する場合に用いる撮像レシピを生成する場合において、従来技術では次のような課題があった。
【0007】
先ず、EPにおける半導体パターンの出来栄えを検査するためには,EPを撮像するための撮像レシピを作成しなければならない。半導体パターンの微細化に伴い検査を要するEPの点数が増大し,前記撮像レシピの生成に膨大な労力と時間を要するという問題が発生している。AP座標の自動選択に関しては特許文献1に「特徴のあるパターン部分を自動的に検出する」との記述があるが,その具体的な方法については記載されておらず,また,撮像レシピにおいて指定すべきその他の情報,例えば,各撮像ポイント(AP,AF,AST,ABCC)の設定要否,点数,各撮像ポイントの座標,サイズ・形状,撮像条件,撮像シーケンス等は現状マニュアルで指定しており,撮像レシピ生成の自動化率は非常に低く,SEMオペレータの大幅な作業時間低減には至っていない。
【0008】
更に、実際の撮像シーケンスにおいては,撮像レシピ生成時に予想できなかった現象により,作成した撮像レシピによる撮像あるいは処理が失敗する場合がある(一例として,AP内の実パターン形成不良によるアドレッシングの失敗など)。そのため,前記現象に対しても撮像あるいは処理が失敗しない撮像レシピの生成方法,ならびに前記生成法により撮像レシピを生成したにも関わらず撮像あるいは処理に失敗した場合の救済法が必要になる。
【0009】
本発明では、SEMオペレータが独自のノウハウに基づきマニュアルで生成した撮像レシピと同等あるいはそれ以上の性能をもつ撮像レシピを正確にかつ高速に生成する機能を備えた走査型電子顕微鏡装置ならびにそれを用いた撮像方法を提供する。
【課題を解決するための手段】
【0010】
すなわち本発明では、以下のような特徴を有する撮像方法および撮像装置とした。
【0011】
試料上の複数の評価ポイントの座標を入力するステップと、撮像時のスループットに基づき該複数の評価ポイントを撮像するための撮像シーケンスを決定するステップと、を有する撮像方法である。
【発明の効果】
【0012】
本発明により,SEMに関する特別な知識を必要とせず,各オペレータのスキルの違いに依存することなく,誰でも直ぐに高精度な撮像レシピをウェーハレスで生成することが可能となり、以下のような効果が得られる。
(1)撮像レシピを高い自動化率で生成することが可能となる。入出力のパラメータの組み合わせは任意に設定することができ,入力情報として与えることが可能なパラメータの値あるいはデフォルト値あるいは設定可能範囲に基づき,所望の出力情報を得ることが可能となる。
(2)撮像レシピ生成時に予想できなかった現象や不具合により,作成した撮像レシピによる撮像あるいは処理が失敗した場合も,撮像テンプレートや撮像シーケンスを変更して前記撮像あるいは処理を成功させるようなリリーフ処理を行うことが可能となる。
(3)選択要素指標の算出においては,CADデータあるいはCAD画像とを前記選択要素指標に応じて,選択的に活用することにより,高精度な撮像レシピを短時間に生成できる。
(4)CADデータから線幅の密な分布情報(線幅マップ)を算出することにより,パターン形状の崩れが少ない適切な画像量子化幅を自動で決定することが可能となる。また,任意の選択要素指標値の算出における入力情報として,前記画像量子化幅により生成した適切なCAD画像を用いることにより,良好な前記選択要素指標値の算出精度が得られる。
(5)前記登録テンプレートとして前述のCADデータテンプレートあるいは変形CADデータテンプレートあるいはCAD画像テンプレートあるいは変形CAD画像テンプレートとを実撮像テンプレートと登録テンプレートとのマッチング方式に応じて選択的あるいは共に撮像レシピに登録することにより,マッチング処理の高速化ならびにマッチングの高精度化が図れる。
【図面の簡単な説明】
【0013】
【図1】図1は、SEM装置の構成を示す図である。
【図2】図2(a)は半導体ウェーハに電子線を照射している状態を説明する図、図2(b)は電子線の照射により半導体ウェーハから放出された電子を検出した画像の各画素の状態を示す図である。
【図3】図3(a)は撮像シーケンスを示すフロー図、図3(b)は低倍画像上のテンプレート位置の一例を示す図である。
【図4】図4は、処理全体のフローを示す図である。
【図5】図5は、入出力情報の一覧を示す図である。
【図6】図6(a)は一般的に記述した入出力情報の組み合わせの一例を示すブロック図、図6(b)は一般的に記述した入出力情報の組み合わせの他の一例を示すブロック図である。
【図7】図7(a)は任意のp番目の評価ポイントEPを撮像するための撮像シーケンスを示す図、図7(b)は2つのAPが設定された場合の撮像シーケンスを示す図、図7(c)は正方形以外のAP形状が設定された場合の撮像シーケンスを示す図、図7(d)は異なる複数のEP間で撮像ポイントを共有する場合の撮像シーケンスを示す図、図7(e)は複数のEP間で撮像ポイントを共有しそれに伴い複数のEPの撮像順序を最適化する例を示す図、図7(f)は撮像失敗時のリリーフ機能を示す図、図7(g)は撮像失敗時のリリーフ機能を示す図である。
【図8】図8は、撮像シーケンスを示す図である。
【図9】図9は、撮像レシピ自動生成エンジンの処理内容を示す図である。
【図10】図10(a)は撮像ポイントの候補位置を示す図,図10(b)は前記撮像ポイント候補位置の一例を拡大し,評価されるパターン範囲を示した図。
【図11】図11はGUI画面を示す図である。
【図12】図12(a)はCADデータから変形CADデータ,CAD画像,変形CAD画像を生成する図である。図12(b)は頂点と頂点とを点線で結んだCADデータを画像量子化幅で分解し画像化した状態を示す図である。
【図13】図13(a)はビームシフト可動範囲を考慮した禁止領域の設定例を示すCAD図、図13(b)はコンタミネーションの付着を抑えるための禁止領域を複数のEPを考慮して設定する例を示すCAD図である。
【図14】図14(a)は異なる複数のEP間で共有されるAPを示す図,図14(b)は電子ビーム垂直入射座標と異なる複数のEP,APを撮像する際の電子ビームの入射角を示す図。図14(c)は電子ビーム垂直入射座標とEP,APを撮像する際の電子ビームの入射角を示す図。
【図15】図15(a)は選択された撮像ポイントのテンプレートを撮像レシピに登録する方法を説明する図、図15(b)は登録テンプレートと実撮像テンプレートとのマッチング処理のバリエーションを示す図である。
【図16】図16(a)は装置システムの構成の一例を示す図、図16(b)は装置システムの構成の他の一例を示す図である。
【発明を実施するための形態】
【0014】
図1〜図16を用いて本発明に基づく実施例を説明する。
【0015】
1. SEM
1.1 SEM構成要素
図1は本実施例において試料の二次電子像(Secondary Electron:SE像)あるいは反射電子像(Backscattered Electron:BSE像)を取得する走査型電子顕微鏡(Scanning Electron Microscope:SEM)の構成概要のブロック図を示す。また,SE像とBSE像を総称してSEM画像と呼ぶ。また,ここで取得される画像は測定対象を垂直方向から観察したトップダウン画像,あるいは任意の傾斜角方向から観察したチルト画像の一部または全てを含む。
【0016】
103は電子銃であり,電子線104を発生する。ステージ117上におかれた試料である半導体ウェーハ101上の任意の位置において電子線が焦点を結んで照射されるように,偏向器106および対物レンズ108により電子線の照射位置と絞りとを制御する。電子線を照射された半導体ウェーハ101からは,2次電子と反射電子が放出され,ExB偏向器107によって照射電子線の軌道と分離された2次電子は109の2次電子検出器により検出される。一方,反射電子は110および111の反射電子検出器により検出される。反射電子検出器110と111とは互いに異なる方向に設置されている。2次電子検出器109および反射電子検出器110および111で検出された2次電子および反射電子はA/D変換機112,113,114でデジタル信号に変換され,画像メモリ122に格納され,CPU121で目的に応じた画像処理が行われる。
【0017】
図2は半導体ウェーハ上に電子線を走査して照射した際,半導体ウェーハ207上から放出される電子の信号量を画像化する方法を示す。電子線は,例えば図2(a)に示すようにx,y方向に201〜203又は204〜206のように走査して照射される。電子線の偏向方向を変更することによって走査方向を変化させることが可能である。x方向に走査された電子線201〜203が照射された半導体ウェーハ上の場所をそれぞれG1〜G3で示している。同様にy方向に走査された電子線204〜206が照射された半導体ウェーハ上の場所をそれぞれG4〜G6で示している。前記G1〜G6において放出された電子の信号量は,それぞれ図2(b)内に示した画像209における画素H1〜H6の明度値になる(G,Hにおける右下の添え字1〜6は互いに対応する)。208は画像上のx,y方向を示す座標系である。
【0018】
図1中の115はコンピュータシステムであり,撮像レシピを基に撮像ポイントを撮像するため,ステージコントローラ119や偏向制御部120に対して制御信号を送る,あるいは半導体ウェーハ101上の任意の撮像ポイントにおける撮像画像に対し各種画像処理を行う等の処理・制御を行う。ここで撮像ポイントとはアドレッシングポイント,オートフォーカスポイント,オートスティグマポイント,オートブライトネス・コントラストポイント,評価ポイントの一部または全てを含む。また,処理・制御部115はディスプレイ116と接続されており,ユーザに対して画像等を表示するGUI(Graphic User Interface)を備える。117はXYステージであり,半導体ウェーハ101を移動させ,前記半導体ウェーハの任意の位置の画像撮像を可能にしている。XYステージ117により観察位置を変更することをステージシフト,偏向器106により電子線を偏向することにより観察位置を変更することをビームシフトと呼ぶ。一般にステージシフトは可動範囲は広いが撮像位置の位置決め精度が低く,逆にビームシフトは可動範囲は狭いが撮像位置の位置決め精度が高いという性質がある。
【0019】
図1では反射電子像の検出器を2つ備えた実施例を示したが,前記反射電子像の検出器の数を減らすことも,あるいは増やすことも可能である。
【0020】
また,前述したコンピュータシステム115においては,後述する方法により撮像レシピを生成したり,また前記撮像レシピに基づき,SEM装置を制御して撮像を行うが,これらの処理・制御の一部又は全てを異なる複数台の処理端末に割り振って処理・制御することも可能である。詳細は図16を用いて後述する。
【0021】
図1に示す装置を用いて測定対象を任意の傾斜角方向から観察したチルト画像を得る方法としては(1)電子光学系より照射する電子線を偏向し,電子線の照射角度を傾斜させて傾斜画像を撮像する方式(例えば特開2000−348658号),(2)半導体ウェーハを移動させるステージ117自体を傾斜させる方式(図1においてはチルト角118でステージが傾斜している),(3)電子光学系自体を機械的に傾斜させる方式等がある。
【0022】
1.2 SEM撮像シーケンス
図3(a)に任意の評価ポイント(以降,EPと呼ぶ)を観察するための代表的な撮像シーケンスを示す。前記撮像シーケンスにおける撮像ポイント,撮像順序,撮像条件は撮像レシピにより指定する。
【0023】
まず図3(a)のステップ301において試料である半導体ウェーハをSEM装置のステージ117上に取り付ける。ステップ302において光学顕微鏡等でウェーハ上のグローバルアライメントマークを観察することにより,ウェーハの原点ずれやウェーハの回転を補正する。
【0024】
ステップ303において,処理・制御部115の制御及び処理に基づいて,ステージ117を移動して,撮像位置をアドレッシングポイント(以降,APと呼ぶ)に移動して撮像し,アドレッシングのパラメータを求め,該求められたパラメータに基づいてアドレッシングを行う。ここでAPについて説明を加えておく。EPを観察する場合,ステージシフトにより直接EPを観察しようとすると,ステージの位置決め精度により,大きく撮像ポイントがすれてしまう危険性がある。
【0025】
そこで,一旦位置決め用として予め撮像ポイントの座標値とテンプレート(撮像ポイントのパターン)とが与えられたAPを観察する。前記テンプレートは撮像レシピに登録されるので,以降,登録テンプレートと呼ぶ。APはEPの近傍(最大でもビームシフトにより移動可能な範囲)から選択する。また,APはEPに対して一般に低倍視野であるため,多少の撮像位置のずれに対しても,撮像したいパターンが全てに視野外になる危険性は低い。そこで,予め登録されたAPの登録テンプレートと,実際に撮像されたAPのSEM像(実撮像テンプレート)とをマッチングすることにより,APにおける撮像ポイントの位置ずれ量を推定することができる。AP,EPの座標値は既知なので,AP−EP間の相対変位量を求めることができ,かつAPにおける撮像ポイントの位置ずれ量も前述のマッチングにより推定できるため,前記相対変位量から前記位置ずれ量を差し引くことにより,実際に移動すべきAP撮像位置からEPまでの相対変位量が分かる。前記相対変位量分だけ,位置決め精度の高いビームシフトによって移動することにより,高い座標精度でEPを撮像することが可能となる。
【0026】
そのため,登録されるAPは,(1)EPからビームシフトにより移動可能な距離に存在するパターンであり(かつEPにおけるコンタミネーションの発生を抑えるためAP撮像時の範囲(Field of view:FOV)にEP撮像時のFOVを含まないことを条件とする場合もある),(2)APの撮像倍率はステージの位置決め精度を加味してEPの撮像倍率よりも低く,(3)パターン形状あるいは明度パターンが特徴的であり,登録テンプレートと実撮像テンプレートとのマッチングがし易い等の条件を満たしていることが望ましい。どの場所をAPとして選択するかに関しては,従来SEMオペレータがマニュアルで行っていたが,本発明においては,前述の条件をシステム内部で評価し,自動で良好なAPの選択および撮像シーケンスの決定を行うことを特徴とする。
【0027】
登録するAPにおける画像テンプレートはCAD画像,あるいはSEM画像,あるいは特開2002−328015号公報に開示されているように画像テンプレートの登録のためだけに撮像を行うのを避けるため,一旦CADデータテンプレートで登録しておき,実際の撮像時に得たAPのSEM画像をSEM画像テンプレートとして再登録する等のバリエーションが考えられる。
【0028】
前述のAP選択範囲について補足する。一般的に電子ビーム垂直入射座標はEPの中心座標に設定されるので,APの選択範囲は最大でもEPを中心としたビームシフト可動範囲としたが,電子ビーム垂直入射座標がEPの中心座標と異なる場合は,前記電子ビーム垂直入射座標からのビームシフト可動範囲が選択範囲となる。また撮像ポイントに要求される許容電子ビーム入射角によっては,電子ビーム垂直入射座標からの探索範囲もビームシフト可動範囲より小さくなることがある。これらは他のテンプレートについても同様である。以降の説明において,単独EPの撮像の場合は特に断りのない限り電子ビーム垂直入射座標とEPの中心座標は同じとして説明するが,前述の通り本発明はこれに限られるものではない。電子ビーム垂直入射座標に関する詳細は図14を用いて後述する。
【0029】
次にステップ304において,処理・制御部115の制御及び処理に基づいて,ビームシフトにより撮像位置をオートフォーカスポイント(以降,AFと呼ぶ)に移動して撮像し,オートフォーカス調整のパラメータを求め,該求められたパラメータに基づいてオートフォーカス調整を行う。ここでAFについて説明を加えておく。撮像時には鮮明な画像を取得するためオートフォーカスを行うが,試料に電子線を長く照射すると汚染物質が試料に付着してしまう(コンタミネーション)。そこで,EPにおけるコンタミネーションの付着を抑えるため,一旦EP周辺の座標をAFとして観察し,オートフォーカスのパラメータを求めてから前記パラメータを基にEPを観察するという手段がとられる。
【0030】
そのため,登録されるAFは,(1)AP,EPからビームシフトにより移動可能な距離に存在するパターンであり,かつAF撮像時のFOVにEP撮像時のFOVは含まれない,(2)AFの撮像倍率はEPの撮像倍率と同程度である(ただし,これはEP用のAFの場合。AP用のAFの場合は前記APの撮像倍率と同程度の撮像倍率でAFを撮像する。後述するAST,ABCCに関しても同様),(3)オートフォーカスをかけ易いパターン形状をもつ(フォーカスずれに起因する像のぼけを検出し易い)等の条件を満たしていることが望ましい。本発明によれば,AF選択についても,APと同様,前述の条件をシステム内部で評価し,自動で良好なAFの選択を行うことが可能となる。
【0031】
次にステップ305において,処理・制御部115の制御及び処理に基づいて,ビームシフトにより撮像位置をオートスティグマポイント(以降,ASTと呼ぶ)に移動して撮像し,オートスティグマ調整のパラメータを求め,該求められたパラメータに基づいてオートスティグマ調整を行う。ここでASTについて説明を加えておく。撮像時には歪みのない画像を取得するため非点収差補正を行うが,AFと同様,試料に電子線を長く照射すると汚染物質が試料に付着してしまう。そこで,EPにおけるコンタミネーションの付着を抑えるため,一旦EP近くの座標をASTとして観察し,非点収差補正のパラメータを求めてから前記パラメータを基にEPを観察するという手段がとられる。
【0032】
そのため,登録されるASTは,(1)AP,EPからビームシフトにより移動可能な距離に存在するパターンであり,かつAST撮像時のFOVにEP撮像時のFOVは含まれない,(2)ASTの撮像倍率はEPの撮像倍率と同程度である,(3)非点収差補正をかけ易いパターン形状をもつ(非点収差に起因する像のぼけを検出し易い)等の条件を満たしていることが望ましい。
【0033】
本実施例によれば,AST選択についても,APと同様,前述の条件をシステム内部で評価し,自動で良好なASTの選択を行うことが可能となる。
【0034】
次にステップ306において,処理・制御部115の制御及び処理に基づいて,ビームシフトにより撮像位置をオートブライトネス&コントラストポイント(以降,ABCCと呼ぶ)に移動して撮像し,ブライトネス・コントラスト調整のパラメータを求め,該求められたパラメータに基づいてオートブライトネス・コントラスト調整を行う。ここでABCCについて説明を加えておく。撮像時には適切な明度値及びコントラストをもつ鮮明な画像を取得するため,例えば二次電子検出器109におけるフォトマル(光電子増倍管)の電圧値等のパラメータを調整することよって,例えば画像信号の最も高い部分と最も低い部分とがフルコントラストあるいはそれに近いコントラストになるように設定するが,AFと同様,試料に電子線を長く照射すると汚染物質が試料に付着してしまう。そこで,EPにおけるコンタミネーションの付着を抑えるため,一旦EP近くの座標をABCCとして観察し,ブライトネス・コントラスト調整のパラメータを求めてから前記パラメータを基にEPを観察するという方法がとられる。
【0035】
そのため,登録されるABCCは,(1)AP,EPからビームシフトにより移動可能な距離に存在するパターンであり,かつABCC撮像時のFOVにEP撮像時のFOVは含まれない,(2)ABCCの撮像倍率はEPの撮像倍率と同程度である,(3)ABCCにおいて調整したパラメータを用いて測長ポイントにおいて撮像した画像のブライトネスやコントラストが良好であるために,ABCCは前記測長ポイントにおけるパターンに類似したパターンである等の条件を満たしていることが望ましい。本発明によれば,ABCC選択についても,APと同様,前述の条件をシステム内部で評価し,自動で良好なABCCの選択を行うことが可能となる。
【0036】
なお,前述したステップ303,304,305,306におけるAP,AF,AST,ABCCの撮像は場合によって,一部あるいは全てが省略される,あるいは303,304,305,306の順番が任意に入れ替わる,あるいはAP,AF,AST,ABCCの座標で重複するものがある(例えばオートフォーカス,オートスティグマを同一箇所で行う)等のバリエーションがある。
【0037】
最後にステップ307においてビームシフトにより撮像ポイントをEPに移動して撮像し,例えば設定した測長条件でパターンの測長等を行う。EPにおいても,撮像したSEM画像と事前に撮像レシピに登録された前記EP位置に対応する登録テンプレートとをマッチングし,計測位置のすれを検出することがある。撮像レシピには前述の撮像ポイント(EP,AP,AF,AST,ABCC)の座標や撮像シーケンス,撮像条件等の情報が書き込まれており,SEMは前記撮像レシピに基づきEPを観察する。図3(b)に低倍像308上におけるEP309,AP310,AF311,AST312,ABCC313のテンプレート位置の一例を点線枠で図示する。
【0038】
本実施例は,前述の撮像レシピを自動生成する方法に関する。従来,マニュアルで行われていた撮像レシピ生成を自動化することによって,レシピ生成に要する時間を短縮し,SEMの撮像準備を含めたトータルのスループットを向上させることができる。また,撮像レシピの生成の際には,実ウェーハの低倍像の代わりにCADデータ(Computer Aided Design)として管理された半導体パターンの設計レイアウト情報(以降,CADデータと呼ぶ)を基に撮像レシピを生成することにより,生成作業のオフライン化をはかり,SEMの稼働率向上に繋がる。
【0039】
2. 撮像レシピ自動生成機能
2.1 入出力情報
前述の図3を用いた撮像レシピの説明においては,前記撮像レシピに登録すべき情報の一例として一組のEP,AP,AF,AST,ABCCを挙げた。図5に本発明におけるレシピ自動生成方法およびその装置における入出力情報の一覧を示す。同図において撮像レシピ自動生成エンジン501に伸びる矢印(537はその凡例)の端点に位置する情報502〜519は前記エンジン501の入力情報であることを示す。また,エンジン501と黒丸で結ばれたリンク(538はその凡例)の端点に位置する情報521〜536は,前記エンジン501の入力情報にも出力情報にもなりうることを示す。
【0040】
すなわち,エンジン501は,情報502〜519,521〜536の中から任意の組み合わせの情報を入力情報とし,情報521〜536の任意の組み合わせの情報を出力情報として算出,出力することが可能であることを特徴とする。また,前記情報502〜519,521〜536の任意の組み合わせの情報を入力,出力情報のいずれからも不要な情報として除外することができる。さらに,情報502〜519,521〜536の中から任意の組み合わせで選んだ入力情報の与え方と,エンジン501での出力情報の算出方法には,次に述べる二つのバリエーションがあり,それぞれの入出力情報において前記バリエーションを選択可能なことを特徴とする。
【0041】
(1)入力情報として選択した任意の情報に関して,ユーザが前記入力情報の固定値を指定する,あるいは予めデータベース536等に用意されたデフォルト値を前記入力情報として設定する。エンジン501は,前記固定値あるいはデフォルト値を前提に任意の出力値を算出する。また前記出力情報に前記入力情報を含むことが可能である。その場合,入力した入力情報を基にエンジン501が前記入力情報の妥当な値を再算出して出力することになる。
【0042】
(2)入力情報として選択した任意の情報に関して,ユーザが前記入力情報のとりうる値の範囲を設定する,あるいは予めデータベース536等に用意された前記入力情報のとりうる値の範囲のデフォルト値を設定する。エンジン501は,前記範囲内で前記入力情報が変化しうることを前提に,任意の出力情報を算出する。また前記出力情報に前記入力情報を含むことが可能である。その場合,入力した入力情報のとりうる値の範囲内で,エンジン501が前記入力情報の妥当な値を算出して出力することになる。次にエンジン501の入出力情報502〜519,521〜536の詳細について説明する。
【0043】
2.1.1入力情報
評価ポイントの情報502として,評価ポイントEP[p]の座標503,(撮像領域の)サイズ・形状504,撮像条件505(プローブ電流,加速電圧,電子ビームのスキャン方向等)がある。ここで,配列番号pは,ウェーハ上に配置されたチップ上に設定した複数の評価ポイントのIDを示している(p=1〜Np,Np≧1)。評価ポイントの形状は,正方領域や長方形領域として与えるのが一般的であるが,その他の任意形状を撮像範囲として設定することができる。
【0044】
設計パターン情報506として,EP周辺のCADデータ(Computer Aided Design)507,マスクデータのパターン抜き残し情報508,パターンの線幅情報509(あるいは最小線幅の情報),撮像するウェーハの品種,工程,パターンや下地の材質情報510がある。前記CADデータとは,例えばGDS2形式で記述された半導体パターンの設計情報であり,設計パターンの輪郭の頂点座標(x,y)の配列等で与えられる。また,前記CADデータにはレイヤー情報も含まれており,レイヤー毎のデータを処理することも,任意の複数のレイヤーを重ねて処理することも可能である。
【0045】
また,前記抜き残し情報508は,露光・現像後にレジスト膜が除去される領域か,あるいは残される領域か(あるいはエッチング後に下地となる領域か,あるいはゲート配線パターンが形成される領域か)を示す情報である。ただし,抜き残し情報508とパターンの線幅情報509は,必要に応じて撮像レシピ自動生成エンジン501内でCADデータ507から計算することも可能である。CADデータ507,抜き残し情報508,パターンの線幅情報509,品種,工程,材質情報510は広く設計情報としてCADデータに含むこともできる。508〜510の情報を入力情報とする,あるいは撮像レシピ自動生成エンジン501内で算出することは,次の点において有効である。
【0046】
すなわち,実際の撮像シーケンスにおいて撮像される各種実撮像テンプレートはSEM画像であるが,撮像レシピ自動生成エンジン501内では,前記テンプレートとして相応しい撮像ポイントをCADデータに基づいて選択する。そのため,実際のSEM画像とCADデータとの乖離を埋めるため,抜き残し情報508や品種,工程,材質情報510を加味して,より実際のSEM画像に近いCAD画像を生成することにより,例えば後述する撮像ポイントの特異性の評価等において選択処理の高精度化を図ることができる。
また,前記線幅情報509や品種,工程,材質情報510を用いることにより,線幅や品種,工程,材質に起因するパターンの変形し易さ(例えば露光パラメータの変動に対する変形し易さ等)を撮像ポイントの選択要素指標値として加味することができ,なるべく変形しにくいパターンを含む撮像ポイントを選択する等の処理が可能となる。さらに前記線幅情報509は,後述するように,撮像レシピ自動生成エンジン501内において選択要素指標値を算出するための入力情報としてCAD画像を生成する際,CADデータから前記CAD画像を生成するための画像量子化幅(nm/pixel)の決定に有効である。
【0047】
処理パラメータ511として,選択処理パラメータ512,設計パタ−ンと実パタ−ンとの形状乖離推定量513,SEM装置条件514がある。前記選択処理パラメータ512とは,任意の撮像ポイントの探索範囲(例えば,EPからビームシフトで移動可能な範囲等),後述する選択要素指標値の必要条件(しきい値),選択要素指標優先順位(重み),撮像ポイント選択における禁止領域(例えば,EPにおけるコンタミネーションを抑えるため,EP領域および前記EP領域の周囲x(pixel)からは撮像ポイントを選択しない等)の一部または全てを含むパラメータである。
【0048】
前記設計パタ−ンと実パタ−ンとの形状乖離推定量513とは,光近接効果(Optical Proximity Effect:OPE)や露光条件の変動により発生する設計パターン形状に対する実パターン形状の変形量を指す。例えばラインパターンであれば,ライン端のシュリンク量や,角の丸まり量等に対応する。設計データを用いた撮像ポイント内のパターン形状の評価においてこのような形状乖離推定量513を反映することにより,前記変形量に伴うパターン形状の評価ならびに撮像ポイントの選択に失敗することを避けることができる。前記SEM装置条件514とは,ビームシフト可動範囲,ステージシフト/ビームシフト推定位置決め誤差に代表されるSEM装置の特性を示すパラメータである。前記ビームシフト可動範囲を入力情報とすることにより,任意の撮像ポイント間をビームシフトを用いて移動可能か否かが判断でき,撮像シーケンスならびに撮像位置変更方法(ステージシフト,ビームシフト)の決定に有効である。
【0049】
また,前記ステージシフト/ビームシフト推定誤差を入力情報とすることにより,前記ステージシフト/ビームシフトにより撮像位置を変更して撮られた撮像ポイントにおいて発生しうる視野ずれ(例えば図10(b)1007)を予想することができる。各種撮像ポイントの選択においては,図10(b)に示すように,前記視野ずれにより視野外となるパターンを除外した領域1008内において,目的とする処理に良好なパターンが含まれているかを評価することによって,視野ずれの影響を受けにくい撮像ポイントの選択が可能となる。
【0050】
ユーザ要求仕様515として,EPにおける要求位置決め精度516,要求画質517,要求撮像時間518がある。前記要求画質517にはより鮮明な画像を得るためのフォーカス,スティグマ,ブライトネス・コントラストに対する要求や,コンタミネーション発生抑制に対する要求,更に評価ポイントや各種撮像ポイントにおける許容電子ビーム入射角に関する要求が挙げられる。前記許容電子ビーム入射角の詳細については図14を用いて後述する。これらの要求仕様を満足するように各種撮像ポイントの設定要否や座標,サイズ・形状,撮像シーケンス(撮像順序,及び電子ビーム垂直入射座標を含む),撮像位置変更方法等を決定する。特に要求位置決め精度516を満たすためには,APの設定要否や座標,サイズ・形状,撮像シーケンス,撮像位置変更方法を,要求画質517を満たすためには,AF,AST,ABCCの設定要否や座標,サイズ・形状,撮像シーケンス,撮像位置変更方法を,要求撮像時間518を満たすためには,各種撮像ポイントの枚数(撮像回数),サイズ・形状,撮像位置変更方法を調整することになる。
【0051】
履歴情報519は,過去の処理結果や知見をライブラリ化したものであり,撮像レシピ自動生成エンジン501において,それらの情報を参照し,より良好な撮像レシピ生成が可能となる。例えば,過去に撮像あるいは処理に失敗した撮像ポイントあるいは撮像シーケンスの情報を履歴情報として管理することにより,過去に失敗した撮像レシピと同様の撮像レシピを生成しない等の処理が可能となる。逆に,過去に撮像あるいは処理に成功した撮像ポイントあるいは撮像シーケンスに類似した撮像レシピは評価値あるいは優先順位を上げる等の処理が可能である。
【0052】
2.1.2入力情報あるいは出力情報
撮像ポイントの座標521として,AP,AF,AST,ABCCの座標がある(それぞれ522〜525)。これらの撮像ポイントは,複数の評価ポイントEP[p](p=1〜Np,Np≧1)毎に設定され,かつ複数個の任意処理用の撮像ポイントを設定可能である(例えば二箇所のAPでアドレッシングを行ってからEPを撮像する等)。これを,AP[p] [q],AF[p][q],AST[p][q],ABCC[p][q](q=1〜Nq,Nq≧1)と表記する。配列番号pは,ウェーハ上に配置されたチップ上に設定した複数の評価ポイントのIDを,配列番号qは,任意の計測点EP[p]の観察において経由する各処理用のテンプレートのIDを示している(配列番号qは,撮像ポイントAP,AF,AST,ABCCを一つのセットとして(撮像順および各撮像ポイントの撮像有無は任意),前記セットのIDを示す)。ただし,後述するように,異なるEP間で任意の撮像テンプレートを共有することは可能である(例えば,EP[p1],EP[p2](p1≠p2)に対し,AP[p1][q1]とAP[p2][q2]が等しい等)。また,必要ないAP[p][q],AF[p][q]
、AST[p][q]、ABCC[p][q]は任意に撮像シーケンスから削除することができる。
【0053】
撮像ポイントのサイズ・形状526として,AP[p][q],AF[p][q],AST[p] [q],ABCC[p][q]のサイズ・形状がある(それぞれ527〜530)。撮像ポイントの形状は,EPと同様,正方領域が一般的であるが,各種処理に有効なパターン領域を含むため,あるいは不具合となりうる領域を除外するため,長方形領域やその他の任意形状とすることができる。前記サイズ・形状を入力情報として与えることも,あるいは撮像レシピ自動生成エンジン501内で最適化して出力することも,あるいは一部の撮像ポイントに関するサイズ・形状の拘束条件を与え(例えば形状は長方形領域とし,サイズは**〜**(nm)の範囲から選択する等),前記一部の撮像ポイントに関するサイズ・形状,あるいはそれ以外の撮像ポイントに関するサイズ・形状を出力することも可能である。
【0054】
撮像シーケンス531は,前述のEP[p],AP[p][q],AF[p][q],AST[p] [q],ABCC[p][q]をどのような順番で撮像あるいは各種処理を行うか指定するものである。撮像位置変更方法532は前記撮像シーケンスの各撮像ステップにおいて視野を変更する方法(ステージシフト,ビームシフト)を指定するものである。
【0055】
撮像条件533として,プローブ電流,加速電圧,電子ビームのスキャン方向等がある。登録テンプレート535として,EP[p],AP[p][q],AF[p][q],AST[p] [q],ABCC[p][q]における撮像範囲を切り出したテンプレートがあり,視野ずれを考慮し,必要に応じて多少大きめに切り出すことも可能である。全てのEP[p],AP[p][q],AF[p][q],AST[p][q],ABCC[p][q]テンプレートを登録する必要は無く,アドレッシングや各種処理のための基準として,撮像パラメータのみでなく,
テンプレートが必要とされるものだけを登録してもよい。
【0056】
また,登録するテンプレートとして,撮像ポイントにおけるCADデータ,前記CADデータを画像量子化したCAD画像,所定の処理を加えたCADデータ(後述),所定の処理を加えたCAD画像(後述),SEM画像,前記SEM画像に所定の処理を加えた処理SEM画像(線分情報に変換された場合を含む)の6つのデータ形式の中から一つ以上選択して登録することができる。例えばアドレッシングにおいて,有効な登録テンプレートのデータ形式は,実際の撮像シーケンスにおける撮像ポイントのアドレッシングにおいて用いられる実撮像テンプレートと登録テンプレートとのマッチング方式に依存するため,マッチング処理の高速化ならびにマッチングの高精度化の観点において,前記データ形式の選別は有効である。
【0057】
データベース536は,前述の502〜535の情報の一部または全てを保存・管理する。前述の情報は,時系列間あるいは異なるSEM装置間にわたる情報を共有して扱うことができる。また,撮像レシピ自動生成エンジン501は,必要に応じて任意の情報をデータベース536から読み込み,各種処理に反映することができる。また,各種入力情報502〜535の値あるいは範囲を決定する際にデータベース536に保存した過去のパラメータを参照することができ,また例えば品種や製造工程毎に前記値あるいは範囲のデフォルト値を保存しておくことが可能である。
【0058】
上記項目の撮像ポイントあるいは撮像シーケンスの評価値あるいは優先順位534について詳細を述べる。本発明における自動レシピ作成方法においては,任意の撮像ポイントにおける撮像あるいは処理に対する成否判定を行うことを特徴とする。また,前記成否判定において撮像あるいは処理が失敗したと判定された場合,撮像ポイントや撮像シーケンス等を変更して前記撮像あるいは処理を成功させるようなリリーフ処理を行うことを特徴とする。そのため,撮像レシピ生成時には,前述の撮像ポイントの座標521,撮像ポイントのサイズ・形状526,撮像位置変更方法532,撮像条件533の変更も含めた撮像シーケンス531を複数候補算出し,かつそれらの評価値あるいは優先順位を算出しておくことを特徴とする。実際の撮像シーケンスにおいては,前記評価値あるいは優先順位の高い撮像ポイントあるいは撮像シーケンスにより撮像あるいは処理を行い,撮像あるいは処理が失敗したと判定された場合は,評価値あるいは優先順位に基づき撮像テンプレートあるいは撮像シーケンスの変更を行う。
【0059】
図6(a)(b)は,図5で一般的に記述した入出力情報の一覧の中から,代表的な入出力の組み合わせを2例示したものである。例えば,図6(a)の撮像レシピ自動生成エンジン501は,入力情報として,評価ポイント情報502,設計パタ−ン情報506,処理パラメータ511,要求位置決め精度516を与え,出力情報として,撮像ポイント座標521,撮像ポイントのサイズ・形状526,撮像シーケンス531,撮像位置変更方法532を推定する。ユーザ要求仕様515として,本例は位置決め精度516のみ指定しており,また撮像条件533は入力,出力情報から共に除外したケースである。図6(b)は,同図(a)と比べ,特に撮像シーケンスの一部531A,撮像位置変更方法532,AP[p][q]のサイズ・形状527A,AF[p][q]のサイズ・形状528Aを入力情報とし,残りの撮像シーケンス531B,残りの撮像ポイントのサイズ・形状526Bを出力情報とする点が異なる。
【0060】
具体例としては,撮像シーケンスの一部531Aとして「APでアドレッシングした後,EPを撮像。APの点数は最大2点。EP撮像前には必ずAFでオートフォーカス処理を行う」等の条件を設定し,撮像位置変更方法532として「最初のAPのみステージシフトで視野移動,残りのテンプレートへの視野移動は全てビームシフト」等の条件を設定し,AP[p][q]のサイズ・形状527Aとして「一番目のAPのサイズは3〜5umの範囲で適切な値を設定。
【0061】
APは全て正方領域」等の条件を設定し,AF[p][q]のサイズ・形状528Aとして「EP撮像前のAFサイズはEPと同サイズ」等の条件を入力情報として設定する。出力情報として,残りの撮像シーケンス531B,残りの撮像ポイントのサイズ・形状526Bとして「具体的な一番目のAPのサイズ(前記3〜5umの範囲内),もし要設定であれば二番目のAPのサイズ,AST,ABCCのサイズ・形状」等を推定する。
【0062】
また,必要に応じて,撮像あるいは処理失敗時のリリーフ用に,複数の撮像ポイントおよび撮像シーケンスを出力する(撮像テンプレートの切り替えに伴って撮像シーケンスも変更しうる)。また,撮像ポイントあるいは撮像シーケンスの評価値あるいは優先順位534も出力する。
【0063】
このような入力情報は,ユーザが直接指定することも,例えばデータベース536等に保存されたデフォルトの設定を読み出して入力とすることもできる。前述の多くの情報が入力情報として与えられると,撮像レシピ生成には有効な情報となりうるが,入力可能な情報や不確定な情報は,例えば品種,製造工程,SEM装置等に依存して異なる。また,ユーザによっては入力の手間を省きたい場合もある。本発明においては,これらの入出力情報の組み合わせを任意に設定することが可能である。
【0064】
2.2 撮像シーケンス(基本シーケンスおよび撮像ポイントの分割)
図7(a)〜(g)に,本発明により設定される低倍視野701a〜gにおける撮像ポイントの配置および撮像シーケンスの設定例を示す。各図において点線で囲まれた枠は撮像レシピに登録された各撮像ポイントの撮像範囲,実線の矢印はステージシフト,点線の矢印はビームシフト,前記実線および点線の矢印上の丸で囲まれた数字(1)〜(15)は撮像順番を示す。以下,図7(a)〜(g)について順に説明する。
【0065】
図7(a)は,任意のp番目の評価ポイントEP[p](706a)を撮像するための撮像シーケンス例である。撮像レシピには撮像ポイントとしてEP[p](706a),AP[p][1](702a),AF[p][1](703a),AST[p][1](704a),ABCC[p][1](705a)の各パラメータ(座標,サイズ・形状,撮像条件など)が指定されており,さらにEP[p](706a),AP[p][1](702a)に関しては登録テンプレートが保存されている。
【0066】
先ず,ステージシフトによりAP「p」「1」(702a)に移動し(図中(1)),撮像した実際のテンプレートとAP[p][1]の登録テンプレートとのマッチングにより,x,y方向の撮像ずれ量の推定(アドレッシング)を行う。次に,ビームシフトによりAF[p][1](703a)に移動し(図中(2)),オートフォーカス調整を行う。前記ビームシフト量は,AP[p][1]座標からAF[p][1]座標への変位量から前記撮像ずれ量を差し引いた量である。以降の各撮像テンプレートへのビームシフトによる移動もAF同様に前記撮像ずれ量分の補正を行う。次に,ビームシフトによりAST[p][1](704a)に移動し(図中(3)),オートスティグマ調整を行う。次に,ビームシフトによりABCC[p][1](705a)に移動し(図中(4)),オートブライトネス・コントラスト調整を行う。
【0067】
前記AF,AST,ABCCに関して,本例では撮像レシピに登録テンプレートを保存していないが,AF,AST,ABCCに関しても,登録テンプレートを保存し,実際に撮像した実撮像テンプレートとのマッチングにより,登録した撮像ポイントに正しく移動できたかの成否判定を行う,あるいは処理の基準とすることもできる。前記処理の基準とは,AFであれば画像中の配線エッジのコントラストが高くなるようにフォーカス調整されることが望ましいが,ノイズをエッジとして誤強調しないため,登録テンプレートからエッジ位置を識別し,配線エッジのコントラストが正しく強調されるように調整を行う等。最後に,ビームシフトによりEP[p](706a)に移動し(図中(5)),撮像を行う。
【0068】
追記事項として,図7(a)中の撮像順が(2)〜(5)番目のビームシフトの矢印は全てAP[p][1](702a)から伸びているが,これは前記AP[p][1]でアドレッシングした座標値を基に各撮像ポイントに視野を移動するということを示している。すなわち,例えば矢印(2)によってAF[p][1](703a)を観察した後,次のAST[p][1](704a)への視野移動はAF[p][1](703a)−AST[p][1](704a)間の変位分だけ前記AF[p][1](703a)からビームシフトすることによって行われる。本発明ではこのような撮像シーケンスを自動で決定することを特徴とする。
【0069】
また,図7(a)の例では設定されていないが,例えば,AP[p][1](702a)において良好なアドレッシングを行うため,AP[p][1](702a)用のAFを設定し,前記AP[p][1](702a)撮像前に前記AFにおいてオートフォーカス調整を行うことができる。この場合の撮像ポイントの表記方法としては,前記AP[p][1](702a)用のAFをAF[p][1]とし,図7(a)中に示したAP[p][1],AF[p][1],AST[p][1],ABCC[p][1]をそれぞれAP[p][2],AF[p][2],AST[p][2],ABCC[p][2]と表記し直す。
【0070】
図7(b)は,二つのAPが設定された例である。ステージ・ビームシフトの仕方,アドレッシングの仕方等は同図(a)と同様なので,説明は省略する。図7(b)では,最初のAPとしてAP[p][1](703b)が選択されているが,AP[p][1]内にはx方向に細長い配線パターン702bしか存在していない。実撮像テンプレート708bおよび710bは共に実際の撮像シーケンスおいてAP[p][1](703b)の座標をSEMを用いて観察した際に起こりうるケースを示している。観察画像708bのケースにおいて,実際に形成された配線パターン709bは,対応する設計データ702bと右端のライン端が丸まっていることを除いてほぼ同位置である。しかしながら観察画像710bのケースにおいては,同図中に点線で示した設計データ712bに対して実際の配線パターン711bは製造プロセスパラメータ等の変動によって大きく縮んでいる(ギャップを矢印712bで示す)。
【0071】
このような対象において,登録テンプレート703bと実撮像テンプレート710bとのマッチングによる位置ずれ量の推定を行うと,ギャップ712b分ずれてマッチングされてしまい,たとえ実際には全く位置ずれ量がなかったとしても,ギャップ712b分の位置ずれ量が誤検出されてしまう恐れがある。すなわち,AP[p][1](703b)内のパターンにはx方向のエッジが少ないために,AP[p][1](703b)を用いたx方向のアドレッシングは精度が低くなる危険がある。この点を加味すると,x,y両方向に変化したパターンを多く含む撮像ポイントをAPとしてなるべく選択すべきである。しかしながら,AP[p][1](703b)で与えられた撮像ポイントのサイズ・形状を前提に,領域701b内で前述の条件を満たすAPは存在しない(ただし,実パターンにおいて起こりうる変形度合いによっては,AP[p][1](703b)のみでx,y両方向に良好なアドレッシングが行える場合はありうる)。
【0072】
そこで,AP[p][1](703b),AP[p][2](705b)で与えるように,APを二つ設定し,例えば一旦AP[p][1](703b)でy方向のアドレッシングを行った後,AP[p][2](705b)でx方向のアドレッシングを行うといった撮像ポイントの分割,および撮像シーケンスの設定が考えられる。同図の例では,まず,AP[p][1](703b)でy方向のアドレッシングを行い(図中(1)で移動),次に同一座標であるAF[p][1],ABCC[p][1](704b)でオートフォーカス,オートブライトネス・コントラストの両調整を行い(図中(2)で移動),次にAP[p][2](705b)でx方向のアドレッシングを行い(図中(3)で移動),次にAF[p][2] (706b)で再度オートフォーカス調整を行い(図中(4)で移動),最後に,EP[p](707b)に移動し(図中(5)で移動),撮像を行っている。また,アドレッシングポイントを複数配置する必要のある他の例として,例えばステージの位置決め精度が悪い場合,撮像倍率が異なる複数のAPを設定する場合がある。すなわち,ステージシフトによるAP撮像時に大きな位置ずれがあっても,多くのAP内のパターンが視野内に収まるように一旦非常に低倍のAPを撮像し,アドレッシングを行う。
【0073】
しかし前記低倍のAPは低倍のためアドレッシング精度が低い。そこで,次にビームシフトにより高倍のAPを撮像し,詳細なアドレッシングを行う。このように本発明では撮像を成功させるために,必要に応じて任意の撮像ポイントを複数配置することを特徴する。また,前記撮像ポイントを複数配置する必要の有無をCADデータや装置条件等から自動で判定し,必要な場合は自動で前記複数の撮像ポイントを自動で選択することを特徴とする。
【0074】
図7(c)は,正方形以外のAP形状が設定された例である。例えば撮像ポイント708cで与えられた撮像範囲のサイズ・形状を前提にした場合,低倍視野701c内において一つのAPでx,y両方向に精度の高いAPの設定は困難である。そこで,前記サイズを拡大してx方向に多くのエッジをもつパターンと,y両方に多くのエッジをもつパターンとを共に含むようなAPを設定することが可能である。また,単に撮像ポイントのサイズを大きくするだけでなく,AP[p][1](704c)に示すように,信頼性の高いアドレッシングに必要なx,y方向のエッジ長(例えば,706c,707c)を共に含むように撮像範囲の形状を最適化することが可能である(長方形以外にも任意の形状が設定可能である)。前記信頼性の高いアドレッシングに必要なエッジ長706c,707cは,入力情報である選択処理パラメータ512の一つである選択要素指標値の必要条件(しきい値)や設計パタ−ンと実パタ−ンとの形状乖離推定量513等を参考に与えることができる。
【0075】
2.3 撮像シーケンス2(撮像ポイントの共有およびEP撮像順の最適化)
図7(d)は,異なる複数のEP間で撮像ポイントを共有する例である。本例はEP[1](705d)を観察するための撮像レシピと,EP[2](707d)を観察するための撮像レシピ間で可能なものを共有している。まず,AP[1][1](702d)でアドレッシングを行い(図中(1)で移動),次にABCC[1][1](703d)でオートブライトネス・コントラスト調整を行い(図中(2)で移動),次にAF[1][1](704d)でオートフォーカス調整を行い(図中(3)で移動),次にEP[1](705d)に移動し(図中(4)で移動),撮像を行う。次に,EP[2](707d)の撮像であるが,アドレッシングに関しては,AP[1][1](702d)で実施済みであり,かつ同座標からEP[2](707d)はビームシフトで移動可能な距離であるため,再度アドレッシングを行うことはしない。また,本例ではオートブライトネス・コントラスト調整に関してもABCC[1] [1](703d)にて実施した後,大きな変化はないものとし,省略している。ただし,本例ではオートフォーカス調整に関してはEP[2]撮像前にで再度実施する必要があるとして,AF[2][1](706d)にてオートフォーカス調整を行っている(図中(5)で移動)。
【0076】
最後に,EP[2](707d)に移動し(図中(6)で移動),撮像を行う。このように異なる複数のEP間で撮像ポイントを共有することにより撮像回数を減らし,撮像全体のスループットを向上させることができる。そのため,本発明では各種撮像ポイントを選択する際,前述のAP[1][1](702d)のように,なるべく複数のEP間で共有することが可能な撮像ポイントを設定することを特徴とする。これは任意の撮像ポイントの共有(任意のqに関してAP[p][q],AF[p][q],AST[p][q],ABCC[p][q]の一部又は全てを共有)や,三つ以上のEP間での共有においても同様に適用可能である。
【0077】
図7(e)は,異なる複数のEP間で撮像ポイントを共有し,それに伴い複数のEPの撮像順を最適化する例である。本例には12個のEP[p](p=1〜12,pは各EPに対し任意に割り振られたID)(順に701e〜712e)が表示されており,先に図7(d)を用いて説明した撮像ポイントの共有と同様に,EP[1],EP[2],EP[5],EP[6]間で共有のAP[1][1](713e),EP[3],EP[4],EP[9],EP[10]間で共有のAP[3][1](714e),EP[5],EP[6],EP[11],EP[12]間で共有のAP[5][1](715e)をそれぞれ設定することができる。本例はEP間で共有されたAPから前記EPまでビームシフトで移動することはできるが,AP間は距離が離れているためステージシフトで移動する例である。
【0078】
本例において撮像回数および処理回数および移動距離の点から高いスループットが得られるEP[p](p=1〜12)の撮像順を考えると,同図中に示した(1)→(15)(EP[1],EP[2],EP[8],EP[7],EP[3],EP[4],EP[10],EP[9],EP[5],EP[6],EP[12],EP[11]の順)が適切な撮像順の一つとなる。本撮像順においては,任意のAPを観察した後,前記APからビームシフトにより移動可能な全てのEPを連続的に撮像するため,同じAPを用いて何度もアドレッシングを行う必要がなく,かつ総ステージ移動距離も最短である(本例はAP[1][1](713e)→AP[3][1](714e)→AP[5][1](715e)の順でステージ移動しており,例えばAP[1][1](713e)→AP[5][1](715e)→AP[3][1](714e)等に対して短い)。このように,本発明では複数の評価ポイントの撮像順を最適化し,高いスループットを得ることを特徴とする。
【0079】
2.4 撮像シーケンス3(リリーフ機能)
図7(f)は,撮像失敗時のリリーフ機能を示す例である。本例では,まずAP[p][1] [1](703f)でアドレッシングを行い(図中(1)で移動),次に,EP[p](704f)に移動し(図中(2)で移動),撮像を行うという撮像シーケンスが設定されている。ここで,AP[p][1][1]の三番目の配列番号は撮像ポイントの候補番号を示している(AP[p][q][r]であれば,AP[p][q]に関するr番目の候補であることを示す)。しかし,実際にAP[p][1][1](703f)を撮像した際,例えば実撮像テンプレート709fに示すように,本来あるべきパターンが不良により形成されていなかった(同図中に破線で示した設計パターン702fに対して実際に形成されたパターンが708f)等の不具合によりアドレッシングが失敗する可能性がある。
【0080】
そこで,異なる複数の撮像ポイントあるいは撮像シーケンス候補を,事前に,あるいは不具合が発生した時点で算出し,処理を切り替えることによりEPの撮像を成功させることが可能である。ここではAP[p][1][1](703f)に代わるAPの例としてAP[p][1][2](706f)が表示されている。成否判定によりAP[p][1][1](703f)でのアドレッシング失敗と判断された場合,次にAP[p][1][2](706f)に移動し(図中(1)'),アドレッシングを行い,もし配線パターン705fに形成不良等がなく,処理が成功すれば,EP[p](704f)に移動し(図中(2)'で移動),撮像を行う。また前述のように撮像ポイントあるいは撮像シーケンス候補をどのように切り替えるか決定するために,前記撮像ポイントあるいは撮像シーケンスの評価値あるいは優先順位を算出し,前記評価値あるいは優先順位を基に自動で切り替えを行うことが可能である。
【0081】
このように本実施例では撮像を成功させるために,ある任意の撮像ポイントにおける処理において成否判定を行うことを特徴とする。また前記撮像ポイントの候補を複数選択しておく,あるいは必要に応じて選択し直すことにより,前記成否判定において処理が失敗した場合に撮像ポイントを切り替えることを特徴とする。これはAF,AST,ABCCにおいても同様に適用可能である。
【0082】
図7(g)は,撮像失敗時のリリーフ機能を示す例である。本例ではリリーフ時の撮像ポイントの切り替えによって撮像シーケンスが大きく変化する例である。図7(f)と同様に,例えば優先順位の高かったAP[p][1][1](703g)においてアドレッシングを行い(図中(1)で移動),同処理が失敗した場合,次に優先順位の高いAPとしてAP[p][1][2](706g)に移動し(図中(1)'),アドレッシングを行う。ただし本例では,AP[p][1][2]内のパターンにx方向のエッジが少ないために,y方向のアドレッシングを行うためにAP[p][2][2](708g)も追加する必要がある((2)'で移動)。すなわち,本例では単にAPをAP[p][1][1]からAP[p][1][2]に変更するだけでなく,新たに撮像テンプレートを追加する必要がある((1)→(2)から(1)'→(2)'→(3)'に変更)。
【0083】
図7(f)(g)の不具合は,アドレッシングにおける失敗であったが,同様にその他の撮像あるいは処理において不具合が発生した場合も同様にリリーフすることが可能である。このように本実施例では撮像を成功させるために,ある任意の撮像ポイントにおける処理において成否判定を行い,前記成否判定において処理が失敗した場合に撮像ポイントや撮像シーケンスを切り替えることを特徴とする。これはAF,AST,ABCCにおいても同様に適用可能である。
【0084】
次に,図7(g)を用いて,撮像あるいは処理失敗時にどの撮像ポイントを切り替えるかの判断方法について一例を示す。
【0085】
例えば実撮像テンプレート710gに示すように,実際にAP[p][2][2](708g)を撮像した際,同図中に破線で示した設計パターン707gに対し,実際に形成されていたパターン709gが大きく変形していたためにアドレッシングが失敗した場合を考える。もし,実際の撮像位置710gが,予定していた撮像ポイントAP[p][2][2](708g)の座標に対して大きくずれていなかった場合,AP[p][2][2](708g)のパターン変形に問題があるため,リリーフ機能としてはAP[p][2][2](708g)を他の撮像ポイント(図示せず)に差し換える等の処理が考えられる。
【0086】
一方,実撮像テンプレート713gに示すように,実際にAP[p][2][2](708g)を撮像した際,実際に形成されていたパターン711gは設計パターン707gに対して大きな変形はなかったが,大きな視野ずれによりアドレッシングが失敗した場合を考える。この場合AP[p][2][2](708g)への移動は,AP[p][1][2](706g)でのアドレッシング結果に基づいているため,AP[p][1][2](706g)でのアドレッシングが失敗していた可能性が高い(あるいは,図示していないがグローバルアライメント等のAP[p][1][2](706g)以前のアドレッシングが失敗していた可能性もあるが,本説明では扱わない)。そのため,アドレッシングを成功させるには,AP[p][1][2](706g)を他の撮像ポイント(図示せず)に差し換えるか(その場合,以降の撮像シーケンスも変更になり,AP[p][2][2](708g)を使用しなくなる可能性もある),あるいは,例えばAP[p][2][2](708g)のサイズ・形状を変更し,AP713gに示すような撮像ポイントに差し換えることによって,多少のy方向の撮像ずれが発生したとしても,信頼性の高いアドレッシングに必要なエッジ長(例えば,714g)が撮像ポイント内に含まれるようになり,同撮像ポイントによるx方向のアドレッシングが可能となる。
【0087】
このように失敗原因に応じて,リリーフ処理は異なる。本発明では,前記成否判定に加えて失敗原因の推定機能を加えることで,前記失敗原因に応じてより効果的なリリーフ処理を選択することができる。ただし,撮像あるいは処理の成否判定のみを行い(失敗原因の推定は行わず),失敗時には機械的に他の撮像ポイントあるいは撮像シーケンス候補に処理を切り替える等の単純なリリーフ処理を行うこともできる。このようなリリーフ機能における処理内容はオペレータが設定することも,システムで自動設定することも,システムで自動設定された処理内容を基にオペレータが設定することも可能である。
【0088】
図8にリリーフ機能を含む全体の撮像シーケンスを示す。まず,ステップ801においてグローバルアライメントを行い,SEM装置に取り付けたウェーハの位置ずれや回転を補正する。次に,各評価ポイントEP[p](p=1〜Np,Np≧1)の観察を行うが,撮像順は図7(e)に示したようにID順とは限らない。ステップ802において観測する評価ポイントのIDをpに代入し,ステップに従いステップ836において全評価ポイントを観測するまで順次評価ポイントを観察していく。
【0089】
前記EP[p]を良好に観察するため,ステップ803〜829において,図7に示した撮像シーケンス例のように必要に応じてAP,AF,AST,ABCCに移動し,それぞれアドレッシング(ステップ805),オートフォーカス調整(ステップ811),オートスティグマ調整(ステップ817),オートブライトネス・コントラスト調整(ステップ823)を行う。前記アドレッシング,オートフォーカス調整,オートスティグマ調整,オートブライトネス・コントラスト調整後と,EP撮像後 には,撮像あるいは処理の成否判定,およびリリーフ処理を行うことが可能であり,同処理はそれぞれステップ806〜809,ステップ812〜815,ステップ818〜821,ステップ824〜827,ステップ832〜835に相当する。ここでは,アドレッシング後の処理ステップ806〜809について取り上げて説明するが,その他のステップについても同様である。
【0090】
まず,アドレッシング(ステップ805)後,ステップ806において前記アドレッシングの成否判定を行う(ただし,ここでの成否判定には直前の処理以外の処理に対する成否判定も含む。例えばEP画像におけるフォーカス調整の不十分であった場合,前記EP画像取得以前に行ったAFでのフォーカス調整が不十分であったと判定される等)。前記成否判定の基準であるが,例えば前記アドレッシングにおける実撮像テンプレートと登録テンプレートとマッチングにおける最大相関位置のずれ量が大きい,最大相関値が低い,最大相関位置周辺の相関分布が非常になだらか(多少のノイズにより最大相関位置が大きく変化する可能性があり,位置ずれ推定量の信頼性が低い),両テンプレート内の配線パターン形状が大きく異なる等の現象がみられた場合,アドレッシング失敗と判断することができる。ここでアドレッシング成功と判断された場合は次の撮像ポイントに移動するが(ステップ811以降),失敗と判断された場合は,ステップ807において撮像ポイントあるいは撮像シーケンスの変更方法を決定する。前記変更方法の決定のため,前記失敗原因の推定を行い,前記失敗原因に応じてより効果的な変更方法を選択することもできる。
【0091】
次に,前記変更方法が決定した場合,ステップ808において撮像ポイントあるいは撮像シーケンスの変更,および必要に応じてp,qの変更を行った後,ステップ801,805,811,817,823のいずれかにジャンプし,撮像シーケンスを継続する。もし,ステップ813においてリリーフのための撮像ポイントあるいは撮像シーケンス変更方法がなかった場合は,撮像失敗となる(ステップ815)。ただし,その場合も撮像が失敗していることは認識でき,その後の処理において失敗したEP画像を解析から除外する等の例外処理を行うことができる。また,撮像あるいは処理に成功したあるいは失敗した撮像ポイントの情報は,前記撮像ポイントの座標やテンプレート,成否結果,失敗原因等とリンクして,例えば図5中のデータベース536に蓄えられ,以降のレシピ生成において履歴情報として参照,活用することができる。
【0092】
図8において,オートフォーカス調整,オートスティグマ調整,オートブライトネス・コントラスト調整にそれぞれ相当する810(ステップ811〜815),816(ステップ817〜821),822(823〜827)は順番を任意に入れ替えることができる。また任意のp,q(pは評価ポイントのID,qは各評価ポイントに関して経由する撮像テンプレートのID)について804(ステップ805〜809),810(ステップ811〜815),816(ステップ817〜821),822(823〜827)の任意の組み合わせの処理を省略することができる。
【0093】
2.5 全体の処理フロー
以上述べた撮像レシピ生成の全体の処理フローを図4にまとめる。まず,ステップ401において入出力情報の組み合わせを指定する。具体的には,前述した図5に示す入出力情報の任意の組み合わせが可能である。前記入出力情報の組み合わせは,オペレータが任意に設定することも,システム内部のデフォルトの組み合わせを用いることも可能であり,前記デフォルトの組み合わせは,検査対象となるウェーハの品種や工程ごとに用意することが可能である。次に前記指定した入力情報402を入力する。前記入力には少なくとも,評価ポイントEP[p](p=1〜Np,Np≧1)の座標403とCADデータ404を含む。その他の各種パラメータ405は,ステップ401で入力情報として指定した図5中の情報502〜536の一部である。前記評価ポイントの座標は,設計自動化ツール(Electronic Design Automation Tool:EDAツール)等を用いた回路設計における,パターン形成シミュレーション等から,検査を要する半導体パターン上の危険ポイントを検出し,前記検出された危険ポイントからオペレータがサンプリングする等して決定される。前記入力情報を基に撮像ポイント,撮像シーケンス等の計算を行う(ステップ406)。
【0094】
図5における撮像レシピ自動生成エンジン501に相当),出力情報412を出力する。図4では,前記出力情報として撮像ポイント413,撮像シーケンス414,撮像ポイントあるいは撮像シーケンスの評価値あるいは優先順位415の三つを挙げたが,ステップ401で指定することにより,図5中の情報521〜534の任意の情報を計算・出力することができる。前記ステップ406においては,前記EP[p]座標403やビームシフトの可動範囲や禁止領域等を基に各種撮像ポイントの探索範囲を設定し(ステップ407),撮像ポイント(AP/AF/AST/ABCC)を算出する(ステップ408)。
【0095】
ステップ408では,撮像ポイント及び撮像シーケンスの最適化を行う(EP撮像順の最適化も含む)。前記ステップ408では,必要に応じて図7(b)に一例を示した撮像ポイントの分割,図7(d)(e)に例を示した撮像ポイントの共有を含む撮像シーケンス最適化(ステップ409,EP撮像順の最適化も含む),図7(c)に一例を示した撮像ポイントのサイズ・形状の最適化(ステップ410),図7(g)に例を示した撮像ポイントあるいは撮像シーケンスの複数候補算出(ステップ411)等の処理を行うことができる。出力情報412はステップ406において選択された撮像ポイントのテンプレート(ステップ417において切り出し)と共に撮像レシピに登録される(ステップ418)。また,ステップ411で算出された他の撮像ポイントあるいは撮像シーケンス候補も必要に応じてステップ418において前記撮像レシピ内に登録される,あるいは異なる撮像レシピに登録される,あるいはデータベース416において管理される。前記撮像レシピに基づき,実際の撮像シーケンスにおいて,撮像が行われる(ステップ419)。ステップ420において,ステップ419での任意の撮像ポイントでの撮像あるいは処理(アドレッシング,オートフォーカス調整,オートスティグマ調整,オートブライトネス・コントラスト調整等)が失敗した場合は,前述のステップ418において作成した他の撮像ポイントあるいは撮像シーケンスに切り替え,撮像あるいは処理を成功させる。
【0096】
3. 撮像レシピ自動生成エンジン
次に,撮像レシピ自動生成エンジン501の実施例について述べる。
【0097】
3.1 生成エンジン概要
図9を用いて,撮像レシピ自動生成エンジン903(図5中の501)内において任意の撮像ポイントを評価,選択するための方法について,AP選択を例に述べる。処理の概要として,APの選択であれば,任意のAP内のパターンがアドレッシングを行うために良好なパターンであるか否かを評価する必要があり,例えば(1)AP内にアドレッシングに適したパターンの変化があるか(複雑さの指標。同指標の分布は911),(2)選択したAPの周囲に前記APに類似したパターンが存在せず,アドレッシング時にマッチングの失敗をおこさないか(特異性の指標。同指標の分布は912),(3)評価ポイントEPの近傍に位置しているか(距離の指標。同指標の分布は913)等の複数の観点から任意の撮像ポイント候補位置における各種指標値を算出し(以降,これらを選択要素指標値と呼ぶ),前記要素指標値に基づき撮像ポイント候補を評価し,適切な撮像ポイントを選択する。
【0098】
3.1.1 処理内容(選択要素指標値)
以降,処理の詳細について具体的に述べる。まず,回路設計データとしてCADデータ901とEP902が入力される(それぞれ図4における404と403に対応する。各種パラメータの値あるいは範囲405に対応する入力情報は図9に図示していない)。前記CADデータ901は,ステップ904において画像データ905(以後,CAD画像と呼ぶ)に変換される(本処理の詳細は図12を用いて後述する)。
【0099】
次に,図9中のステップ907において各撮像ポイント候補における前記選択要素指標値を算出する。図9では例として3つの選択要素指標値の分布911〜913を図示しているが,様々な評価基準で設計された任意個数の選択要素指標値を算出することが可能である。選択要素指標値の分布911〜913は,CADデータ座標における任意のx,y座標(x,y)にAPの中心が存在したときの各選択要素指標値の値をワイヤーフレームで表示している(評価位置を示す座標系として,前記CADデータ座標における任意のx,y座標に代えて,前記CADデータを画像に変換したCAD画像における画素のx,y座標(Ix,Iy)で表現することも可能である)。後述するように,選択要素指標値は要求される算出精度や計算時間等の観点から,CADデータ901を入力情報として算出することも,CAD画像905を入力情報として算出することも可能であることを特徴とする。
【0100】
ステップ908では前記CADデータ901を,ステップ909では前記CAD画像905をそれぞれ入力情報として選択要素指標値を算出している。また,ステップ910では前記CADデータ901,CAD画像905を共に入力情報として用いないで選択要素指標値を算出している。ステップ908〜910内にはそれぞれ一つの選択要素指標値911〜913しか図示されていないが,ステップ908〜910の任意のステップにおいて任意の複数個の選択指標値を計算し,図示した選択指標値と同様に撮像ポイント選択の判断材料とすることができる。選択要素指標値の分布911〜913では値が大きい程(x,y軸に直交するz軸方向の値が大きい程),良好な評価を得たことを示しているが,前記選択要素指標値毎に指標値の大小と評価の良好不良との関係は変更することができる。複数の前記選択要素指標値を総合的に判断して選択ポイントを選択する方法として,例えば前記選択要素指標値の線形和926(各要素指標値911〜913にそれぞれ重みw1〜w3(923〜925)を掛けて足し合わせた値)により総合的な選択指標値を算出し(同指標の分布は927),前記選択指標値を基に撮像ポイントを決定することが考えられる(例えば前記選択指標値の値が最も大きい座標値(Xap,Yap)928を中心とする撮像ポイントをAPとする)。
【0101】
前述の処理により選択されたAPの一例を図9下に示す。APは,CADデータ901上の範囲929として出力することも,CAD画像905上の範囲930として出力することも可能である。前記重みw1〜w3は図5における選択処理パラメータ512の一つであり,前記重みを変えることにより,各種撮像ポイントの選択基準をカスタマイズ可能なことを特徴とする。図9に示したAP選択処理は,AP以外の撮像ポイントAF,AST,ABCCの選択に関しても,それぞれの撮像ポイントが満たすべき基準を評価するような選択要素指標値に差し換えることにより同様に適用可能である。
【0102】
前記選択指標値927あるいは前記選択要素指標値911〜913の値から,任意の撮像ポイントの妥当さを定量的に評価することが可能となり,複数の撮像ポイントあるいは撮像シーケンス候補における評価値あるいは優先順位を算出することが可能となる。更に,前記選択要素指標値のように複数の様々な観点からの指標に分解して評価することにより,任意の撮像ポイントに関して単に各種撮像ポイントとしての適切/不適切を判断するのみならず,適切/不適切の要因解析が可能となり,撮像ポイントの配置や撮像シーケンスの決定が可能となる。
【0103】
3.1.2 処理内容(禁止領域)
前述の選択処理に撮像ポイント選択の対象とならない禁止領域の設定を組み合わせることで選択の高精度化を図ることができる。以降,前記禁止領域について説明する。
【0104】
まず,ビームシフト可動範囲を考慮した禁止領域やEPにおけるコンタミネーションの影響を考慮した禁止領域を設定することにより,選択される撮像ポイントの候補を絞り込むことができる(ステップ921)。前記ビームシフト可動範囲を考慮した禁止領域の例として,図13(a)に示すように,選択した任意の撮像ポイント,例えばAP[1][1](1302)からEP[1](1303)にビームシフトにより移動する必要があれば,APの探索範囲をEP[1](1303)を中心としたビームシフト稼動範囲1304内と設定する。この場合,禁止領域は斜線の領域1305で与え,前記領域1305内からはAP等の撮像ポイントを選択しない。こうすることで,1304内から選択されたAPはビームシフトによりEPに移動可能であるという条件を満たすことになる。
【0105】
前記禁止領域のもう一つの例として,例えば,EP[1](1303)におけるコンタミネーションの付着を抑えるため(試料に電子線を長く照射すると汚染物質が試料に付着してしまう),特に高倍率で撮像する撮像ポイントの選択において,EP[1](1303)の撮像領域ならびに前記撮像領域の周辺近傍領域1306を禁止領域と設定することができる(EPの撮像範囲と他の撮像ポイントの撮像範囲とが重複しないようにする。前記周辺近傍領域を設けることにより,前記他の撮像ポイントの撮像において多少の位置ずれが生じても前記EPに重複しないようにするため)。前記探索範囲や禁止領域は,任意にユーザが指定することも,システム内部のデフォルトのルールで指定することもできる(図5中の選択処理パラメータ512の一つ)。
【0106】
さらに,前述のコンタミネーションの付着を抑えるための禁止領域の設定を複数のEPを考慮して設定することも可能である。このような例として,図13(b)に示すように,EP[1](1303)の撮像を行った後,次の評価ポイントとしてEP[2](1307)の撮像を行う場合を考える。EP[1](1303)用のAP選択時において,図18(a)で説明した場合と同様にEP[1](1303)の周辺に設けた禁止領域1306のみを避けることを条件にAPを探索すれば,例えば前記APとしてAP[1][1](1309)を選択してしまう危険がある。前記AP[1][1](1309)の撮像により,以降に撮像するEP[2](1307)の撮像範囲にコンタミネーションが付着してしまうため,EP[2](1307)の撮像にとってAP[1][1](1309)の選択は妥当ではない。そこで,EP[1](1303)用のAP選択においては,EP[1](1303)の撮像領域ならびに前記撮像領域の周辺近傍領域に設けた禁止領域1306と,EP[2](1307)の撮像領域ならびに前記撮像領域の周辺近傍領域に設けた禁止領域1308の両方を避けることを条件にAP[1][1]を選択する必要がある。前述の禁止領域の設定方法は三つ以上のEPを考慮する場合においても,またAF,AST,ABCCの選択においても同様に適用可能な考え方である。
【0107】
本実施例では,このように複数のEPを考慮して禁止領域を設定することを特徴とする。前述の図13の要領で設定された禁止領域の分布は,図9において禁止領域921で表示されている。禁止領域921においては撮像ポイントの選択禁止である(x,y)座標が黒く表示されている。この表示方法は後述する禁止領域918〜920においても同様である。
【0108】
次に,前記選択要素指標値を用いて設定する禁止領域について説明する。例えば前記選択要素指標値911〜913毎に,撮像ポイント(ここではAP)として最低限満たさなければならない評価値をそれぞれしきい値Th1〜Th3(914〜916)として設定し,前記しきい値を満たさない選択要素指標値をもつ撮像ポイントを禁止領域に設定することで候補から除外し,残った候補の中から前記選択指標値927を基に撮像ポイントを決定することができる。前記しきい値Th1〜Th3は図5における選択処理パラメータ512の一つであり,前記しきい値を変えることにより,各種撮像ポイントの選択基準をカスタマイズ可能なことを特徴とする。前記選択要素指標値911〜913に対し,設定したしきい値Th1〜Th3(914〜916)以下の候補を禁止領域として設定した例を918〜920に図示した。同図において黒で示された領域は選択要素指標値が基準に満たなかったために禁止領域となったことを示す。本例ではしきい値以下の領域を禁止領域としたが,設計した選択要素指標値によっては,値が小さいほど評価が良好であるという場合もあり,その場合は前記しきい値以上の領域を禁止領域に設定する。また,選択要素指標値913に対する禁止領域920に代表されるように,しきい値による禁止領域の設定を行わないように設定することもできる。禁止領域923は禁止領域921と各選択要素指標値における禁止領域918〜920の論理和であり,APは前記禁止領域923以外から選択されることになる。
【0109】
3.2 選択要素指標値
前述のように,選択要素指標値は複数存在しうるが(図9では例として3つ示している),本発明では,前記選択要素指標値を算出するため,選択要素指標値毎に前記CADデータあるいはCAD画像を入力情報として選択的に用いることを特徴とする。すなわち,前記CADデータは座標データであるため座標精度は高いが,データは輪郭情報のみなので,二次元的なパターンの評価には不向きな点もある。一方,前記CAD画像は,画像量子化のため,形状精度はCADデータよりも低いが,二次元テンプレートのマッチング特性の評価には有効である。更に処理内容によって前記CADデータとCAD画像とで処理速度が異なる場合がある。このように設計データを表現するデータ形式(座標データや画像データ)には任意の処理に対する処理精度や処理速度の点で一長一短があるため,前記選択要素指標の算出においては,CADデータあるいはCAD画像等のデータ形式の異なる情報を選択要素指標値に応じて選択的に活用して前記選択要素指標値を算出することにより,適切な指標値の算出精度,ならびに適切な計算速度の両立を図ることができる。
【0110】
図9において枠908で囲まれた選択要素指標値911はCADデータを入力情報として算出する指標値,枠909で囲まれた選択要素指標値912はCAD画像を入力情報として算出する指標値,枠910で囲まれた選択要素指標値913はCAD画像,CADデータ共に入力情報として用いない指標値の例として挙げた。
【0111】
これらの組み合わせは一例であり,場合によっては,選択要素指標値912をCADデータを入力情報として算出するように設定することも可能である。また,図示していないが,CADデータとCAD画像を共に用いる選択要素指標値もありうる。更に図9において各枠908〜910内にはそれぞれ一つの選択要素指標値しか計算されていないが,複数の選択要素指標値を計算する場合も,あるいは一つも計算しない場合もありうる。
【0112】
図10(a)にEP1002からビームシフト可能な領域を切り出したCADデータ1001と評価する撮像ポイント候補位置(点線枠で示した1005に代表される5×5=25ヶ所のテンプレート領域)を示す。評価する撮像ポイント候補の個数,サイズ(1004)・形状(同図では正方領域)および評価する撮像ポイント間の間隔(1003)等は自由に設定できる。撮像ポイントのサイズや撮像ポイント間の間隔によっては,撮像ポイント候補の領域同士が重複する場合もある。図10(b)は図10(a)における撮像ポイント候補1005を拡大表示したものである。例えばAPを選択する場合であれば,前記撮像ポイント候補の領域内にアドレッシング可能なパターンが十分含まれているかを判定することになる。その際,撮像位置変更方法(ステージシフトやビームシフト)の位置決め精度による撮像ポイントの視野ずれを考慮し,前記視野ずれ推定量1007(図5中の装置条件514の一部)を与えることによって,撮像ポイントのサイズ1004から,周囲を前記視野ずれ推定量1007分カットして,その内部の領域1008内に含まれるパターンのみから選択要素指標値を算出することによって,前記視野ずれが発生しても,撮像や処理が失敗しない撮像ポイントを選択することを特徴とする。図10(b)では,撮像ポイント候補領域1005内にはパターン1006Aが含まれるが,その内,視野ずれ推定量1007が発生しても必ず視野内に含まれるパターン1006Bだけがアドレッシングに適したパターンであるか評価されることになる。
【0113】
次に選択要素指標値を計算する際の入力となるCADデータあるいはCAD画像のバリエーションについて説明する。図12(a)に一例として輪状パターンのCADデータ1201を示す(パターン輪郭の頂点と前記頂点を結ぶ点線で示した)。実パターンにおいては,製造パラメータ等の変動によりCADデータと比べてパターンの角が丸まる等の変形が起こる可能性がある。このようなCADデータと実パターンとの形状乖離を考慮せずに,CADデータのみからパターン形状を評価すると,選択要素指標値の算出精度が低下する危険性がある。そこでより実パターン形状に近づけるため,例えばCADデータ1201のコーナ部を斜めにカットした変形CADデータ1202を生成し,前記変形CADデータ1202を用いて選択要素指標値を算出することができる。また,CADデータと実パターンとの乖離が大きくなる可能性の高い箇所を,選択要素指標値算出時に評価から除外することもできる。
【0114】
変形方法は前述のコーナ部を斜めにカットする以外にも,コーナ部を丸めたり,パターン全体を細らせる等も挙げられ,これらの変形方法及び変形の度合いは任意に設定することが可能である(変形方法及び度合いは,図5中の設計パタ−ンと実パタ−ンとの形状乖離推定量513として指定することができる)。CAD画像1203の生成においては,CADデータ1201から生成することも,変形CADデータ1202から生成することも可能である。また,前記生成したCAD画像1203に対し,マスクの抜き残し情報(図5中の508)から例えばパターン内部を塗り潰したCAD画像1204を生成することも,平滑化処理等の任意の画像処理を施した変形CAD画像1205を生成することも可能である。また,図12(a)においては1202,1204,1205を任意の組み合わせで省略することできる。選択要素指標値の計算には各選択要素指標値毎に1201〜1205のデータを任意の組み合わせで入力情報として用いることができる。
【0115】
次にCADデータからCAD画像を生成する方法をCADデータ1202からCAD画像1203の生成を例に図12(b)を用いて示す。画像化する際には,画像量子化幅1206で格子状の画素に分割して,パターン1202の線分が存在する画素の明度値を変化させて画像化する(一例として斜線の画素1207)。前記画像量子化幅(pixel/nm)1206は画像変換後に行われる任意の解析(画像処理)において不都合が生じない寸法として与える(図5中の処理パラメータ512の一つ)。
【0116】
次に図7(d)(e)において例示したように,異なる複数のEP間で撮像ポイントを共有する場合について,共有APを選択する場合を例に図14を用いて説明する。複数のEP間で共有可能なAP候補を評価する場合も,基本的には前述の単独EPに対するAP選択と同様に,各種選択要素指標値を各AP候補に対して算出し,前記指標値に基づきAP選択を行う。図14(a)の場合,二つのEP1404,1405に対し共有AP1403が選択されており,ステージシフトにより共有AP1403に移動してアドレッシングした後,順次EP1404,1405にビームシフトで移動し,撮像する。
【0117】
通常EPを観察する際には,図14(c)に示すようにEP1409のFOV全面においてなるべく電子ビームがウェーハ面に対して垂直上方から照射されるようにするため,ウェーハ面に対して垂直入射方向に照射された電子ビーム1408Bのウェーハ面上の照射位置(電子ビーム垂直入射座標と呼ぶ)が凡そEPのFOV中心1408にくるように設定されることが多い。すなわち,EP内の電子ビーム照射位置において最も電子ビームが傾くと思われるEPのFOVの端に電子ビームを照射したときの電子ビーム1410Bの垂直入射電子ビーム1408Bに対する傾斜角1410Aを小さくすることができる。
【0118】
しかし,前述のように複数のEPをビームシフトの移動のみで順次撮像する際には,複数のEPのFOV中心全てに電子ビームを垂直入射させることは難しい。そこで,複数のEPにおいて共有APを設定する場合は,図14(b)に示すように電子ビーム垂直入射座標1402を何らかのルールに基づき決定しなければならない(図14(b)は図14(a)を斜め方向から見たもの)。本発明では,例えば,前記電子ビーム垂直入射座標1402から撮像すべきEPや撮像ポイントがビームシフト等により移動可能であること,EPや撮像ポイントを撮像する際の電子ビームの入射角を後述する許容電子ビーム入射角より小さくすること,なるべく多くのEP間で撮像ポイントの共有ができるようにすること等を条件に,電子ビーム垂直入射座標1402,APを共有するEP群,AP等の撮像ポイントを決定することを特徴とする。図14(b)は,共有AP1403を用いて二つのEP1404,1405を撮像する例であり,各テンプレート中心を撮像する際の電子ビームの入射角をそれぞれ1403A,1404A,1405Aで示す。
【0119】
また,許容する電子ビーム入射角を各テンプレートの種類毎やEP毎に設定できることを特徴とする(図5中の要求画質517の一つ)。最低条件として電子ビーム垂直入射座標からビームシフトによる移動範囲1406内であれば撮像は可能であるが,画質や撮像画像を用いた各種処理の精度を考えた場合,ビーム入射角はより垂直に近い方が望ましく,各テンプレートの探索範囲は前記範囲1406よりも狭くなりうる。特にEPにおいては精度の高いパターン形状の計測を行うために,例えばAPと比べて許容電子ビーム入射角に対する要求が厳しい場合がある。図14(b)においては,APをビームシフトによる移動範囲1406内から,EPを別途指定した範囲1407内から選択するよう入力した例である。指定は許容電子ビーム入射角1407のように与えることも,電子ビーム垂直入射座標1402からの範囲1407のように与えることもできる。
【0120】
3.3 登録テンプレート
評価ポイントあるいは選択された撮像ポイントのテンプレートを撮像レシピに登録する方法に関して図15(a)を用いて説明する。
【0121】
CADデータ1501において任意の撮像ポイント1502が選択された場合を考える。ここでは説明例として,前記撮像ポイント1502をAPとする。AP1502を撮像レシピ1513に登録する際には次の6つの方式が挙げられる。
(1)CADデータ1501から切り出した撮像ポイント1502に相当するCADデータ(座標データ)1503を登録テンプレートとして撮像レシピ1513に登録する。
(2)CADデータ1501から切り出した撮像ポイント1502に相当するCADデータ(座標データ)に任意の変形1504(例えば前述の図12(a)1202に示す変形)を加えた変形CADデータ1505を登録テンプレートとして撮像レシピ1513に登録する。
(3)CADデータ1501から切り出した撮像ポイント1502に相当するCADデータを画像変換1506(例えば前述の図12(b)に示す画像化)したCAD画像1507を登録テンプレートとして撮像レシピ1513に登録する。
(4)CADデータ1501から切り出した撮像ポイント1502に相当するCADデータを画像変換1506(例えば前述の図12(b)に示す画像化)したCAD画像1507に任意の変形・明度付加1508(例えば前述の図12(a)1204,1205に示す変形・明度付加)を施した変形CAD画像1509を登録テンプレートとして撮像レシピ1513に登録する。
(5)実際に任意の撮像ポイントを撮像して得られる前記撮像ポイントにおけるSEM画像1510を登録テンプレートとして撮像レシピ1513に登録する。
(6)実際に任意の撮像ポイントを撮像して得られる前記撮像ポイントにおけるSEM画像1510に対し任意の画像処理を施した処理SEM画像1512を登録テンプレートとして撮像レシピ1513に登録する。前記画像処理例としては,画像の平滑化処理,ノイズ除去処理,線分抽出処理等が挙げられる。前記線分抽出処理を行った場合,処理SEM画像1512は線分情報になる。
【0122】
本発明においては,上記(1)〜(6)の形式のテンプレートのいずれかを選択的に,あるいは任意の複数の組み合わせで撮像レシピに登録することを特徴とする。このように撮像レシピに登録するテンプレート,例えばAPテンプレートの形式において複数のバリエーションが存在する利点として,実際の撮像シーケンスにおける撮像位置のアドレッシングにおいて用いられる登録テンプレートと実撮像テンプレートとのマッチング処理の高速化ならびにマッチングの高精度化が挙げられる。
【0123】
前記登録テンプレートと実撮像テンプレートとのマッチング(1515)には,図15(b)に示すように様々な処理方法のバリエーションが考えられる。例えば,登録テンプレートの画像情報(例えばテンプレート1507,1509,1510,1512,あるいは前記テンプレート1507,1509,1510,1512に任意の画像処理1516を施した画像,あるいはテンプレート1503,1505,1512を処理1516により画像化したもの)と実撮像テンプレートの画像情報(テンプレート1514,あるいは前記テンプレート1514に任意の画像処理1517を施したもの)とを画像マッチング(1518)し,位置ずれ量1519を算出し,出力(1520)する方法。あるいは,登録テンプレートの線分情報(例えばテンプレート1503,1505,1512,あるいは前記テンプレート1503,1505,1512に任意の変形処理1516を施したもの,あるいはテンプレート1507,1509,1510,1512から処理1516により線分情報を抽出したもの)と実撮像テンプレートの線分情報(テンプレート1514から処理1517により線分情報を抽出したもの)とを線分マッチング(1518)し,位置ずれ量1519を算出し,出力(1520)する方法などがある。
【0124】
すなわち,前述のような任意の処理1516(任意の画像処理や形状変形や,任意のデータ形式へに変換)を行ったテンプレートがマッチング時に用いられる場合があるため,前記マッチングの方法に応じて前記任意の任意の処理1516を行ったテンプレートを撮像レシピに保存することによって,前記マッチング処理の毎に前記任意の任意の処理1516を行う必要がなくなり処理の高速化に繋がる。また,1503,1505,1507,1509,1510,1512等の複数の登録テンプレートを任意の複数枚の組み合わせで撮像レシピに保存することも可能である。
【0125】
4. システム構成(データベース管理,共有)
本発明における装置の構成の実施例を図16(a)(b)を用いて説明する。
図16(a)において1601はマスクパターン設計装置,1602はマスク描画装置,1603はマスクパターンの露光・現像装置,1604はエッチング装置,1605および1607はSEM装置,1606および1608はそれぞれ前記SEM装置を制御するSEM制御装置,1609はEDA(Electronic Design Automation)ツールサーバ,1610はデータベースサーバ,1611はデータベースを保存するストレージ,1612は画像処理・撮像レシピ作成演算装置,1613は撮像レシピサーバ,1614は生成したパターン形状の評価ツールサーバ(例えば評価パターンのSEM画像データと設計データとの形状比較等を行う)であり,これらはネットワークを介して情報の送受信が可能である。データベースサーバ1610にはストレージ1611が取り付けられており,図5に示した任意の入力・出力情報のデフォルト値や設定値や算出値等を,品種,製造工程,日時,撮像あるいは処理の成否結果とリンクさせて保存し,また参照することが可能である。また,同図においては例として二台のSEM装置1605,1607がネットワークに接続されているが,本発明においては,任意の複数台のSEM装置において撮像レシピをデータベースサーバ1611あるいは撮像レシピサーバ1613により共有することが可能であり,一回の撮像レシピ作成によって前記複数台のSEM装置を稼動させることができる。また複数台のSEM装置でデータベースを共有することにより,過去の前記撮像あるいは処理の成否結果の蓄積も早く,これを参照することにより良好な撮像レシピ生成の一助となる。
【0126】
図16(b)は一例として図16(a)における1606,1608,1609,1610,1612〜1614を一つの装置1616に統合したものである。本例のように任意の機能を任意の複数台の装置に分割,あるいは統合して処理させることが可能である。
【0127】
5. GUI
本発明における入力・出力情報の設定あるいは結果の表示を行うGUIについて実施例を図11に示す。図11中のウィンドウ1701に示すように以下に説明する各種情報を一画面中にあるいは分割してモニタ等に表示することができる。また,図11中の*はシステムに入力された,あるいは出力された任意の数値(あるいは文字列)や数値の範囲,あるいは数値や数値の範囲の配列であることを示す。入力情報の設定に関して説明する。
【0128】
ウィンドウ1718内には,図5中の情報506〜519が列挙されており(図中には情報1,2,・・・と表示),ボックス1720において前記列挙された情報506〜519について,それぞれ撮像レシピ自動生成エンジンの入力情報とするか否かを指定する。ボックス1720内に「IN」と記入された情報は入力情報,「−」と記入された情報は入力情報としないことを示す。入力情報に指定した情報に関しては,ボックス1719内にその数値あるいは範囲あるいは名称(例えば品種,工程,材質)等を指定することができる。
【0129】
ウィンドウ1721内には,例えば複雑さ,変形し易さ等の選択要素指標値(例えば図9中の911〜914等。その他の評価基準に基づく選択要素指標値もありうる)が列挙されており,ボックス1775で指定した撮像ポイント種(q番目のAP,AF,AST,ABCC)毎に評価すべき前記選択要素指標値をチェックボックス1722を用いて任意の組み合わせで選択することができる(図11では例として「複雑さ」「特異性」「EPからの距離」の三つの選択要素指標値が選択されている)。また,前記選択された選択要素指標値を基に禁止領域の設定を行うためのしきい値Thi(i=1〜Nt,Nt≧1。例えば図9中の915〜918)や,選択指標値(図9中の式929)を算出するための重みwi(i=1〜Nw,Nw≧1。例えば図9中の919〜922)をそれぞれボックス1724,1725で指定することができる。
【0130】
また,それぞれの前記選択要素指標値を算出する際に用いる入力データ形式を例えばプルダウンメニュー1723から選択することができる。すなわち前記選択要素指標値を算出するための入力情報としてCADデータを用いる,あるいはCAD画像を用いる,あるいはCADデータとCAD画像を両方用いる,あるいはCADデータとCAD画像を両方用いない等の指定ができる。また,例えば前述の図7(b)に示したアドレッシングポイントの分割に代表されるように,1721で最初に指定したしきい値Thi,重みwi等の選択処理パラメータ(例えば単一のアドレッシングポイントでのアドレッシングを想定したパラメータ)で適切な撮像ポイントの選択ができず,前記選択処理パラメータの変更が必要となった場合もありうる(例えば二つのアドレッシングポイントによるアドレッシングを想定したパラメータに変更する場合)。そのため,条件に応じて複数の選択処理パラメータをユーザが指定することも,あるいはシステム内部で自動的に前述のような場合を判定し,前記選択処理パラメータを自動で変更することも可能である。
【0131】
チェックボックス1726はそのON/OFFをによって,図7(d)を用いて説明した複数のEP間での撮像ポイントの共有や,図18(b)を用いて説明した複数のEPを考慮した禁止領域の設定に代表されるように,異なる複数のEP間の位置関係を考慮した撮像テンプレート選択の最適化処理を行うか否かを選択できる。
【0132】
チェックボックス1727はそのON/OFFによって,図7(f)(g)を用いて説明したリリーフ機能を考慮した撮像ポイントや撮像シーケンスの切り替え処理を行うか否かを選択できる。すなわち,前記チェックボックス1727をONにした場合,各撮像ポイントにおける処理の成否判定を行い,前記処理が失敗した場合は失敗原因を推定し,前記失敗原因に応じて,撮像ポイントや撮像シーケンスを切り替えるための前記撮像ポイントや撮像シーケンスの候補を決定する。
【0133】
ボックス1728は,前記リリーフ機能用に事前に複数の撮像シーケンス候補を求める際の前記候補数を指定することができる。ウィンドウ1733内には,各評価ポイントEP[p](p=1〜Np,Np≧1)に関する項目群1742を指定する(同図ではEP[1]となっているが,任意の配列番号pに対応するEP[p]に対する同項目を設定可能である)。前記項目群には,各評価ポイントEP[p](p=1〜Np,Np≧1)の座標(x,y)や撮像ポイントのサイズ・形状,移動方法(ビームシフト,ステージシフト),撮像条件が含まれ,これらの値を任意の組み合わせで指定できる。また,ウィンドウ1759において撮像レシピに登録するEP[p]用の登録テンプレートのデータ形式を指定することができる。
【0134】
データ形式は前述のようにCADデータ,変形CADデータ,CAD画像,変形CAD画像,SEM画像,変形SEM画像等であり,任意の複数の組み合わせでテンプレートを登録することも,逆に一枚もテンプレートを登録(出力)しないことも選択可能である。ボックス1776には,電子ビーム垂直入射座標を入力あるいは出力できる。例えば単独EPで撮像シーケンスを最適化する場合は,前記電子ビーム垂直入射座標とEPの中心座標とを同じにして指定しても良いし,複数EP間で撮像ポイントの共有を含む撮像シーケンスの最適化を行う場合には,撮像レシピ自動生成エンジン内で前記電子ビーム垂直入射座標を最適化し,ボックス1776に出力することができる。
【0135】
次に領域1774において任意の撮像ポイント(p番目の評価ポイントの観察においてq番目に処理される撮像ポイントAP[p][q],AF[p][q],AST[p][q],ABCC[p][q])に関して,入力情報として指定可能な情報を設定する。同図では撮像ポイントの例として,1734〜1741に順にAP[1][1],AF[1][1],AST[1][1],ABCC[1][1],AP[1][2],AF[1][2],AST[1][2],ABCC[1][2]が表示されているが,これらの入力情報の指定方法は同様なので,以下,AP[1][1]1734を特に取り上げて説明する。
【0136】
項目群1743には,図示したように,撮像ポイント設定の有無(無しの場合,AP[1][1]は設定されない),撮像ポイントの撮像順,撮像ポイントの座標(x,y),撮像ポイントのサイズ・形状,移動方法(ビームシフト,ステージシフト),撮像条件が含まれ,これらの値を任意の組み合わせで指定できる。値を指定する情報はそれぞれ右に配置された対応する項目1743にその値(文字列等も含む)と,ボックス1751に「IN(入力情報のID)」と指定する。ここで,項目1743に値の範囲を指定し,前記範囲内で撮像レシピ自動生成エンジンにおいて適切な値を出力させることも可能である。例えば,AP[1][1]のサイズは3〜10umの範囲内で設定するよう指定し,前記エンジンが適切な値としてサイズ5umを出力する等の処理である。この場合,項目1743にはその値の範囲を指定し,ボックス1751に「IN−OUT(入力兼出力情報のID)」と指定する。また,前述したEP[p]のウィンドウ1759と同様に,撮像レシピに登録するAP[1] [1]用の登録テンプレートのデータ形式をウィンドウ1760において指定することができる。
【0137】
次に、出力情報の設定に関して説明する。出力情報は,対応するボックス1751〜1758に「OUT(出力情報のID)」と指定する。また,入力情報にも出力情報にも用いない情報に関しては,対応するボックス1751〜1758に「−(用いない情報のID)」と指定する。
【0138】
ボタン1729を押すと,前述の要領で指定した入出力情報の組み合わせと入力情報の値とを基に,撮像レシピ自動生成エンジンは出力情報を算出し,ボックス1751〜1758に「OUT」あるいは「IN−OUT」と指定された項目1743〜1750に前記出力情報を表示する。
【0139】
図11の例では,ユーザあるいはデフォルト値により,AP[1][1],AF[1][1],AF[1][2]については設定要,AST[1][1],ABCC[1][1]については設定不要,AP[1][2],AST[1][2],ABCC[1][2]の設定有無については撮像レシピ自動生成エンジンに出力させると指定されており,前記撮像レシピ自動生成エンジンの出力結果は,AP[1][2],AST[1][2]は設定要,ABCC[1][2]は設定不要と出力している。更に,撮像シーケンス(撮像ポイントの撮像順)をAP[1][1]→AF[1][1] →AP[1][2]→AST[1][2]→AF[1][2]→AP[1][2]→EP[1]と出力している。また,同撮像シーケンスの評価値あるいは優先順位をボックス1771に表示することができる。前記評価値は前記撮像シーケンスによりEP[1]の撮像が成功する度合いを定量化したもので,例えば前記撮像シーケンスに含まれる撮像ポイントにおける選択指標値(図9中の929)に基づいて算出される。
【0140】
撮像シーケンスの候補は複数算出可能であり,同図においては1768〜1770のNs個の撮像シーケンス候補が出力されている(1769以降は結果が図示されていないが,例えば対応するタグをクリックすることで1768と同様に表示することができる)。r番目の撮像シーケンスにおける撮像ポイントは,例えばAP[p][q][r]のように表記される(図では三番目のパラメータ表記は省略)。また,前述の説明では特にEP[1]について述べたが,各評価ポイントEP[p](p=1〜Np)について同様の処理が可能である。
【0141】
ボックス1726をONにすることによって,ウィンドウ1731においてはEP[p](p=1〜Np)の撮像順を最適化してボックス1732に出力することができる。同図の例ではEP[2]→EP[1]→EP[3]の順で撮像するように出力されている。これは図7(d)を用いて説明した複数のEP間での撮像ポイントの共有に代表されるように,前記共有とEP[p]の撮像順番を最適化することによって,撮像回数(撮像ポイント数)の削減および視野移動距離の短縮が可能となり,複数のEP[p]観察全体でより高いスループットが実現できる。
【0142】
指定したあるいは出力された撮像ポイントはウィンドウ1702において確認することができる。前記ウィンドウ1702内にはチェックボックス群1713のON/OFFを設定することによって,設計データ,各撮像ポイント,選択要素指標値や選択指標値の分布,ビームシフト可動範囲,禁止領域等を任意の組み合わせで表示することができる。図では各撮像ポイントの座標,サイズ・形状が1705〜1710に表示されている。また各撮像ポイントの選択要素指標値あるいは選択指標値あるいは優先順位の値を各撮像ポイントの表示1705〜1710と併せて表示することができる。
【0143】
CADデータの表示1711はウィンドウ1714内のレイヤー選択によって任意の組み合わせのレイヤーを重ねて表示することができる。CADデータの表示1711の周囲に寸法を記したゲージ1703,1704を表示することができる。前記ゲージ1703,1704には,ラジオボタン1715での指定により,EPからの相対座標を表示することも,チップ上の絶対座標を表示することもできる。また,1702内の表示倍率および表示位置の中心をボックス1716,1717により指定することができる。表示位置の中心はEP[p]のIDであるpで指定することも(指定されたEP[p]が画面の中心にくるように表示される),座標値(x,y)で指定することも可能である。また,CADデータの表示1711の代わりに実際に撮像したSEM画像を表示することも可能である。
【0144】
ボタン1730を押すと,入力あるいは出力された撮像ポイントや撮像シーケンスの情報,および登録テンプレートが撮像レシピに出力される。この場合,複数の撮像ポイント候補あるいは複数の撮像シーケンス候補は一つの撮像レシピにあるいは複数の撮像レシピに分割して出力することができる。
【0145】
また,本発明で述べた撮像レシピ自動生成方法あるいは撮像ポイント評価方法あるいは表示方法(GUI)あるいはファイル管理方法およびシステム構成はSEMのみならず,光学顕微鏡あるいは走査型プローブ顕微鏡(以降,SPM(Scanning Probe Microscope)と呼ぶ)等においても活用できる。すなわち,前記光学顕微鏡あるいはSPMにおいても,AP,AF,EPの設定が必要となる場合があり,本発明で述べた選択要素指標値の評価基準の変更等により対応できる。光学顕微鏡に関しては図3中のステップ302におけるグローバルアライメントマークのCADデータからの自動探索にも活用できる。SPMにおいては,前述までのSEM画像は,SPMにより取得される奥行き情報あるいは前記奥行き情報を画像に変換したものとなる(奥行きの値を画像の明度値として変換)。
【0146】
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
【符号の説明】
【0147】
101…半導体ウェーハ 102…電子光学系 103…電子銃 104…一次電子 105…コンデンサレンズ 106…偏向器 107…ExB偏向器 108…対物レンズ109…二次電子検出器 110,111…反射電子検出器 112〜114…A/D変換器 115…処理・制御部 116…GUI画面 117…ステージ 119…ステージコントローラ 120…偏向制御部 121…CPU 122…画像メモリ 309…評価ポイント(EP) 310…アドレッシングポイント(AP) 311…オートフォーカスポイント(AF) 312…オートスティグマポイント(AST) 313…オートブライトネス・コントラストポイント(ABCC)

【特許請求の範囲】
【請求項1】
パターンが形成された試料上の評価ポイントの座標を入力し、
前記試料上で前記評価ポイントを含む領域に形成されたパターンの設計レイアウト情報をCADデータから取得し、
処理パラメータ,ユーザ要求仕様,履歴情報,アドレッシングあるいはオートフォーカスあるいはオートブライトネス・コントラスト用の撮像ポイントの枚数,座標,サイズ,形状,撮像順序,電子ビーム垂直入射座標,撮像条件の一部又は全ての撮像パラメータを,入力情報として選択し、
アドレッシングあるいはオートフォーカスあるいはオートブライトネス・コントラスト用の撮像ポイントの枚数,座標,サイズ,形状,撮像順序,電子ビーム垂直入射座標,撮像条件,撮像ポイントあるいは撮像順序の評価値あるいは優先順位の一部又は全ての撮像パラメータを,出力情報として選択し、
前記入力した評価ポイントの座標情報と前記取得した設計レイアウト情報と前記選択した入力情報の値あるいは範囲を用いて前記選択された出力情報を算出し、
該入力情報および該出力情報の撮像パラメータを共に記憶し、
前記評価ポイントあるいは撮像ポイントにおけるパターンを登録テンプレートとして記憶し、
該記憶した撮像パラメータおよび登録テンプレートに基づいて試料上に形成されたパターンを順次撮像することを特徴とする走査型電子顕微鏡を用いた試料の撮像方法。
【請求項2】
前記撮像順序は、アドレッシングポイントとオートフォーカスポイント、オートスティグマポイント、オートブライトネス・コントラストポイントのうちの少なくとも一つと評価ポイントとを含むことを特徴とする請求項1記載の走査型電子顕微鏡を用いた試料の撮像方法。
【請求項3】
前記試料上の評価ポイントの座標を入力するステップにおいて,複数の評価ポイントの座標を入力し、前記撮像パラメータを算出するステップにおいてアドレッシングあるいはオートフォーカスあるいはオートスティグマあるいはオートブライトネス・コントラスト用の撮像ポイントの一部又は全てを,該複数の評価ポイント間で共有することを特徴とする請求項1記載の走査型電子顕微鏡を用いた試料の撮像方法。
【請求項4】
前記出力情報を算出するステップにおいて,任意の複数の評価ポイントにおける撮像領域ならびに前記撮像領域の周辺近傍領域,あるいはビームシフト稼動範囲外の領域,あるいは選択要素指標値が規定の閾値に満たない領域を,アドレッシングポイントあるいはオートフォーカスポイントあるいはオートスティグマポイントあるいはオートブライトネス・コントラストポイント選択の禁止領域として設定することを特徴とする請求項1記載の走査型電子顕微鏡を用いた試料の撮像方法。
【請求項5】
前記出力情報を算出するステップにおいて,任意の撮像ポイントを評価する際,前記撮像ポイントの撮像サイズの周辺から,撮像位置ずれ量の推定値分だけ除外した領域内に含まれるパターンを評価することを特徴とする請求項1記載の走査型電子顕微鏡を用いた試料の撮像方法。
【請求項6】
前記撮像ポイントにおけるパターンを登録テンプレートとして記憶するステップにおいて,前記登録テンプレートは,前記評価ポイントあるいは撮像ポイントにおけるパターンの設計レイアウト情報,あるいは設計レイアウト情報を画像化した画像情報,あるいは前記設計レイアウト情報に任意の処理を加えた変形された設計レイアウト情報,あるいは前記画像情報に任意の処理を加えた変形した画像情報,あるいは前記評価ポイントあるいは撮像ポイントにおいて実際に撮像したSEM画像,あるいは前記SEM画像に任意の処理を加えた変形SEM画像を任意の組み合わせで記憶することを特徴とする請求項1記載の走査型電子顕微鏡を用いた試料の撮像方法。
【請求項7】
パターンが形成された試料上の評価ポイントの座標を入力し,
前記試料上で前記評価ポイントを含む領域に形成されたパターンの設計レイアウト情報をCADデータから取得し、
該取得した設計レイアウト情報に対応する画像データを作成し、
選択要素指標毎に前記取得した設計レイアウト情報と前記作成した画像データとを選択的に用いて,複数の選択要素指標を算出し,
前記複数の選択要素指標を組み合わせて構成された総合選択指標を算出し,
前記総合選択指標に基づいて前記評価ポイントを撮像するための前記出力情報を算出することを特徴とする走査型電子顕微鏡を用いた試料の撮像方法。
【請求項8】
前記撮像パラメータを算出するステップにおいて、前記評価ポイントを撮像するために,アドレッシングあるいはオートフォーカスあるいはオートスティグマあるいはオートブライトネス・コントラスト用の撮像ポイントの枚数,座標,サイズ,形状,撮像順序,電子ビーム垂直入射座標,撮像条件,撮像条件あるいは撮像条件の評価値あるいは優先順位の一部又は全ての撮像パラメータのセットを複数候補算出することを特徴とする請求項7記載の走査型電子顕微鏡を用いた試料の撮像方法。
【請求項9】
前記試料上に形成されたパターンを順次撮像するステップにおいて、撮像すべきパターンの撮像の成否を判定し、撮像あるいは処理に失敗したときには撮像ポイントあるいは撮像順序を変えて再度撮像することを特徴とする請求項7記載の走査型電子顕微鏡を用いた試料の撮像方法。
【請求項10】
前記撮像ポイントあるいは撮像順序を変えて再度撮像する場合において、撮像あるは処理の失敗原因を分類し,前記失敗原因に基づき,撮像ポイントあるいは撮像順序を変更することを特徴とする請求項9記載の走査型電子顕微鏡を用いた試料の撮像方法。
【請求項11】
表面にパターンが形成された試料上の評価ポイントの座標情報を入力する入力手段と、
該入力手段から入力された前記座標情報に基づいて試料上で前記評価ポイントを含む領域に形成されたパターンの設計レイアウト情報をCADデータから取得するレイアウト情報取得手段と、
処理パラメータ,ユーザ要求仕様,履歴情報,アドレッシングあるいはオートフォーカスあるいはオートブライトネス・コントラスト用の撮像ポイントの枚数,座標,サイズ,形状,撮像順序,電子ビーム垂直入射座標,撮像条件の一部又は全ての撮像パラメータを,入力情報として選択する手段と、
アドレッシングあるいはオートフォーカスあるいはオートブライトネス・コントラスト用の撮像ポイントの枚数,座標,サイズ,形状,撮像順序,電子ビーム垂直入射座標,撮像条件,撮像ポイントあるいは撮像順序の評価値あるいは優先順位の一部又は全ての撮像パラメータを,出力情報として選択する手段と、
前記入力手段から入力した評価ポイントの座標情報と,前記レイアウト情報取得手段で取得した設計レイアウト情報と,前記選択した入力情報の値あるいは範囲を用いて,前記選択された出力情報を算出する手段と、
該入力情報および該出力情報の撮像パラメータを共に記憶する記憶手段と、
前記評価ポイントあるいは撮像ポイントにおけるパターンを登録テンプレートとして記憶する手段と、
該記憶手段に記憶した撮像パラメータおよび登録テンプレートに基づいて試料上に形成されたパターンを順次撮像して前記試料のSEM像を得る撮像手段とを備えたことを特徴とする撮像装置。
【請求項12】
前記撮像順序は、アドレッシングポイントとオートフォーカスポイント、オートスティグマポイント、オートブライトネス・コントラストポイントのうちの少なくとも一つと評価ポイントとを含むことを特徴とする請求項11記載の撮像装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2013−51217(P2013−51217A)
【公開日】平成25年3月14日(2013.3.14)
【国際特許分類】
【出願番号】特願2012−270904(P2012−270904)
【出願日】平成24年12月12日(2012.12.12)
【分割の表示】特願2007−29928(P2007−29928)の分割
【原出願日】平成19年2月9日(2007.2.9)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)