説明

放射線治療システム及び放射線治療プログラム

【課題】再構成処理において、散乱線が照射された領域についての条件を再構成に導入し、得られる散乱源分布の精度を向上することができる放射線治療システム等を提供すること。
【解決手段】治療放射線の線量を散乱線によりモニタする方式の放射線治療システムにおける再構成方法に関する。一般に治療用放射線は細い放射線錐を用いるが、従来の断層撮影法はこのような情報を利用しない。本発明では、反復再構成法を採用し、その反復中に測定した散乱線画像に基づいて、散乱線画像の値の小さい領域に対応する散乱源分布を減少させるステップを含める。また、散乱源分布が負の値の領域に対し散乱源分布を0に置き換えるステップを含める。特に散乱線画像が0に近い値を示す領域に対応する被検体の位置において、散乱源分布が0に近い値であるという条件を付加する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、放射線治療システムにおいて実際に照射した線量を計測し表示する機能を持つ放射線治療システムに関する。なかでも、散乱線画像から線量分布を3次元再構成する再構成処理に関する。
【背景技術】
【0002】
X線外照射治療に代表される放射線治療では、治療前に、患者画像上で照射計画(病変部に対してどの方向から、どれだけの線量を照射するか)が立案され、これに基づいて患者への照射行われる。しかし、現在のところ実際に計画通りの位置、線量が患者に照射されているか否かを確認する手段がなく、病変部への過少照射や正常組織への過剰照射が起こっても気づかれないのが現状である。照射前にファントムとX線検出器を用いて、計画通りの照射が行えることが確認されることもあるが、簡便に持ち運びができ、自由に位置を調整できるファントムと異なり、患者を寝台上の、照射計画どおりの位置に置くことは困難であり、これらの照射前確認は、患者への計画通りの照射を完全に保証するものではない。
【0003】
放射線照射装置で被検体の一部(患者の患部)を照射中に、放射線通過領域にて散乱するX線を散乱線検出器にて多方向で測定し、断層撮影により散乱源の分布を3次元再構成する方法が提案されている。
【0004】
放射線治療では通常、幹部の形状に合わせた細い放射線ビームを用いる。散乱線は放射線が照射された領域にて主に発生するが、その領域は被検体の中のきわめて一部分である。一般のCT再構成または断層撮影の再構成処理は解の存在領域などを仮定せずに再構成を行うが、放射線治療の照射領域のモニタに応用する場合、散乱源の場所に関して一部のみに存在するという条件を付加することが可能である。一般のCT再構成または断層撮影の再構成処理を用いるより解の精度を向上できると考えられる。
【特許文献1】特開平5−146426号公報 この特許文献が開示する技術は、X線被写体の散乱X線を検出し、被写体の断層像を得るものである。ペンシル状ビームを走査することにより被写体の3次元散乱線像を再構成して得ることが特徴である。すなわち、本技術はペンシル状ビームのみを想定しており、X線治療で用いられる、有限の幅をもったビームが通過した領域の散乱像(治療ビームによる線量の空間分布)を得るものではない。また、エネルギーの高い治療ビーム(数MeV)の被写体内での散乱は前方散乱が優位となるため、入射X線方向に検出器を配置すると散乱線と透過線の区別が難しく、散乱線の検出に補正処理を必須としている。
【発明の開示】
【発明が解決しようとする課題】
【0005】
放射線治療では通常、幹部の形状に合わせた細い放射線ビームを用いる。散乱線は放射線が照射された領域にて主に発生するが、その領域は被検体の中のきわめて一部分である。一般のCT再構成または断層撮影の再構成処理は解の存在領域などを仮定せずに再構成を行うが、放射線治療の照射領域を映像化する場合、散乱源の領域に関して一部のみに存在するという条件を付加することが可能である。従って、一般のCT再構成または断層撮影の再構成処理を用いるよりも、放射線治療の照射領域の映像化固有の再構成手法を確立することができれば、画像診断の精度を向上できると考えられる。
【0006】
本発明は、上記事情を鑑みてなされたもので、再構成処理において、散乱線が照射された領域についての条件を再構成に導入して、得られる散乱源分布の精度を向上することができる放射線治療システム及び放射線治療プログラムを提供することを目的としている。
【課題を解決するための手段】
【0007】
本発明は、上記目的を達成するため、次のような手段を講じている。
【0008】
請求項1に記載の発明は、被検体に対して治療用放射線ビームを照射する照射手段と、前記治療用放射線ビームに基づいて発生する前記被検体内からの散乱線を検出し散乱線データを発生する検出手段と、前記検出された各散乱線データ上における、前記被検体内の散乱源存在領域を決定する決定手段と、前記散乱源存在領域が決定された前記各散乱線データを入力とし所定の条件に従う再構成処理を繰り返し実行することで再構成画像を生成し、当該再構成画像を用いて、前記被検体内における散乱線発生密度の三次元的分布を示す散乱線ボリュームデータを生成する再構成手段と、前記散乱線ボリュームデータを、吸収された放射線量の三次元分布を示す吸収線量ボリュームデータに変換する変換手段と、前記吸収線量ボリュームデータを用いて、前記被検体内における吸収線量画像を生成する画像生成手段と、前記吸収線量画像を表示する表示手段と、を具備することを特徴とする放射線治療システムである。
【0009】
請求項6に記載の発明は、コンピュータに、被検体に対して照射された治療用放射線ビームに基づいて発生する前記被検体内からの散乱線を検出させる検出機能と、前記検出された散乱線に基づいて複数の散乱線データを生成させるデータ生成機能と、前記検出された各散乱線データ上における、前記被検体内の散乱源存在領域を決定させ決定機能と、前記散乱源存在領域が決定された前記各散乱線データを入力とし所定の条件に従う再構成処理を繰り返し実行することで再構成画像を生成させ、当該再構成画像を用いて、前記被検体内における散乱線発生密度の三次元的分布を示す散乱線ボリュームデータを生成させる再構成機能と、前記散乱線ボリュームデータを、吸収された放射線量の三次元分布を示す吸収線量ボリュームデータに変換させる変換機能と、前記吸収線量ボリュームデータを用いて、前記被検体内における吸収線量画像を生成させる画像生成機能と、前記吸収線量画像を表示させる表示機能と、を実現させることを特徴とする放射線治療プログラムである。
【発明の効果】
【0010】
以上本発明によれば、再構成処理において、散乱線が照射された領域についての条件を再構成に導入して、得られる散乱源分布の精度を向上することができる放射線治療システム及び放射線治療プログラムを実現することができる。
【発明を実施するための最良の形態】
【0011】
(第1実施形態)
[原理と方法]
本実施形態に係る放射線治療システムは、被検体に対して照射した放射線に基づく当該被検体からの散乱線を計測し、これに基づいて被検体のどの部位に、どれだけの線量が照射されたかを客観的に示す情報を取得するものである。その原理と方法は、次の様である。
【0012】
図1は、本放射線治療システムの治療用放射線に基づく被検体からの散乱線計測の原理、方法を説明するための図である。
【0013】
外照射X線照射による治療効果は、主として患者体内で起こるX線の散乱によってもたらされる。すなわち、治療X線ビームが患者体内の電子によって散乱される際、エネルギーを受け取った電子は組織内を飛行したのち、停止する。このとき、電子は停止するまでに、組織内の分子をラジカル化し、細胞内のDNAに損傷を与える。そして、損傷を受け、修復することができなかった細胞は最終的に死に至る。これがX線照射による治療効果である。反跳電子が多く発生すればするほど組織を構成する細胞が死に至る確率が高くなるため、治療効果は、散乱反応が起こる回数に比例する。
【0014】
上述から、組織内で起こった散乱の回数が分かれば、治療効果(=組織がどれだけ損傷を受けたか)を知ることができる。そして起こった散乱の回数は、散乱線の数を測定することで知ることができる。散乱されたX線の多くは、電子に進行方向を変えられた後、患者体外に出てくるため、患者体外に設置したX線検出器で測定することができる。
【0015】
本実施形態の第1の実施例に係る放射線治療システムでは、治療X線ビームに対して特定の角度をなす位置にコリメータを備えた検出器を設置し、その方向に来た散乱線のみを選択的に検出する。コンプトン散乱で、どの角度に、どれだけX線が散乱されるかは理論的に分かるため、ある角度での散乱線を検出できれば、他の角度への散乱線の数も推定できる。さらに、患者体内の、散乱の起こった場所の分布を3次元的に得るために、照射中に検出器を回転させ、すべての方向から散乱線の測定を行う(例えば、図4参照)。その後、再構成処理を行い、被検体内部の散乱線の発生分布を3次元的に画像化する。
【0016】
また、本実施形態の第2の実施例に係る放射線治療システムでは、治療X線ビームに対して所定の角度(散乱角)をなす位置にコリメータを備えた検出器を設置し、その方向に来た散乱線のみを選択的に検出し、この検出を照射部から照射される治療用X線ビームの軸と検出器の検出面とのなす角を維持しつつ治療用X線ビームと検出面とを移動させながら実行することで、被検体内の3次元領域をスキャンする。得られた所定の散乱角に関する3次元散乱線データを用いて、散乱線ボリュームデータを再構成すると共に、当該散乱線ボリュームデータを吸収された放射線量の3次元分布を示す吸収線量ボリュームデータに変換し、吸収線量画像を生成する。
【0017】
[構成]
図2は、本実施形態に係る放射線治療システム1のブロック構成図を示している。同図に示すように、本放射線治療システム1は、放射線照射システム2、散乱線検出システム3、データ取得制御部4、データ処理システム5、表示部6、記憶部7、操作部8、ネットワークI/F9を具備している。放射線照射システム2及び散乱線検出システム3は架台(ガントリ)に設置され、架台を移動、回転させることで、被検体に対して任意の位置に配置することができる。また、データ取得制御部4、データ処理システム5、表示部6、記憶部7、操作部8、ネットワークI/F9は、例えば放射線治療システム1の本体(筐体)に設置される。
【0018】
[放射線照射システム]
放射線照射システム2は、電力供給部201、照射部203、タイミング制御部205、ガントリ制御部207を有している。
【0019】
電力供給部201は、データ取得制御部4からの制御に従って照射部203に電力を供給する。
【0020】
照射部203は、例えば線形加速器(ライナック)等の機構を有する放射線照射装置である。当該照射部203では、加速管の一端に設けられた電子銃により、陰極から放射された熱電子は数100keVになるまで加速される。次に、クライストロンで発生したマイクロ波は導波管を使って加速管まで導かれ、そこでこの熱電子は数MeVのエネルギーに達するまで加速される。この加速された熱電子は磁石によってその方向を変えられ、透過型ターゲットに衝突する。このとき制動放射により、数MeVのエネルギーのX線が発生する。照射部203は、コリメータによってこのX線を所定の形状(例えば、円錐形状、或いは薄い平面形状)に成形し、寝台上に配置された被検体の三次元領域に照射する。
【0021】
タイミング制御部205は、データ取得制御部4からの制御に従って所定のタイミングで照射部203に電力が供給されるように、電力供給部201を制御する。
【0022】
ガントリ制御部207は、例えば操作部8やデータ取得制御部4からの制御指示に従って、ガントリの移動位置・回転位置を制御する。
【0023】
[散乱線検出システム]
散乱線検出システム3は、検出器301、コリメータ303、移動機構部305、位置検出部307を有している。
【0024】
検出器301は、数100keVのX線を検出できる半導体検出器や、イメージング・プレート等であり、被検体に対して照射した放射線に基づく当該被検体からの散乱線を検出する。この検出器の好ましいサイズ、照射ビーム軸に対する配置角度、画素数等については、後述する。
【0025】
コリメータ303は、特定の方向に来た散乱線のみを選択的に検出するための絞り装置である。
【0026】
移動機構部305は、照射部203の照射ビーム軸に対する検出器301の検出面の角度(すなわち、照射ビーム軸と検出器301の検出面の法線との角度)、放射線ビーム軸を中心とした検出器301の回転角、被検体と検出器301の検出面との距離等を制御するために、検出器301の位置や角度を移動させるための移動機構部である。
【0027】
位置検出部307は、検出器301の位置を検出するためのエンコーダである。
【0028】
[データ取得制御部]
データ取得制御部4は、放射線治療時における散乱線計測に関する総合的な制御を行う。例えば、データ取得制御部4は、放射線照射システム2のタイミング制御部205からの信号を得て、散乱線検出システム3に対して散乱線計測開始トリガーや検出データの伝送トリガーを送信する等、放射線照射、散乱線計測、データ処理、画像表示、ネットワーク通信等について、本放射線治療システム1を静的又は動的に制御する。また、データ取得制御部4は、必要に応じて、ネットワークを介して放射線治療計画装置から受け取った治療計画に基づいて、各照射の照射時間に合わせてスキャン時間を最適化する。
【0029】
[データ処理システム]
データ処理システム5は、補正処理部501、散乱源存在領域決定部502、再構成処理部503、変換処理部505、データ処理部507を有している。
【0030】
補正処理部501は、必要に応じてデータのキャリブレーション処理やノイズを除去するための補正処理等を行う。当該補正処理501が実行する補正処理の内容については、後で詳しく説明する。
【0031】
散乱源存在領域決定部502は、散乱線検出器の各位置での測定結果を用いたバックプロジェクション処理により、被検体内に局在する散乱線源に対応する領域を決定する。この散乱源存在領域を決定する処理の内容については、後で詳しく説明する。
【0032】
再構成処理部503は、散乱線検出システム3において検出された散乱線画像データと各散乱線画像データを検出した位置を示す位置情報とを用いて画像再構成処理を実行し、散乱イベント回数(散乱発生回数)の密度の三次元的分布を示す散乱線ボリュームデータを取得する。再構成法式としては、例えば、コリメータの方向がスキャン軸と直交していればCTの再構成手法を、一方直交していなければ、断層撮影の再構成手法を用いる。特に、本再構成処理部503は、照射領域以外に分布する散乱源を0と仮定することで散乱性存在領域のみを対象とし、プロジェクション画像が測定画像と一致するまで解を修正しながらバックプロジェクションとプロジェクションを反復する再構成処理を実行する。この反復再構成処理の内容については、後で詳しく説明する。
【0033】
変換処理部505は、画像再構成処理によって得られた三次元画像データを、吸収された放射線量(吸収線量)の三次元分布を示す吸収線量ボリュームデータに変換する。
【0034】
[表示部、記憶部、操作部、ネットワークI/F]
表示部6は、LCD等のディスプレイで構成される。表示部6は、上記データ処理部507の各種モジュールにより出力されるデータをもとに、例えば、吸収線量画像を計画画像や照射直前、照射中に得た画像とフュージョンして表示を行う。
【0035】
記憶部7は、照射する放射線ビームの軸を中心として検出器301を回転させながら散乱線データを取得(スキャン)するための所定のスキャンシーケンス701、補正処理、画像再構成処理、変換処理、表示処理等の実行、および治療計画を当該システムで表示、編集するための制御プログラム702や、当該放射線治療システム1によって取得された散乱線ボリュームデータ703、吸収線量ボリュームデータ704、X線コンピュータ断層撮影装置等の他のモダリティによって取得された形態画像データ705等を記憶する。当該記憶部7に記憶されているこれらのデータは、ネットワークI/F90を経由して外部装置へ転送することも可能となっている。
【0036】
操作部8は、オペレータからの各種指示、条件、関心領域(ROI)の設定指示、種々の画質条件設定指示等を装置本体11にとりこむための各種スイッチ、ボタン、トラックボール13s、マウス13c、キーボード13d等を有している。
【0037】
ネットワークI/F9は、当該放射線治療システム1によって得られた吸収線量画像データ等をネットワーク経由で他の装置に転送し、また、例えば放射線治療計画装置において作成された治療計画等をネットワーク経由で取得する。
【0038】
(散乱線ボリュームデータ等の生成方法)
(第1の実施例)
次に、第1の実施例に係る放射線治療システム1を用いた散乱線ボリュームデータ等の生成方法について説明する。本実施形態に係る放射線治療システムでは、治療X線ビームに対して特定の角度をなす位置にコリメータを備えた検出器を設置し、その方向に来た散乱線のみを選択的に検出する。さらに、患者体内の、散乱の起こった場所の分布を3次元的に得るために、照射中に検出器を回転させ、すべての方向から散乱線の測定を行う(例えば、図6参照)。その後、再構成処理を行い、被検体内部の散乱線の発生分布を3次元的に画像化する。
【0039】
図3は、本実施形態に係る吸収線量画像データの生成処理を含む放射線治療時における処理の流れを示したフローチャートである。以下、各ステップの処理内容について説明する。
【0040】
[被検体の配置等:ステップS1a]
まず、データ取得制御部4は、例えばネットワークを介して当該被検体に関する治療計画情報を取得し、表示部6に表示する。術者は、表示された治療計画に従って寝台上に被検体を配置すると共に、操作部8を介して、放射線照射時間の設定、散乱線計測を行う回転角度の設定、スキャンシーケンスの選択等を行う(ステップS1a)。なお、放射線照射時間の設定等については、取得した治療計画情報に基づいて、自動的に行うようにしてもよい。
【0041】
[放射線照射/多方向における散乱線画像データの取得:ステップS2a]
図4は、本放射線治療システム1の散乱線の測定形態を示した図である。同図に示すように、放射線照射システム2は被検体に対して、三次元領域を照射するための治療用放射線を所定のタイミングで発生する。また、散乱線検出システム2は、当該照射放射線に基づいて被検体外に出てくる散乱線を照射される放射線ビームの軸を中心とした複数の回転角において検出する(ステップS2a)。例えば、ある1つの方向から3分間照射が行える場合、1方向につき10秒ずつ、18方向のデータを収集する。このとき、18方向はビーム軸を中心として等角度間隔であることが好ましい。検出器303が各方向で検出した散乱線のカウント数及び位置検出部307で計測した散乱線検出時における検出器303の位置情報は、データ処理システム5に伝送される。
【0042】
なお、本実施形態では、検出器301の配置角度を、散乱角θが120°≦θ≦165°の範囲のいずれか(例えば、155°)である後方散乱線を検出するように、検出器301の配置角度を設定するものとする。
【0043】
また、上記の例において、例えば2Gyの照射が3方向から行われる場合、1方向あたりのカウント数は、1.24×105× 1/3となり、約4×104[counts/cm2]である。1方向あたり180秒で照射されるとして10秒間測定すると、4×104×10/180=2×103[counts/cm2]となるが、S/N比に問題はない。
【0044】
また、散乱線の検出は、少なくとも2つ以上の方向が必要であるが、現実にはできる限り多くの方向において検出することが好ましい。また、各検出位置は、照射ビームの軸を中心として等角度間隔に配置されていることが好ましい。
【0045】
[前処理(補正処理等):ステップS3a]
収集されたデータは、検出器設置角度方向に散乱されたX線のみカウントしている。しかし実際には、X線はあらゆる方向への散乱が起こっている。データ処理システム5の補正処理部501は、検出器のカウント値を補正し、所定の計算しきに従って、すべての方向への散乱数を取得する(ステップS3a)。
【0046】
[画像再構成処理:ステップS4a]
次に、データ処理システム5の画像再構成処理部503は、多方向の投影データを用いて画像再構成処理を実行し、散乱線ボリュームデータを取得する(ステップS4a)。このとき、検出器301の回転軸とコリメータの方向が直交しており、180度(+α)以上の角度範囲で画像を撮影する場合はCTの再構成方法を用いればよいが、その他の場合は断層撮影の再構成方法を用いる。断層撮影の手法として、例えば投影画像にフィルタ処理を適用した後バックプロジェクション処理を行うfiltered backprojection法を用いる。filterの構成方法としては古典的なShepp-Logan filterや、特願2006−284325, 特願2007−269447に開示されているフィルタを用いる。特に、特願2006−284325, 特願2007−269447に記載されている方法を用いれば、物理的意味が明確な散乱源分布画像を生成することができる。
【0047】
検出器画像にフィルタ処理を施し、バックプロジェクションを行って得られる画像は、単位体積あたりの散乱線発生密度(単位体積あたりの散乱回数)である。上記の再構成処理の全ステップ(各種補正処理、フィルタ処理、バックプロジェクション処理)をとおして、治療用放射線が被検体を通過する近傍での散乱線発生密度の3次元分布(散乱線ボリュームデータ)を取得することができる。
【0048】
なお、本実施形態に係る放射線治療システムでは、本ステップにおいて後述する条件付き反復再構成処理が実行されることになる。
【0049】
[変換処理:ステップS5a]
次に、データ処理システム5の変換処理部507は、ボクセル(voxel)ごとに算出された単位体積あたりの散乱回数nを、吸収線量に換算することで、散乱線ボリュームデータを吸収された放射線量(吸収線量)の三次元分布を示す吸収線量ボリュームデータに変換する(ステップS5a)。
【0050】
[吸収線量画像データの生成/画像データの表示:ステップS6a、S7a]
次に、画像処理部507は、吸収線量ボリュームデータ等を用いて、被検体の所定部位に関する吸収された放射線量(吸収線量)の分布を示す吸収線量画像データを生成し、例えばフュージョン表示するためにCT画像と合成する(ステップS6a)。表示部6は、所定の形態にて吸収線量画像を表示する(ステップS7a)。
【0051】
(第2の実施例)
次に、第2の実施例に係る放射線治療システム1を用いた散乱線ボリュームデータ等の生成方法について説明する。本実施形態に係る放射線治療システムでは、治療X線ビームに対して所定の角度(散乱角)をなす位置にコリメータを備えた検出器を設置し、その方向に来た散乱線のみを選択的に検出し、この検出を照射部から照射される治療用X線ビームの軸と検出器の検出面とのなす角を維持しつつ治療用X線ビームと検出面とを移動させながら実行することで、被検体内の3次元領域をスキャンする。得られた所定の散乱角に関する3次元散乱線データを用いて、散乱線ボリュームデータを再構成すると共に、当該散乱線ボリュームデータを吸収された放射線量の3次元分布を示す吸収線量ボリュームデータに変換し、吸収線量画像を生成する。
【0052】
図5は、本実施形態に係る吸収線量画像データの生成処理を含む放射線治療時における処理の流れを示したフローチャートである。以下、各ステップの処理内容について説明する。
【0053】
[被検体の配置等:ステップS1b]
まず、第1の実施形態と同様に、被検体の配置等が実行される(ステップS1b)。
【0054】
[放射線照射(散乱線データの取得):ステップS2]
図6は、本放射線治療システム1の散乱線の測定形態の一例を示した図である。同図に示すように、放射線照射システム2は、被検体に対して薄い平面状に整形されたX線ビームB2を所定のタイミングで照射し、放射線検出システム2は、当該照射放射線に基づいて被検体外に出てくる所定の散乱角の散乱線を検出する。また、データ取得制御部4は、照射部203から照射される治療用のX線ビームB2の軸と検出器301の視線方向とのなす角を維持しながらX線ビームB2による励起断面を移動させ、当該被検体内の3次元領域を走査(スキャン)するように、ガントリ制御部207或いは移動機構部305を制御する(ステップS2)。この治療用のX線ビームB2を用いた3次元領域のスキャンにより、X線ビームB2の平面に対応する複数の二次元散乱線データからなる3次元散乱線データが取得される。
【0055】
なお、図6は、散乱線の測定形態の一例である。従って、本実施形態に係る散乱線の測定形態は、当該例に拘泥されない。例えば、図7に示すように、検出器301の検出面(及びコリメータ303の開口面)を、治療用放射線ビームの照射方向に対する検出面のなす角度を一定に保ちながら、治療用放射線ビームの軸の位置の移動に連動して移動させることによっても、複数の二次元散乱線データからなる3次元散乱線データを取得することができる。
【0056】
[前処理(補正処理等):ステップS3b]
次に、データ処理システム5の補正処理部501は、減弱補正を含む前処理を実行し、投影データを取得する(ステップS3)。ここで、減弱補正とは、治療用放射線や散乱線が被検体内を伝播することに起因する信号減弱に関する補正処理である。
【0057】
[画像再構成処理:ステップS4b]
次に、データ処理システム5の画像再構成処理部503は、取得された投影データを用いて画像再構成処理を実行し、散乱線ボリュームデータを取得する(ステップS4)。なお、本実施形態に係る放射線治療システムでは、本ステップにおいて後述する条件付き反復再構成処理が実行されることになる。
【0058】
[変換処理:ステップS5b]
次に、データ処理システム5の変換処理部507は、第1の実施形態と同様に、散乱線ボリュームデータを吸収された放射線量(吸収線量)の3次元分布を示す吸収線量ボリュームデータに変換する(ステップS5)。
【0059】
[吸収線量画像データの生成/画像データの表示:ステップS6b、S7b]
次に、画像処理部507は、吸収線量ボリュームデータ等を用いて、被検体の所定部位に関する吸収された放射線量(吸収線量)の分布を示す吸収線量画像データを生成し、例えばフュージョン表示するためにCT画像と合成する(ステップS6b)。表示部6は、所定の形態にて吸収線量画像を表示する(ステップS7b)。
【0060】
(条件付き反復再構成機能)
次に、本放射線治療システム1が有する条件付き反復再構成機能について説明する。一般のX線断層撮影やX線CTと異なり、放射線治療システムのX線照射領域(散乱源分布)を画像化する場合は放射線を照射した領域が限局していることがわかっている。本条件付き反復再構成機能では、まず、図8(a)に示すように、散乱線検出器の各位置での測定結果を用いたバックプロジェクション処理により散乱線源の存在領域を決定する。次に、図8(b)に示すように、再構成処理において、照射領域以外に分布する散乱源を0と仮定することで散乱性存在領域のみを対象とし、プロジェクション画像が測定画像と一致するまで解を修正しながらバックプロジェクションとプロジェクションを反復する再構成処理を実行し、被検体において局在する放射線の被照射領域における散乱源の空間分布(又は、吸収線量の空間分布)を好適に映像化するものである。なお、この条件付き反復再構成機能は、例えば図3のステップS4a、図4のステップS4bにおいて実行される。
【0061】
図9は、本条件付き反復再構成機能に従う処理(条件付き反復再構成処理)の流れを示したフローチャートである。同図に示すように、本条件付き反復再構成処理は、大きく2つのステップからなる。以下、各ステップにおける処理の内容について説明する。
【0062】
[散乱源存在可能領域の決定処理:ステップS41]
図10は、散乱源存在可能領域の決定処理の流れを示したフローチャートである。
【0063】
まず、散乱性存在領域決定部502は、Np個のプロジェクションの各散乱線画像において、図11(a)に示すように測定値が0に近い領域とそれ以外の領域に分割する(ステップS411)。領域分割には閾値法を用いればよいが、閾値を決定するためには例えば(ヒストグラムのピーク値+定数)などを用いることができる。閾値を用いて2値化した後、ノイズの影響を除くため孤立した小さな前景領域を除去する処理を実施する。この時点で、プロジェクションごとに、2値化投影画像が得られる。2値化投影画像は散乱線画像が0に近い領域では値が0で、それ以外の領域では値が1となる。
【0064】
次に、散乱性存在領域決定部502は、図11(b)に示すように2値化投影画像をバックプロジェクションする(ステップS412)。散乱性存在領域決定部502は、バックプロジェクションの結果得られた画像にて値がプロジェクション数と等しい領域を、散乱源存在可能領域と決定する(ステップS413)。なお、本実施形態の例では、図11(c)に示すように、値が4の領域が散乱源存在可能領域Sとして決定されることになる。
【0065】
[反復再構成処理:ステップS42]
図12は、散乱源存在可能領域の決定処理の流れを示したフローチャートである。
【0066】
まず、再構成処理部503は、暫定的な解画像を設定する(ステップS421)。本実施形態では、暫定解画像の初期値として、ステップS41において得られた解を用いる。
【0067】
次に、再構成処理部503は、暫定解画像の散乱源存在可能領域以外の領域を0に置き換えた後(ステップS422)、プロジェクション処理によりプロジェクション画像を生成し、測定値としての投影画像との差を求め(ステップS423)、この差を投影画像として用いて再度再構成する(ステップS424、ステップS425)。
【0068】
次に、再構成処理部503は、差分の再構成画像を、1回目の暫定解画像(0に置き換えたもの)から引き算し(ステップS426)、当該再構成処理の反復回数が所定回数に到達したか否かを判定する。所定回数に到達していないと判定した場合には、再構成処理部503は、ステップS425で得られた最新の投影画像を暫定的な解画像として、ステップS422〜ステップS426間での処理を繰り返すことその暫定解画像を反復修正し最終結果に向けて収束させていく。一方、所定回数に到達したと判定した場合には、再構成処理部503は、反復再構成処理を終了する。
【0069】
(効果)
以上述べた構成によれば、次の効果を実現することができる。
【0070】
本放射線治療システムでは、散乱線検出器の各位置での測定結果を用いたバックプロジェクション処理により、被検体内の散乱線源存在領域を決定し、当該散乱源存在可能領域外の暫定解を0に置き換えて初回の再構成を実行する。これにより、誤差分の投影画像は、1回目の反復の再構成でその大部分が散乱源存在可能領域に再構成され、散乱源存在可能領域の暫定解画像の値は大きく減少する。また、次の再構成処理においては、前回の再構成処理で得られた暫定解画像を入力画像とし、その散乱源存在可能領域外の暫定解を0に置き換えて再び再構成処理を実行し、これを繰り返す。この様な反復再構成処理により、散乱源存在可能領域に対応する信号を忠実に映像化することができると共に、散乱源存在可能領域に対応しない信号を除外することができ、断層撮像特有のアーチファクトを低減させ、画質を向上させることができる。
【0071】
なお、本条件付き反復再構成処理は、少なくとも2解の繰り返しでも再構成誤差を改善するために大きな効果がある。さらに反復回数を増やせばより効果があるが、最大でも10回の反復すれば十分である。
【0072】
(第2の実施形態)
第1の実施形態では、散乱源が存在すべきではない領域に対し散乱源の分布が0であるという条件を導入することで、解の精度の向上を図るものであった。これに対し、本実施形態では、この散乱源の分布が0という条件をより一般化した方法について説明する。散乱源が存在すべきではない領域に対し散乱源の分布が0という条件の導入は2つの効果がある。
【0073】
・従来の再構成方法では、散乱源が本来0になるべき領域で0より大きい解が得られることがある。本来0であるはずの領域なので、この領域について散乱源=0という条件を付加することで解の精度の向上を図ることができる。
【0074】
・従来の再構成方法では、散乱源が小さな値を持つ領域で負の値の解が得られることがある。特に、散乱源が本来0になるべき領域では負の値の解が得られやすい。原理的に散乱源の値は負の値にはならないので、この領域について散乱源=0という条件を付加することで解の精度の向上図ることができる。
【0075】
本実施形態では、上記2つの置き換えを下記のように一般化し、解の上限および下限についての条件に従う反復再構成処理を行う。
【0076】
・解を投影した画像が、再構成処理において入力となる投影画像(再構成入力投影画像)を超えない。
【0077】
・解は負の値にはならない(非負条件)。
【0078】
上の条件を考慮した上で、「解を投影した画像が再構成入力投影画像にできるだけ近くなる」ように、解を選ぶという方針をとる。なお、第1の実施形態では、散乱源が本来0になるべき領域についてだけ条件を付加することができたが、本第2の実施形態では、上の2つの条件で解の上限と下限を定めているため、全領域について条件を付加することが可能になっている。
【0079】
再構成処理部503において実行される具体的な処理の内容は、以下の様である。
【0080】
[基本となる方法]
再構成空間の画像fのプロジェクション処理をAfと表記する。この処理の結果は投影空間のベクトルである。また、投影画像gのバックプロジェクション処理をAgと表記する。この処理の結果は、再構成空間のベクトルとなる。
【0081】
まず、本手法のベースとなる従来方法について説明する。次の式(1)を満たすfを求める場合を考える。
【数1】

【0082】
Pfは解fのペナルティーベクトルであり、望ましくないfに対してfPfが大きな値を持つ。常にfPf≧0である。上記式(1)より、次の式(2)が得られる。
【数2】

【0083】
また、式(2)の右辺を導関数とする関数q(f)を次の式(3)によって定義する。
【数3】

【0084】
すなわち、式(1)を解くには、式(3)を目的関数として最小化すればよい。式(3)式を最小化するには、共役勾配法などの最小化手法が利用できる。共役勾配法を含む多くの最小化手法では評価関数qの計算とその導関数の計算が必要であるが、それらの処理要素であるAfおよびAgは前述のとおりプロジェクション処理とバックプロジェクション処理なので、それらプロジェクション処理とバックプロジェクション処理を実装することが必要である。参考のため、q(f)の導関数を次の式(4)に示す。
【数4】

【0085】
ある方向hに修正しようとしたとき(具体的には解fにλhを加える)、方向hにどれだけの距離を進めば最小になるかを決定することが必要になる。これはq(f+λh)を最小にするλを決めることであり、次の式(5)を解くことで求めることができる。
【数5】

【0086】
以下に、式(5)を解くための計算を示す。
【数6】

【0087】
以上を具体的に実装した従来法の処理手順を図13に示す。説明上の例として最急降下法の例を示してしるが、実際には、共役勾配法等、より優れた方法を用いるべきである。
【0088】
[非負条件の導入]
本実施形態では、解は負の値にならないという条件を導入するため、図13に示した処理手順を、図14に示す処理手順に変更する(ステップ9bが新たに追加されたステップである)。
【0089】
[解を投影した画像が、再構成入力投影画像を超えないという条件の導入]
式(3)に変えて、次の式(6)に示す目的関数を用いる。
【数7】

【0090】
ここで、Positive(v)は要素νの値が正の値のときi番目の要素の値がν、0以下の値のときi番目の要素の値が0になる関数である。Negative(v)は逆に要素νの値が0以下のときi番目の要素の値がν、正の値のときi番目の要素の値が0になる関数である。式(6)は、α=α=1のとき、式(3)と等価である。典型的にはα>αとなる値を用いる。
【0091】
式(6)の導関数として次の式(7)を用いる。
【数8】

【0092】
式(6)のAf−gは暫定解の投影と入力投影画像の差である。α>αとなる値を用いたとき、入力投影画像を暫定解の投影が超えている場合、より大きな係数がかかるため、目的関数(6)はより大きな値になる。
【0093】
図15は、α=2、α=1の例である。最適化の過程では目的関数を小さくする解を選ぶので、結果として、暫定解の投影が入力投影画像を大きく超えない解が選ばれるようになる。
【0094】
なお、処理手順は、図16に示すようになる。この処理手順の特徴的な点は、ステップ6bでの導関数の算出において、暫定解hiの投影と入力投影画像を比較し、Af−gの各要素の符号に応じ、正の値の方が大きい係数をAf−gの各要素に乗じる処理が追加される点である。ステップ6bの変更に伴い、ステップ8で算出されるλが不正確なものになるので、ステップ8bを追加してλをより正確な値に修正することが望ましい。
【0095】
(効果)
以上述べた本実施形態に係る条件付き反復再構成処理によれば、解が非負であるという下限に関する条件と、解を投影した画像が、再構成入力投影画像を超えないという上限に関する条件の導入が可能になり、解を制限することができる。例えば、特に散乱線画像が0に近い値を示す領域に対応する被検体の位置において、散乱源分布が0に近い値であるという条件が付加される。従って、第2の実施形態は、第1の実施形態と同様の効果を持っている。さらに、散乱線画像が0でないある一定値を示す領域においても、散乱源分布を投影した値がそれより小さい値になるという条件が付加される。このことは、第2の実施形態では第1の実施形態より強い制限事項を再構成に課している。従って、第2の実施形態によれば、第1の実施形態に比して、再構成の精度をさらに向上できるという効果がある。
【0096】
(第3の実施形態)
第2の実施形態では、解全体について非負の条件を課すことができたが、このような方法では非負条件が有効に機能しないことがある。例えば、図17(a)に示すように散乱源が一部だけ大きな値を持つような場合、図17(b)に示すようにその周囲では負の値を持つ誤った解が得られやすい。この場合、非負条件により解が改善することができる。しかし、図17(a)に対して図17(c)に示すように一様な散乱源分布が加わる場合、図17(b)と同様の再構成方式では図17(d)に示すように解が負の値にならない。つまり、解に図17(b)と同じ間違いが含まれていても、一様成分が加わるために解が負の値にならず間違いを修正することができない。
【0097】
そこで、本実施形態では、モデル化された複数の分布の合成で解(散乱源の分布)を表わす。すなわち、本来は一つである解を複数のモデル化された解に分解して考える。そのうえで、分解した解の各々について第2の実施形態の条件を課すことで、例えば図17(c)に示すような一様な散乱分布が存在する場合であっても、好適な画像再構成を実現するものである。
【0098】
解の合成は、次の式(8)で表すことができる。
【数9】

【0099】
上記式(8)では、解がM個の関数の合成で表されているが、そのうち、先頭のR個のみで近似した合成式が、次の式(9)で算出できるようにしておく。
【数10】

【0100】
分解された解分布fのうち小さなjに対応する分布は広域的な分布とし、jが大きくなるほど局所分布となるようにfを定める。とくに、fは一様分布である。fの各要素は全て0以上の値を持つように設定するのが良い。
【0101】
目的関数は、式(6)に式(8)を代入することで、次の式(10)の様になる。
【数11】

【0102】
また、導関数として次の式(11)を用いる。
【数12】

【0103】
の値はR個の解分布fの合成なので、目的関数および導関数はRの値により計算処理が異なる。Rを決めれば、第2の実施形態の方法でmを求め、Fを計算することで解分布を求めることができる。その際、第2の実施形態の記載中のAは本実施形態のAFに置き換える必要がある。
【0104】
本実施形態では、R=1から開始して、Rを徐々に大きくしながら、図19に示すように反復的に再構成処理を実行する。投影画像gは最初再構成入力画像の値を設定しておくが、反復ごとに解fの投影Afを引き算していく。反復中のステップkにおいては、それより前の全ステップで差し引かれた投影画像からの再構成を行う。fは小さなjに対する分布がより広い分布を持っており、反復が進むほどRが増加していくので、ステップが進むほど細かい構造が再構成されるようになる。一例として最初は一様分布が推定され、その後、局所の分布が推定される。2ステップ目以降は、投影画像から一様分布に対する投影画像が除去されているので、最初に示した概念図で説明したように以降の各ステップで局所の分布を推定する際も非負条件が有効に働く。
【0105】
以上述べた本実施形態に係る再構成処理によれば、図18(c)の例(図17(c)の例と同じ)の場合、解を図18(c1)に示す一様成分と図18(c2)に示す局所成分に分解し、各々に非負の条件を課して再構成する。このとき、非負条件が加えられるので、解に含まれる誤差がそれぞれ図18(e1)、図18(e2)に示すように低減される。最終的に得られる解はそれぞれを合成であるが、もちろん、最終的な解に含まれる誤差も図18(e)に示すように低減されている。
【0106】
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。具体的な変形例としては、例えば次のようなものがある。
【0107】
例えば、本実施形態に係る各機能は、当該処理を実行するプログラムをワークステーション等のコンピュータにインストールし、これらをメモリ上で展開することによっても実現することができる。このとき、コンピュータに当該手法を実行させることのできるプログラムは、磁気ディスク(フロッピー(登録商標)ディスク、ハードディスクなど)、光ディスク(CD−ROM、DVDなど)、半導体メモリなどの記録媒体に格納して頒布することも可能である。
【0108】
また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
【産業上の利用可能性】
【0109】
以上本発明によれば、再構成処理において、散乱線が照射された領域についての条件を再構成に導入して、得られる散乱源分布の精度を向上することができる放射線治療システム及び放射線治療プログラムを実現することができる。
【図面の簡単な説明】
【0110】
【図1】図1は、本放射線治療用線量分布測定装置の治療用放射線に基づく被検体からの散乱線計測の原理、方法を説明するための図である。
【図2】図2は、本実施形態に係る放射線治療用線量分布測定装置1のブロック構成図を示している。
【図3】図3は、吸収線量画像データの生成処理を含む放射線治療時における処理の流れを示したフローチャートである。
【図4】図4は、本放射線治療システム1の散乱線の測定形態を示した図である。
【図5】図5は、本実施形態に係る吸収線量画像データの生成処理を含む放射線治療時における処理の流れを示したフローチャートである。
【図6】図6は、本放射線治療システム1の散乱線の測定形態の一例を示した図である。
【図7】図7は、本放射線治療システム1の散乱線の測定形態の他の例を示した図である。
【図8】図8(a)、(b)は、条件付き反復再構成機能の概念を説明するための図である。
【図9】図9は、本条件付き反復再構成機能に従う処理の流れを示したフローチャートである。
【図10】図10は、散乱源存在可能領域の決定処理の流れを示したフローチャートである。
【図11】図11(a)、(b)、(c)は、散乱源存在可能領域の決定処理を説明するための図である。
【図12】図12は、散乱源存在可能領域の決定処理の流れを示したフローチャートである。
【図13】図13は、最急降下法の処理手順を示したフローチャートである。
【図14】図14は、非負条件が導入された最急降下法の処理手順を示したフローチャートである。
【図15】図15は、α=2、α=1の場合の入力投影画像及び暫定解の投影画像の例を示した図である。
【図16】図16は、解を投影した画像が、再構成入力投影画像を超えないという条件が導入された場合の最急降下法の処理手順を示したフローチャートである。
【図17】図17は、第3の実施形態に係る再構成処理の概念を説明するための図である。
【図18】図18は、第3の実施形態に係る再構成処理の概念を説明するための図である。
【図19】図19は、第3の実施形態に係る再構成処理の流れを示したフローチャートである。
【符号の説明】
【0111】
1…放射線治療用線量分布測定装置、2…放射線照射システム、3…散乱線検出システム、4…データ取得制御部、5…データ処理システム、6…表示部、7…記憶部、8…操作部、9…ネットワークI/F、201…電力供給部、203…照射部、205…タイミング制御部、207…ガントリ制御部、301…検出器、303…コリメータ、305…移動機構部、307…位置検出部、501…補正処理部、502…散乱源存在領域決定部、503…再構成処理部、505…変換処理部、507…画像処理部

【特許請求の範囲】
【請求項1】
被検体に対して治療用放射線ビームを照射する照射手段と、
前記治療用放射線ビームに基づいて発生する前記被検体内からの散乱線を検出し散乱線データを発生する検出手段と、
前記検出された各散乱線データ上における、前記被検体内の散乱源存在領域を決定する決定手段と、
前記散乱源存在領域が決定された前記各散乱線データを入力とし所定の条件に従う再構成処理を繰り返し実行することで再構成画像を生成し、当該再構成画像を用いて、前記被検体内における散乱線発生密度の三次元的分布を示す散乱線ボリュームデータを生成する再構成手段と、
前記散乱線ボリュームデータを、吸収された放射線量の三次元分布を示す吸収線量ボリュームデータに変換する変換手段と、
前記吸収線量ボリュームデータを用いて、前記被検体内における吸収線量画像を生成する画像生成手段と、
前記吸収線量画像を表示する表示手段と、
を具備することを特徴とする放射線治療システム。
【請求項2】
前記再構成手段は、前記各再構成処理において生成される前記再構成画像が、前記各再構成処理において入力とされる前記各散乱線データを超えないとする条件に従って、前記再構成処理を繰り返し実行することを特徴とする請求項1記載の放射線治療システム。
【請求項3】
前記再構成手段は、入力とされる前記各散乱線データについて、散乱線が負の値である領域についてはその値を0とする条件に従って、前記再構成処理を繰り返し実行することを特徴とする請求項1又は2記載の放射線治療システム。
【請求項4】
前記再構成手段は、入力とされる前記各散乱線データについて、前記散乱源存在領域に対応しない領域については散乱線を0とする条件に従って、前記再構成処理を繰り返し実行することを特徴とする請求項1又は2記載の放射線治療システム。
【請求項5】
前記再構成手段は、入力とされる前記各散乱線データを複数のモデル解に分解し、各モデル解について前記再構成処理を実行することを特徴とする請求項3又は4記載の放射線治療システム。
【請求項6】
コンピュータに、
被検体に対して照射された治療用放射線ビームに基づいて発生する前記被検体内からの散乱線を検出させる検出機能と、
前記検出された散乱線に基づいて複数の散乱線データを生成させるデータ生成機能と、
前記検出された各散乱線データ上における、前記被検体内の散乱源存在領域を決定させ決定機能と、
前記散乱源存在領域が決定された前記各散乱線データを入力とし所定の条件に従う再構成処理を繰り返し実行することで再構成画像を生成させ、当該再構成画像を用いて、前記被検体内における散乱線発生密度の三次元的分布を示す散乱線ボリュームデータを生成させる再構成機能と、
前記散乱線ボリュームデータを、吸収された放射線量の三次元分布を示す吸収線量ボリュームデータに変換させる変換機能と、
前記吸収線量ボリュームデータを用いて、前記被検体内における吸収線量画像を生成させる画像生成機能と、
前記吸収線量画像を表示させる表示機能と、
を実現させることを特徴とする放射線治療プログラム。
【請求項7】
前記再構成機能においては、前記各再構成処理において生成される前記再構成画像が、前記各再構成処理において入力とされる前記各散乱線データを超えないとする条件に従って、前記再構成処理を繰り返し実行させることを特徴とする請求項6記載の放射線治療プログラム。
【請求項8】
前記再構成機能においては、入力とされる前記各散乱線データについて、散乱線が負の値である領域についてはその値を0とする条件に従って、前記再構成処理を繰り返し実行させることを特徴とする請求項6又は7記載の放射線治療プログラム。
【請求項9】
前記再構成機能においては、入力とされる前記各散乱線データについて、前記散乱源存在領域に対応しない領域については散乱線を0とする条件に従って、前記再構成処理を繰り返し実行させることを特徴とする請求項6又は7記載の放射線治療プログラム。
【請求項10】
前記再構成機能においては、入力とされる前記各散乱線データを複数のモデル解に分解させ、各モデル解について前記再構成処理を実行させることを特徴とする請求項8又は9記載の放射線治療プログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2009−189559(P2009−189559A)
【公開日】平成21年8月27日(2009.8.27)
【国際特許分類】
【出願番号】特願2008−33362(P2008−33362)
【出願日】平成20年2月14日(2008.2.14)
【出願人】(000003078)株式会社東芝 (54,554)
【出願人】(594164542)東芝メディカルシステムズ株式会社 (4,066)
【Fターム(参考)】