説明

既存の処理施設を有効利用した合流式下水道の固液分離装置及び下水処理方法

【課題】 既設の最初沈殿池の機能を生かしつつ、設置のための工事期間と費用を節減する。
【解決手段】 合流式下水処理場に設置された既設の最初沈殿池を改造して製作した固液分離装置20であって、最初沈殿池の上層エリア11に配置されて被処理水28をろ過するろ過部22と、最初沈殿池の下層エリア12に配置された濃縮部24と、ろ過部22と濃縮部24とを連通又は遮断する開閉弁44を備え当該開閉弁44を開くことによって前記ろ過部22からの排水を濃縮部24に自然流下させる連通管42とを具備している。ろ過部22は浮上ろ材のろ材層30が形成された上向流式ろ過槽26を複数基、並設したものであり、各ろ材層30の下方にエア噴出手段32を備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は固液分離装置及び下水処理方法に係り、特に既存の処理施設を有効利用した合流式下水道の固液分離装置及び下水処理方法に関する。
【背景技術】
【0002】
汚水と雨水が同一の管渠に流れ込む合流式下水道の端末側には合流式下水処理場が設置されている。合流式下水処理場は図10に示したように一般に最初沈殿池1と生物反応槽2と最終沈殿池3とを備えている。最初沈殿池1では流入した下水4中の懸濁物質を沈降分離する。生物反応槽2では下水5中の有機性成分や窒素、リンを生物学的な処理によって除去する。最終沈殿池3では処理水6から活性汚泥を沈降分離し、上澄水を処理水7として河川や海に放流する。
【0003】
この種の下水処理場では流入する下水の設計水量は晴天時を基準として定められており、雨天時において雨水が多量に合流すると正規の処理ができなくなる。したがって、設計水量を超過した下水については最初沈殿池1を通しただけか、又はこれに塩素消毒を付加した簡易処理のままで放流する場合が多い。しかしながら、最初沈殿池1は元々、晴天時を基準として水面積負荷が定められているので、多量の雨水が合流した下水を最初沈殿池1に通しても十分な沈澱処理を施すことは不可能であり、微細な懸濁物質はその大部分が放流水に同伴することになる。このため、雨天時には形式的に簡易処理しただけの汚濁物質の多い下水の放流による公共水域の汚染が問題視されている。
【0004】
特許文献1には上記合流式下水処理場の問題点を改善する方策として、高速ろ過槽を採用した下水処理方法が開示されている。この高速ろ過槽は従来の最初沈殿池に代替するものであり、浮上ろ材を充填した上向流式のろ過槽である。この高速ろ過槽はろ過速度を100〜1000m/日とした高速ろ過が可能であり、従来の最初沈殿池に比べて数倍〜十数倍の水面積負荷を確保することができる。したがって、特許文献1に記載の下水処理方法は合流式下水処理場における雨天時対策として有効であると考えられる。
【0005】
特許文献2にも浮上ろ材を充填した上向流式のろ過槽が開示されており、同様に合流式下水処理場における最初沈殿池の代替装置として有効であると考えられる。
【特許文献1】特開2003−136088号公報
【特許文献2】特開平7−289812号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、既設の合流式下水処理場における雨天時対策として上記特許文献1又は特許文献2に記載された高速ろ過槽を採用する場合には、新たな用地の確保が必要である。用地の確保が困難な場合には、既設の最初沈殿池を撤去したスペースに当該高速ろ過槽を新設する必要がある。このため、高速ろ過槽の設置に多大な工事期間と費用を要する。既設の最初沈殿池の躯体部分を利用して高速ろ過槽を設置することも考えられるが、新設の場合と五十歩百歩であり、同様に多大な工事期間と費用を要する。
【0007】
本発明の目的は前記従来技術の問題点を改善し、既設の最初沈殿池の機能を生かしつつ、当該最初沈殿池の設置スペース内にろ過速度の大きいろ過部を配置することによって、設置のための工事期間と費用を節減するとともに既設の合流式下水処理場における雨天時対策として有効な固液分離装置及び下水処理方法を提供することにある。
【課題を解決するための手段】
【0008】
上記目的を達成するために、本発明に係る既存の処理施設を有効利用した合流式下水道の固液分離装置は、合流式下水処理場に設置された既設の最初沈殿池を改造して製作した固液分離装置であって、前記最初沈殿池の上層エリアに配置されて被処理水をろ過するろ過部と、前記最初沈殿池の下層エリアに配置された濃縮部と、前記ろ過部と濃縮部とを連通又は遮断する開閉手段を備え当該開閉手段を開くことによって前記ろ過部からの排水を濃縮部に自然流下させる連通部とを具備したことを特徴とする。
【0009】
また、本発明に係る上記固液分離装置は、前記最初沈殿池が2階層式沈殿池であり、当該最初沈殿池の上層エリアに設置されていた既設の上層汚泥掻き寄せ手段を撤去した後のスペースに前記ろ過部が配置されたことを特徴とする。この構成の固液分離装置は、前記濃縮部の水面が前記ろ過部の底面よりも高く保持されたことが望ましい。
【0010】
また、本発明に係る上記固液分離装置は、前記ろ過部は浮上ろ材のろ材層が形成された上向流式のろ過部であり、前記ろ材層の下方にエア噴出手段を備えたことを特徴とする。この構成の固液分離装置は、前記エア噴出手段を間欠的に作動させるとともに、当該エア噴出手段の作動に連動して前記開閉手段を開閉させる制御手段を具備したことが望ましい。
【0011】
また、本発明に係る既存の処理施設を有効利用した合流式下水道の下水処理方法は、上記構成の固液分離装置のろ過部から排出された処理水と濃縮部から排出された上澄水の合流水を当該固液分離装置の後段に配置された生物反応槽に供給することを特徴とする。また、前記合流水の水量が前記生物反応槽の受入量許容値を超過する場合には、超過分の合流水を前記生物反応槽に流入させずにバイパス放流することを特徴とする。
【発明の効果】
【0012】
本発明に係る固液分離装置によれば、合流式下水道によって集められた下水である被処理水は、最初沈殿池の上層エリアに配置されたろ過部に通水され、ろ過後の処理水が後段の生物反応槽に送られる。ろ過部で捕捉された懸濁物質は排水に同伴させ連通部を介して最初沈殿池の下層エリアに配置された濃縮部に自然流下させることができる。濃縮部ではろ過部から排出された懸濁物質を沈降させるとともに、沈降した懸濁物質(汚泥)を装置外へ排出することができる。
【0013】
ろ過部として浮上ろ材のろ材層が形成された上向流式のろ過部を採用すると、ろ過速度(水面積負荷)を400m/日程度までに上げた高速ろ過が可能である。既設の最初沈殿池の水面積負荷は通常、30〜40m/日で設計されているから、本発明の固液分離装置によれば通常の最初沈殿池に比べて10倍程度の高速処理が可能である。改造前の最初沈殿池が2階層式沈殿池である場合でも、本発明の固液分離装置は改造前の2階層式沈殿池に比べて少なくとも3倍程度の処理能力を有する。このため、雨天時において多量の雨水が合流した被処理水が当該固液分離装置に流入した場合でも、所望のろ過機能を発揮させることができる。
【0014】
しかも、既設の沈殿池を部分的に改造し、濃縮部は既設の沈殿池構造をそのまま利用した構造にできるので、改造のための工事期間と費用を最小限に抑えることができる。すなわち、本発明の固液分離装置は既設の最初沈殿池の機能を生かしつつ、最初沈殿池の設置スペース内にろ過速度の大きいろ過部を配置したので、設置、改造のための工事期間と費用を節減するとともに既設の合流式下水処理場における雨天時対策に有効である。
【0015】
また、本発明に係る下水処理方法によれば、固液分離装置のろ過部では高速ろ過が可能であるため、雨天時対策として有効である。また、固液分離装置は既設の最初沈殿池の機能を生かしつつ、最初沈殿池の設置スペース内にろ過部を配置した構造であり、改造のための工事期間と費用を節減できる。
【発明を実施するための最良の形態】
【0016】
図1は本発明に係る固液分離装置の第1実施形態を示す側断面図、図2は図1のA−A矢視図、図3は平面図である。この固液分離装置20は図11に示した合流式下水処理場における既設の最初沈殿池10を改造して製作したものである。既設の最初沈殿池10は、上層エリア11と下層エリア12からなる2階層式沈殿池である。上層エリア11にはフライトスクレーパ式の上層汚泥掻き寄せ機13が、下層エリア12にはフライトスクレーパ式の下層汚泥掻き寄せ機14がそれぞれ装備されている。各エリアに流入した下水中の懸濁物質が沈降して、各エリアの底面11A,12Aに堆積する。この底面11A,12Aに堆積した汚泥をそれぞれ上層汚泥掻き寄せ機13及び下層汚泥掻き寄せ機14によって汚泥溜め15側に掻き寄せる。汚泥溜め15に掻き集めた汚泥を吸引ポンプ16によって排出する。上層エリア11の上澄水は溢流樋17から、下層エリア12の上澄水は溢流樋18からそれぞれ排出され、図10に示した生物反応槽2に送られる。
【0017】
図1に示した本発明に係る固液分離装置20は図11に示した既設の最初沈殿池10の上層エリア11に設置されていた上層汚泥掻き寄せ機13を撤去した後のスペースにろ過部22を配置した構成とされる。また、下層エリア12は既設の下層汚泥掻き寄せ機14をそのままの状態で配置した濃縮部24とされる。汚泥溜め15や吸引ポンプ16も既設の構造がそのまま利用されている。
【0018】
ろ過部22には複数基のろ過槽26、26、……が並設されている。各ろ過槽26には被処理水28よりも比重が小さい浮上ろ材のろ材層30が形成され、被処理水28がろ材層30に対して上向流となるように各ろ過槽26に供給される。各ろ材層30の下方にはエア噴出手段32が装備され、ブロア34から供給された圧縮空気36がエア噴出手段32から噴き出し可能とされている。圧縮空気36を導く各管路には電磁開閉式の開閉弁38が取付けられており、これらの開閉弁38は制御器40からの動作信号によって開閉される。各ろ過槽26の底部には連通管42の一端が接続しており、連通管42の他端が濃縮部24内に開口している。各連通管42には電磁開閉式の開閉弁44が取付けられており、これらの開閉弁44も制御器40からの動作信号によって開閉される。
【0019】
ろ過槽26の上部にはスクリーン50が配設されており、浮上ろ材の流出を防止している。すなわち、上向流によって浮上した浮上ろ材がスクリーン50によって、それ以上の浮上を制限され、スクリーン50の配設位置を上面とした一定高さのろ材層30が安定に形成される。
【0020】
被処理水28は流入樋46から各ろ過槽26の下降流路48を経て、ろ過槽26の下部に流れ込んだ後に方向転換し、上向流としてろ材層30を通過する。この方向転換時に被処理水28中の比較的粒径の大きい懸濁物質がろ過槽26の下部に沈降し、堆積する。また、被処理水28中の比較的粒径の小さい懸濁物質はろ材層30を通過する過程で浮上ろ材に捕捉される。このため、ろ材層30を通過後の処理水52は懸濁物質の大部分が除去されることになり、ろ過槽26は一次処理としての作用効果を十分に発揮する。処理水52は流出樋54を介して当該固液分離装置20から排出され、後段の生物反応槽などに送られる。
【0021】
図4は浮上ろ材60の一例を示しており、(1)は側面図、(2)は正面図である。素材としては比重が1未満の耐候性に優れたプロピレンなどが使われる。基本形状は網目状円筒体であり、内部に複数本の突起62を有する。直径と高さは10〜30mmであり、網目を形成する線材の太さは2〜4mmの範囲とされ、好ましくは空隙率が80%以上とされる。ろ材層30の高さは高い方が好ましい。ただし、本実施形態では上記したように既設の2階層式沈殿池の上層エリアを利用してろ過槽26を設置するので、構造上の制限がある。したがって、ろ材層30の高さは1〜2mとなるように設計される。
【0022】
ろ過槽26における被処理水28のろ過速度(上向流速)が小さいほどろ過槽26での懸濁物質の除去率が高くなる。被処理水28のろ過速度を1000m/日程度にまで上げてもろ材層30では懸濁物質の除去機能を発揮する。しかし、効率のよい安定したろ過操作を実行するためには、ろ過速度を400m/日以下にして運転することが望ましい。
【0023】
ろ過操作の過程で前記したように被処理水28中の比較的粒径の大きい懸濁物質がろ過槽26の底部に汚泥として堆積する。この底部に堆積した汚泥を排出するために汚泥排出操作を行う。この汚泥排出操作では、まず被処理水28の流入を停止させる。次に開閉弁44を開放する。すると、ろ過槽26下部内の被処理水が連通管42を介して濃縮部24側に排水として自然流下し、この排水に同伴してろ過槽26の底部に堆積した汚泥も濃縮部24側に移行する。
【0024】
図5はろ過槽26における上記汚泥排出操作状況を示した説明図である。(1)は初期段階を示しており、連通管42からの排水の抜き出しによって、ろ過槽26の底部に堆積した汚泥が排出される。さらに、ろ材層30には下向流が生じており、この下向流によりろ材層30の浮上ろ材は弱い流動状態を呈しているため、浮上ろ材に捕捉されていた懸濁物質の一部が浮上ろ材から離れて下向流に同伴し、排水に同伴して濃縮部24側に移行する。この汚泥排出操作はろ過槽26内の被処理水の液面が所定の位置に達するまで行われる。(2)は汚泥排出操作の最終段階を示しており、ろ材層30の上面は液面と一致しており、液面の低下に伴ってろ材層30も下降し、その上面がスクリーン50から離れる。この最終段階で開閉弁44を閉止して汚泥排出操作を終了させる。次に、ろ過槽26に対する被処理水28の流入を再開することによってろ過操作に戻る。上記の汚泥排出操作を3時間に1回程度の頻度で間欠的に行う。
【0025】
ろ過部22でのろ過操作を長時間継続すると、各ろ過槽26のろ材層30には懸濁物質が次第に蓄積し、ろ過作用が低下してくる。そこで、ろ材洗浄操作を実施する。このろ材洗浄操作では、まず、液面をスクリーン50まで下げた状態にした後に、エア噴出手段32から空気を噴き出すことによって行われる。
【0026】
図6はろ材洗浄操作の状況を示す説明図である。エア噴出手段32から噴き出した空気の動エネルギーによって、ろ過槽26内には渦流が形成される。この渦流によって浮上ろ材60が激しく流動し、浮上ろ材60に付着、堆積していた懸濁物質が浮上ろ材60から剥離し、懸濁物質が液側に移行する。エア噴出手段32によるろ材洗浄を所定時間実施した後に、エア噴出手段による空気の噴出を継続しながら開閉弁44を開放し、ろ過槽26下部内の懸濁物質を含む被処理水のほぼ全量を連通管42を介して濃縮部24側に排水として自然流下させる。次に、開閉弁44を閉止した後に被処理水28の流入を再開し、スクリーン50まで液面を上げる。以降、上述のろ材洗浄を必要回数、繰り返すことによって、浮上ろ材60の清浄度が更新される。
【0027】
図7は上述の汚泥排出操作とろ材洗浄操作の状況をモデル化して示したタイムチャートである。時間tのろ過操作aを実施するごとに時間tの汚泥排出操作bを繰り返した後に、時間tのろ材洗浄操作cを実施する。このa→b→a→b→a→b→a→cの一連の操作を1サイクルとし、1サイクルの時間を12時間で運転すると1日当たり2サイクルのろ過処理がろ過部22で実施される。この1サイクルの一連の操作を実行するためには、被処理水28の流入と流入停止、開閉弁44の開閉、エア噴出手段32からの空気の噴出と停止の動作切り替えが必要であり、これらの動作切り替えは制御器40からの動作信号によって制御される。図7に示した被処理水流入d、開閉弁44の開e、空気の噴出fは1サイクルにおける一連の動作を概括的に示したものである。制御器40ではこれら一連の動作を所定のタイムスケジュールに基いて実行させる。
【0028】
上述の汚泥排出操作とろ材洗浄操作によって下層の濃縮部24にはろ過部22からの懸濁物質を多く含んだ排水が排出される。これらの排水中の懸濁物質は濃縮部24で沈降する。濃縮部24の底面に沈降した懸濁物質(汚泥)は下層汚泥掻き寄せ機14によって汚泥溜め15側に掻き寄せられる。汚泥溜め15に掻き集めた濃縮汚泥は吸引ポンプ16によって装置外へ排出する。懸濁物質の沈降分離によって清澄化した上澄水63は流出樋64を介して当該固液分離装置20から排出され、ろ過部22からの処理水52と合流して後段の生物反応槽などに送られる。
【0029】
濃縮部24の水面はろ過部22の底面よりも高く保持することが好ましい。本実施形態の固液分離装置20は既設の2階層式沈殿池における上層エリアを利用してろ過部22を設置したものであり、この際に2階層式沈殿池の上層エリアと下層エリアを仕切る上層エリアの底面を、ろ過部22の底面として利用している。しかしながら、上層エリアの底面は元来、ろ過部22全体の荷重を受けるように設計されていない。このため、改造によって設置したろ過部22の荷重を支持するには上層エリアの底面強度が不足する恐れがある。濃縮部24の水面をろ過部22の底面(すなわち、上層エリアの底面)よりも高く保持すれば、高くした水頭差に相当する浮力がろ過部22の底面に作用して強度不足を解消又は緩和する。したがって、上層エリアの底面に対する補強工事を不必要又は最小限に抑えることができる。
【0030】
本実施形態の固液分離装置20によれば、合流式下水道によって集められた下水である被処理水28は、最初沈殿池の上層エリアに配置されたろ過部22に通水され、ろ過後の処理水52が後段の生物反応槽に送られる。ろ過部22で捕捉された懸濁物質は排水に同伴して連通管42を介して最初沈殿池の下層エリアに配置された濃縮部24に自然流下させることができる。濃縮部24ではろ過部22から排出された懸濁物質を沈降させるとともに、沈降した懸濁物質(汚泥)を既設の下層汚泥掻き寄せ機14によって既設の汚泥溜め15側に掻き寄せる。汚泥溜め15に掻き集めた濃縮汚泥は既設の吸引ポンプ16によって装置外へ排出する。
【0031】
ろ過部22は浮上ろ材60のろ材層30が形成された上向流式のろ過部であり、ろ過速度(水面積負荷)を前記したように400m/日程度までに上げた高速ろ過が可能である。既設の最初沈殿池の水面積負荷は通常、30〜40m/日で設計されているから、本実施形態の固液分離装置20によれば通常の最初沈殿池に比べて10倍程度の高速処理が可能である。改造前の最初沈殿池が2階層式沈殿池であり単層式沈殿池に比べて敷地効率が高いことを考慮しても、本実施形態の固液分離装置20は改造前の2階層式沈殿池に比べて少なくとも3倍程度の処理能力を有する。このため、雨天時において多量の雨水が合流した被処理水28が当該固液分離装置20に流入した場合でも、所望のろ過機能を発揮させることができる。
【0032】
しかも、既設の2階層式沈殿池を部分的に改造し、濃縮部24は既設の沈殿池構造をそのまま利用した構造であるから、改造のための工事期間と費用を最小限に抑えることができる。すなわち、本実施形態の固液分離装置20は既設の最初沈殿池の機能を生かしつつ、最初沈殿池の設置スペース内にろ過速度の大きいろ過部22を配置したので、設置、改造のための工事期間と費用を節減するとともに既設の合流式下水処理場における雨天時対策に有効である。
【0033】
図8は本発明に係る固液分離装置の第2実施形態を示す側断面図である。図8において図1と同一の符号を付した要素は、前記第1実施形態で説明した要素と同一の機能を有しており、その説明を省略する。この第2実施形態は既設の単層式最初沈殿池の上部に複数基のろ過槽26からなる上層のろ過部22を増設した構造である。既設の単層式最初沈殿池はそのまま、下層の濃縮部24として利用される。開閉弁を備えた連通管42の構成も第1実施形態と同様である。この第2実施形態の固液分離装置は、既設の最初沈殿池が単層式である場合に適合している。
【0034】
図9は本発明に係る下水処理方法の実施形態を示す系統図である。固液分離装置70は既設の最初沈殿池を改造して製作した装置であって、上層エリアに配置されて被処理水78をろ過するろ過部72と、下層エリアに配置された濃縮部74と、ろ過部72と濃縮部74とを連通又は遮断する開閉手段を備え当該開閉手段を開くことによってろ過部72からの排水を濃縮部74に自然流下させる連通部76とを具備している。合流式下水道によって集水された被処理水78は、固液分離装置70のろ過部72でろ過され、処理水80とされる。ろ過部72で除去された被処理水78中の懸濁物質は、ろ過部72の排水に同伴して連通部76から濃縮部74に移送され、濃縮処理を受ける。濃縮された汚泥82は濃縮部74の汚泥溜め84から系外に排出される。濃縮部74の上澄水86はろ過部72の処理水80と合流して、後段の生物反応槽88で浄化処理される。生物反応槽88の処理水90は最終沈殿池92に送られ、汚泥94が沈澱分離される。最終沈殿池92の上澄水は処理水96として放流される。
【0035】
この下水処理方法によれば、固液分離装置70のろ過部72での高速ろ過が可能であるため、雨天時対策として有効である。また、固液分離装置70は既設の最初沈殿池の機能を生かしつつ、当該最初沈殿池の設置スペース内にろ過部72を配置した構造であり、改造のための工事期間と費用を節減できる。
【0036】
なお、固液分離装置70のろ過部72のろ過能力には限界あるため、ろ過速度の上限を例えば400m/日と定めて運転する。したがって、大雨時などにおいて合流式下水道から流入する被処理水78の水量がろ過部72のろ過能力を越える場合には、超過分の被処理水98は緊急措置としてバイパス放流する。また、生物反応槽88にも処理能力に限界がある。したがって、前記したろ過部72の処理水80と濃縮部74の上澄水86とが合流した合流水の水量が生物反応槽88の受入量許容値を超過する場合には、超過分の合流水100を同様にバイパス放流する。ただし、超過分の合流水100は前段の固液分離装置70でのろ過処理によって相応に浄化されている。このため、バイパス放流による公共水域の汚染を最小限に抑えることができる。
【図面の簡単な説明】
【0037】
【図1】本発明に係る固液分離装置の第1実施形態を示す側断面図である。
【図2】図1のA−A矢視図である。
【図3】第1実施形態の平面図である。
【図4】浮上ろ材の一例を示しており、(1)は側面図、(2)は平面図である。
【図5】ろ過槽26における汚泥排出操作状況を示した説明図であり、(1)は初期段階、(2)は最終段階を示す。
【図6】ろ材洗浄操作の状況を示す説明図である。
【図7】汚泥排出操作とろ材洗浄操作の状況をモデル化して示したタイムチャートである。
【図8】本発明に係る固液分離装置の第2実施形態を示す側断面図である。
【図9】本発明に係る下水処理方法の実施形態を示す装置系統図である。
【図10】従来技術に係る合流式下水処理場の装置系統図である。
【図11】従来技術に係る既設の2階層式沈殿池の側断面図である。
【符号の説明】
【0038】
10……最初沈殿池、11……上層エリア、12……下層エリア、13……上層汚泥掻き寄せ機、14……下層汚泥掻き寄せ機、15……汚泥溜め、16……吸引ポンプ、20……固液分離装置、22……ろ過部、24……濃縮部、26……ろ過槽、28……被処理水、30……ろ材層、32……エア噴出手段、34……ブロア、36……圧縮空気、38……開閉弁、40……制御器、42……連通管、44……開閉弁、46……流入樋、48……下降流路、50……スクリーン、52……処理水、54……流出樋、60……浮上ろ材、63……上澄水、64……流出樋、70……固液分離装置、72……ろ過部、74……濃縮部、76……連通部、78……被処理水、80……処理水、82……汚泥、86……上澄水、88……生物反応槽、92……最終沈殿池、96……処理水。

【特許請求の範囲】
【請求項1】
合流式下水処理場に設置された既設の最初沈殿池を改造して製作した固液分離装置であって、前記最初沈殿池の上層エリアに配置されて被処理水をろ過するろ過部と、前記最初沈殿池の下層エリアに配置された濃縮部と、前記ろ過部と濃縮部とを連通又は遮断する開閉手段を備え当該開閉手段を開くことによって前記ろ過部からの排水を濃縮部に自然流下させる連通部とを具備したことを特徴とする既存の処理施設を有効利用した合流式下水道の固液分離装置。
【請求項2】
前記最初沈殿池が2階層式沈殿池であり、当該最初沈殿池の上層エリアに設置されていた既設の上層汚泥掻き寄せ手段を撤去した後のスペースに前記ろ過部が配置されたことを特徴とする請求項1に記載の既存の処理施設を有効利用した合流式下水道の固液分離装置。
【請求項3】
前記濃縮部の水面が前記ろ過部の底面よりも高く保持されたことを特徴とする請求項2に記載の既存の処理施設を有効利用した合流式下水道の固液分離装置。
【請求項4】
前記ろ過部は浮上ろ材のろ材層が形成された上向流式のろ過部であり、前記ろ材層の下方にエア噴出手段を備えたことを特徴とする請求項1又は請求項2に記載の既存の処理施設を有効利用した合流式下水道の固液分離装置。
【請求項5】
前記エア噴出手段を間欠的に作動させるとともに、当該エア噴出手段の作動に連動して前記開閉手段を開閉させる制御手段を具備したことを特徴とする請求項4に記載の既存の処理施設を有効利用した合流式下水道の固液分離装置。
【請求項6】
請求項1〜請求項5のいずれかに記載された固液分離装置の前記ろ過部から排出された処理水と前記濃縮部から排出された上澄水の合流水を当該固液分離装置の後段に配置された生物反応槽に供給することを特徴とする既存の処理施設を有効利用した合流式下水道の下水処理方法。
【請求項7】
前記合流水の水量が前記生物反応槽の受入量許容値を超過する場合には、超過分の合流水を前記生物反応槽に流入させずにバイパス放流することを特徴とする請求項6に記載の既存の処理施設を有効利用した合流式下水道の下水処理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2007−737(P2007−737A)
【公開日】平成19年1月11日(2007.1.11)
【国際特許分類】
【出願番号】特願2005−182157(P2005−182157)
【出願日】平成17年6月22日(2005.6.22)
【出願人】(000005452)株式会社日立プラントテクノロジー (1,767)
【出願人】(591043581)東京都 (107)