説明

概日リズムを調整する方法

本開示は、概日リズムにおけるAMPKの役割およびこのようなリズムを調整する作用物質をスクリーニングする方法、このようなリズムを調整するために有用な組成物およびその使用を記載した。本開示は、概日リズムを改変する第2活性成分と組み合わせて製剤化されたAMPKアゴニストを含む組成物も提供する。1つの実施形態において、第2活性成分は、睡眠補助剤である。さらなる実施形態において、組成物は、経口投与、静脈内注射、筋肉内注射、硬膜外送達、頭蓋内送達または皮下注射用に製剤化される。

【発明の詳細な説明】
【技術分野】
【0001】
(関連出願への相互参照)
本願は、2009年3月20日に出願された米国仮特許出願第61/162,219号の利益を主張し、本明細書において参考として援用される。
【0002】
(政府支援の認可)
本研究は、国立衛生研究所助成金番号DK057978、DK062434、CA104838、DK080425、およびEY016807により支援された。合衆国政府は、本発明において一定の権利を有する。
【0003】
(発明の分野)
本開示は、概日リズムを調整するためのAMP活性化プロテインキナーゼ(AMPK)のアゴニストおよびアンタゴニストの使用に関する。より具体的には、本開示は、睡眠行動をスクリーニングし、調整するための組成物および方法を提供する。
【背景技術】
【0004】
概日時計は、哺乳動物の組織における何千もの遺伝子のリズム性の転写を駆動することにより、行動プロセスおよび生理的プロセスを毎日の明暗サイクルに調和させる。
【発明の概要】
【課題を解決するための手段】
【0005】
本開示は、ヒトのような哺乳動物被験体において概日リズムを改変するための方法および組成物を提供する。本開示は、AMPKが、哺乳動物被験体の概日サイクルの間に、脳および体内の他の組織において修飾されることを証明する。1つの実施形態において、本開示は、被験体における概日リズムを調整するための医薬品の製造のための、AMPキナーゼアゴニストまたはアンタゴニストの使用を提供する。1つの実施形態において、AMPKアゴニストは、AICARである。別の実施形態において、AMPKアンタゴニストは、抗体もしくはコンパウンドCまたはそれらの類似体もしくは誘導体である。さらに別の実施形態において、AMPKアゴニストは、血液脳関門を通過することができる製剤または誘導化を含む。まださらなる実施形態において、AMPKアゴニストは、経口投与、静脈内注射、筋肉内注射、硬膜外送達、頭蓋内または皮下注射用に製剤化される。
【0006】
本開示は、概日リズムを改変する第2活性成分と組み合わせて製剤化されたAMPKアゴニストを含む組成物も提供する。1つの実施形態において、第2活性成分は、睡眠補助剤である。さらなる実施形態において、組成物は、経口投与、静脈内注射、筋肉内注射、硬膜外送達、頭蓋内送達または皮下注射用に製剤化される。
【0007】
本開示は、哺乳類における睡眠を調整する方法であって、哺乳類における概日リズムを調整するのに有効な量のAMPKアゴニストまたはアンタゴニストを哺乳類に投与するステップを含む方法を提供する。
【0008】
本開示は、被験体における概日リズムまたは睡眠を調整する作用物質を同定する方法であって、(a)AMPK経路を備える試料を少なくとも1つの被検作用物質と接触させるステップと、(b)AMPKまたはAMPK経路の活性を、被検作用物質の存在下および非存在下で比較するステップであって、前記活性を変化させる被検作用物質が、概日リズム調整活性を有する作用物質を示すステップとを含む方法も提供する。
【0009】
上記のおよびその他の特徴は、添付の図面を参照して進む以下のいくつかの実施形態の詳細な記載からより明確になる。
【図面の簡単な説明】
【0010】
【図1】図1A〜Dは、AMPKシグナル伝達の破壊が、MEFにおける概日リズムを変更することを示す。(A)同期化していない対での野生型(AMPK+/+)またはampkα1−/−;ampkα2−/−(AMPK−/−)マウス胚線維芽細胞を、50%ウマ血清に2時間曝露することにより刺激し、その後、25mMグルコース、0.5mMグルコースまたは1mMのAICARを補った25mMグルコースを含有する培地に移した。定量的PCR分析を、刺激後の記載される時間に回収したcDNA試料を用いて行った。データは、それぞれ3重で分析した2つの独立する実験の平均値を示す。(B)Bmal1−ルシフェラーゼを安定的に発現する線維芽細胞を、記載される量のグルコースを2mMのAICARと共にまたはなしで含有する培地中で培養した。ルシフェラーゼ活性の連続モニタリングの代表的な結果を示す。(CおよびD)(B)に記載するようにして行った実験からのBmal1駆動型ルシフェラーゼ活性の概日周期(C)および振幅(D)の定量。(C)および(D)におけるデータは、条件あたり4つの試料についての平均値±標準偏差を表す。ANOVA分析は、カテゴリー間での有意差を示した。**シェッフェの事後分析において25mMのグルコースで培養した試料に対してP<0.01。
【図2】図2A〜Cは、AMPK活性および核局在化が概日調節を受けることを示す。(A)ホスホ−Raptor−S792(pRaptor)、Raptor、ホスホ−ACC1−S79(pACC1)およびACC1についてのイムノブロッティングを、記載される概日時間に回収したマウス肝臓から調製した全細胞溶解産物で行った。ブロットは、3回の独立した実験の代表である。(B)記載される概日時間に回収したマウス肝臓から調製したcDNAの定量的PCR分析。各データ点は、それぞれ独特の動物から採取され、4重で分析した3つの試料の平均値±標準偏差を表す。(C)核抽出物を、記載される概日時間のそれぞれで2匹のマウスの肝臓から調製した。AMPKα1、AMPKα2、PER2、CRY1およびREVERBαのタンパク質レベルを、イムノブロッティングにより分析した。記載される概日時間に回収した対での野生型(α1+/+)およびampkα1−/−(α1−/−)または野生型(α2+/+)およびampkα2−/−(α2−/−)マウスからの核抽出物を、抗体特異性についての対照として用いた。
【図3】図3A〜Cは、AMPK活性化が、マウス肝臓におけるCRY安定性および概日リズムを変更することを示す。(A)マウスに、生理食塩水または体重1kgあたり500mgのAICARを注射し、肝臓試料を1時間後のツァイトゲーバー時間(ZT、光点灯後の時間)6またはZT18に回収した。内因性CRY1を、肝臓核抽出物におけるイムノブロッティングにより検出した。n.s.は、試料負荷を評価するための非特異的バンドを示す。野生型(CRY+/+)およびcry1−/−;cry2−/−(CRY−/−)マウスから回収した試料を、抗体特異性についての対照として用いた。データは、2つの独立した実験からの代表的な結果を表す。(B)LKB1+/+およびLKB1fl/flマウスに、Creリコンビナーゼを発現するアデノウイルス(Ad−Cre)を尾静脈から注射した。Ad−Cre注射の1〜2週間後に、マウスを定常的な暗所に移し、記載される概日時間に肝臓を回収した。CRY1、PER2およびREVERBαをイムノブロッティングにより検出した。(C)(B)に記載される肝臓から調製したcDNA試料を、dbp、reverbα、cry1およびper2発現の定量的PCR分析により分析した。全ての転写産物を、内部対照としてのu36b4に対して正規化した。各データ点は、4重で分析した3つの試料の平均値±標準偏差を表す。
【図4】図4A〜Bは、AMPKの破壊が、MEFにおける概日リズムを変更することを示す。3T3不死化マウス胚線維芽細胞(A)または対での野生型(AMPK+/+)もしくはampkα1−/−;ampkα2−/−(AMPK−/−)線維芽細胞(B)を、50%ウマ血清に2時間曝露することにより刺激し、その後、25mMグルコース(黒色の記号)、0.5mMグルコース(灰色の記号)または1mMのAICARを補った25mMグルコース(赤色の記号)を含有する培地に移した。定量的PCR分析を、刺激後の記載される時間に回収した溶解産物から調製したcDNA試料を用いて行った。データは、それぞれ3重で分析した2または3つの独立する実験の平均値±標準偏差を表す。
【発明を実施するための形態】
【0011】
本明細書においてそうでないと特に記載しない限り、用いられる用語の定義は、薬学技術において用いられる標準的な定義である。明細書および添付の特許請求の範囲において用いる場合、単数形「a」、「an」および「the」は、文脈がそうでないと明確に示さない限り、複数の引用物も含む。よって、例えば、「薬学的キャリア」への言及は、そのようなキャリアの2以上の混合物などを含む。
【0012】
また、「または」の使用は、そうでないと記載しない限り「および/または」を意味する。同様に、「含む(comprise)」、「含む(comprises)」、「含み(comprising)」、「含む(include)」、「含む(includes)」および「含み(including)」は、交換可能であり、限定することを意図しない。
【0013】
種々の実施形態の記載が「含み」の用語を用いる場合、いくつかの特定の場合において、実施形態を、「から本質的になる」または「からなる」の言葉を用いて代わりに記載できることを当業者が理解するとさらに理解される。
【0014】
そうでないと明示しない限り、本明細書において用いられる全ての技術的および科学的用語は、本開示が属する当業者に通常理解されるのと同じ意味を有する。本明細書に記載されるのと同様または等価ないずれの方法および試薬も、開示される方法および組成物の実施において用いることができるが、例示的な方法および材料をここで記載する。
【0015】
本明細書において言及する全ての出版物は、本明細書の記載と関連して用いられる可能性があるその出版物に記載される方法を記載して開示する目的のために、全体が参照により本明細書に組み込まれる。上で論じた本文全体での出版物は、本開示の出願日に先んじるそれらの開示のためにのみ提供される。本明細書中のいずれも、本発明者らが、先の開示により、そのような開示に先行する権利が与えられないことを認めると解釈されない。
【0016】
概日リズムは、限定されないが、睡眠サイクルの調整、エクササイズおよびカロリー低減に関連するエネルギー調整、ならびに摂食/栄養補給(nourishment)行動のような生理的プロセス、内分泌プロセスおよび行動プロセスの適切なタイミングを調和させることにより生物学的効率を最適化する。概日リズムは、少なくとも3つの要素を含有すると考えられる:(a)環境情報を概日ペースメーカー(時計)に中継する入力経路(複数可);(b)変動(oscillation)を生み出す概日ペースメーカー;および(c)それを介してペースメーカーが種々の出力リズムを調節する出力経路(複数可)。
【0017】
哺乳動物の視床下部視交叉上核(SCN)は、行動リズムおよび生理的リズムを明暗サイクルに整合させる主要ペースメーカーとして作用する。当初、SCNは、哺乳類における自立性分子ペースメーカーの唯一の部位であると考えられていたが、その後、複数の論文が、このような分子時計がほぼ遍在的であることを示した。SCN時計とは異なって、光非感受性末梢器官における概日時計は、摂食の毎日のリズムにより同調され、末梢組織が、毎日の食物消費を予期し、代謝プロセスのタイミングを最適化することを理論的に可能にする。いくつかの論文が、重要な代謝酵素の転写の調節および代謝生理における哺乳動物概日時計についての役割を支持している。
【0018】
本明細書で用いる場合、「概日リズム」との用語は、約24時間の過程にわたって生じる生理的および行動的パラメータにおける規則的な変動を意味することを意図する。このような活動は、睡眠サイクルおよび栄養補給サイクルなどを含む。1つの実施形態において、概日リズムは、エクササイズおよびカロリー低減に関連するエネルギー調整を含み得る。例えば、本開示の方法および組成物は、身体でのエネルギー使用および睡眠を調整するために使用され得る。下に記載されるように、AMPKアゴニストは、脂質の異化によるATPの生成への代謝シフト(metabolic shift)を誘導し、そして、同時に、身体を安静状態にすることによりATPの使用を低減する。従って、AMPKアゴニストは、エクササイズの異化/代謝プロセス、ならびに安静/睡眠状態の両方を誘導し得る。
【0019】
本明細書で用いる場合、概日リズムに関して用いる場合の「調整する」との用語は、動物の概日タイミングシステムにより調節される生理的機能、内分泌機能もしくは行動を変更すること、または概日リズム性を示す細胞機能を変更することを意味することを意図する。動物の概日タイミングシステムにより調節される例示的な生理機能は、体温、自律神経調節、代謝および睡眠覚醒サイクルを含む。例示的な代謝機能は、体重の増加または減少および体脂肪率の増加または減少を含む増量ならびに減量の制御を含む。動物の概日タイミングシステムにより調節される例示的な内分泌機能は、松果体のメラトニン分泌、ACTHコルチゾール分泌、甲状腺刺激ホルモン分泌、成長ホルモン分泌、ニューロペプチドY分泌、セロトニン分泌、インスリン様成長因子I型分泌、副腎皮質刺激ホルモン分泌、プロラクチン分泌、ガンマ−アミノ酪酸分泌およびカテコールアミン分泌を含む。動物の概日タイミングシステムにより調節される例示的な行動は、運動(運動リズム)、精神的俊敏さ、記憶、感覚運動統合、摂食、REM睡眠、NREM睡眠および情動を含む。
【0020】
AMP活性化プロテインキナーゼ(AMPK)は、系統発生全体でよく保存されている代謝シグナルの中心的なメディエーターとして認識されている。AMPKは、触媒(α)サブユニットと2つの調節性(β、γ)サブユニットとを含むヘテロ3量体プロテインキナーゼである。これは、高いAMP/ATP比率の存在下でLKB1により、または上昇した細胞内カルシウムの存在下でCAMKKβによりリン酸化されると活性化される。生化学的研究および生物情報学的研究により、AMPKによるリン酸化が起こりそうな最適アミノ酸配列の関係が確立されている。
【0021】
AMP活性化プロテインキナーゼ(AMPK)およびAMPKキナーゼ(AMPKK)は、プロテインキナーゼカスケードと関連する。AMPKカスケードは、燃料の生成および利用を細胞内で調節する。例えば、細胞での燃料が低い(例えばAMP濃度の増加)と、AMPK活性が増加する。一旦活性化されると、AMPKは、ATPを保存するか、またはATP生成の代替法を促進するように機能する。
【0022】
AMPKは、肝臓、脳および骨格筋を含むいくつかの組織において発現される。AMPKの活性化は、肝臓の脂肪酸酸化およびケトン体生成を活性化し、コレステロール合成、脂肪生成およびトリグリセリド合成を阻害し、脂肪細胞の脂肪分解および脂肪生成を阻害し、骨格筋の脂肪酸酸化および筋肉グルコース摂取を刺激し、膵臓ベータ細胞によるインスリン分泌を調整することが示されている。
【0023】
AMPKの活性化は、AMPの濃度の増加により誘引できる。AMPKのγサブユニットは、αサブユニット上に活性部位(Thr−172)を露出するように立体構造変化を受ける。AMPKのγサブユニットの立体構造変化は、AMPの濃度が増加している場合に達成され得る。AMPの濃度の増加により、AMPKのγサブユニットの立体構造変化が、このサブユニットにある2つのBatemanドメインを2つのAMPが結合させることにより生じる。AMPのこの役割は、5−アミノ−4−イミダゾールカルボキサミドリボシド(AICAR)に由来するAMP類似体である5−アミノ−4−イミダゾールカルボキサミドリボチド(ZMP)によるAMPK活性化を示す実験において証明される。同様に、AMPのアンタゴニストは、AMPKによる下流のキナーゼの活性化を阻害する阻害抗体の使用を含む。
【0024】
断眠(SD)は、神経活性を増加させる。持続性の神経活性は、細胞エネルギー充足率を減少させる(AMPレベルが増加し、ATPが減少する)。これは、次に、細胞エネルギーセンサAMPKにおける変化を引き起こす。上で論じたように、AMPKは、種々のキナーゼカスケードを調整する。
【0025】
CLOCKおよびBMAL1は、ヘテロ2量体の形成により、概日リズムと関連する遺伝子の転写を誘導するポリペプチドである。典型的な概日サイクルの間に、分子機構は、2つの相互に連結された転写/翻訳フィードバックループを有する内部時計を形成する2つのサイクルの間で変動する。フィードバックループのポジティブアームは、塩基性ヘリックス−ループ−ヘリックス−PAS(Per−Arnt−Sim)ドメイン含有転写因子であるCLOCKおよびBMAL1により駆動される。CLOCK/BMAL1ヘテロ2量体は、時計遺伝子であるクリプトクロム(Cry1およびCry2)、period(Per1およびPer2)、およびRev−Erbαの転写を活性化する。PERおよびCRYタンパク質は、核に移動し、そこでこれらはCLOCK/BMAL1と相互作用して転写を下方調節し、主要フィードバックループのネガティブアームを生成する。
【0026】
時計タンパク質の翻訳後修飾(例えばリン酸化および脱リン酸化)は、タンパク質の局在化、分子間相互作用および安定性を決定し、よって、概日時計の周期を調節する。本開示は、この翻訳後調節が、AMPK活性により調整され得、よって、AMPKアゴニストおよびアンタゴニストが、概日時計の調節において役割を有し得ることを証明する。
【0027】
本開示は、睡眠または他の概日プロセスに影響するための、AMP活性化プロテインキナーゼ(AMPK)と結合するか、またはそうでなければそれを活性化もしくは不活性化する化合物(これらのいくつかは、糖尿病の治療のために現在用いられている)の使用を提供する。本開示は、AMP活性化プロテインキナーゼ活性の遺伝子操作または薬理学的操作が、培養細胞およびインタクトな動物の肝臓における概日リズムを変更することを証明する。本開示は、AMPキナーゼが、睡眠覚醒サイクルおよび他の生理的リズムのタイミングを支配するいわゆる「主要ペースメーカー」の場所である視交叉上核(SCN)で発現されることも証明する。現在利用可能な療法は、血液脳関門を通過せず、よって、睡眠障害の調整のために有用でない。
【0028】
AMPKによる概日リズムの調節は、血液脳関門を通過するAMPK調節因子が、概日リズムと関連する下流のキナーゼ活性を調節することにより、それに限定されないが不眠症を含む睡眠障害の治療に有用であることを示唆する。さらに、それらに限定されないが、CLOCK、BMAL1、PERならびにCRY−1および−2を含むある特定の概日ポリペプチドは、リン酸化および脱リン酸化により調節され、脳の外側の組織に存在する。よって、非神経組織においてAMPK活性を調整することは、キナーゼカスケードにより概日リズムを設定し、最終的に下流のポリペプチドのリン酸化および脱リン酸化を調節するためにも重要であり得る。
【0029】
AMPKを活性化するいくつかの薬理学的作用物質は、糖尿病の治療のために現在臨床使用されており、いくつかの型の癌について臨床試験されている。
【0030】
AICARのようなAMPキナーゼアゴニストは、インスリン調節、糖尿病および肥満について研究されている。しかし、AMPキナーゼは、概日リズムや睡眠行動を調整すると以前に証明されていなかった。本開示は、AMPK活性を調整することが、概日リズムに関連するタンパク質の翻訳後修飾を含む下流のプロセスに対する作用を有し得ることを証明する。1つの実施形態において、本開示は、AMPKアゴニストおよびアンタゴニストを用いて、被験体における概日リズムを調整できることを示す。例えば、AMPKは、本開示により、ヘテロ2量体CLOCK/BMAL1を活性化する転写の調整において役割を果たすことが証明される。
【0031】
種々のAMPKアゴニストが、当該技術において公知である。このようなAMPKアゴニストを含む方法および組成物が、本明細書において提供される。このようなAMPKアゴニストの使用は、概日リズムを調整する方法をもたらすことができる。1つの実施形態において、AMPKアゴニストは、AICAR化合物を含む。本開示の方法において有用な他の化合物は、ビグアナイド誘導体、AICARの類似体(例えば米国特許第5,777,100号(本明細書に参照により組み込まれる)に開示されるもの)およびAICARのバイオアベイラビリティーを増加させるAICARのプロドラッグまたは前駆体(例えば米国特許第5,082,829号(本明細書に参照により組み込まれる)に開示されるもの)を含み、これらは全て当業者に周知である。AMPKの他の活性化因子は、Iyengarらへの米国特許出願公開第20060287356号(その開示は、参照により本明細書に組み込まれる)に記載されるものを含む。従来公知のAMPK活性化化合物は、例えば、レプチン、アディポネクチンおよびメトホルミン、AICAR(5−アミノイミダゾール−4−カルボキサミド)を含む。他のAMPKアゴニストは、それらに限定されないが、フェンホルミン、ZMP、DRL−16536(Dr.Reddy’s/Perlecan Pharma)、BG800化合物(Betagenon)、フラン−2−カルボン酸誘導体(Hanall、KR;国際出願公開第WO/2008/016278号(参照により本明細書に組み込まれる)も参照されたい)、A−769662(Abbott)(構造I;Coolら、Cell Metabol.3巻:403〜416頁、2006年も参照されたい);国際公開第WO/2006/033709号に記載されるようなMetabasisにより開発中のAMPKアゴニスト;MT−39シリーズの化合物(Mercury Therapeutics);およびTransTech Pharmaにより開発中のAMPKアゴニストを含む。
【0032】
【化1】

例えば、AICARは、細胞に取り込まれ、AMPKを活性化することが示されているAMP類似体であるZMPに変換される。ZMPは、細胞内AMP模倣物として作用し、十分に高いレベルまで蓄積されると、AMPK活性を刺激できる(Corton, J. M.ら、Eur. J. Biochem.、229巻:558頁(1995年))。しかし、ZMPは、他の酵素の調節においてもAMP模倣物として作用し、よって、特異的AMPK活性化因子ではない(Musi, N.およびGoodyear, L. J. Current Drug Targets−−Immune, Endocrine and Metabolic Disorders 2巻:119頁(2002年))。
【0033】
本開示は、AMPKアゴニストまたはAMPKアンタゴニストのいずれかを用いることにより被験体における概日時計の特定のサイクルを刺激する方法を提供する。1つの実施形態において、AMPKアゴニストを用いて、CLOCK/BMAL1転写活性の増加と関連する概日サイクルを促進する。1つの実施形態において、AMPKアゴニストは、エネルギー保存のシグナル伝達による睡眠効果を、対応するキナーゼカスケードを通して促進する。この方法は、被験体におけるエネルギー欠乏状態を刺激するのに十分な量のAMPKアゴニストを被験体に投与するステップを含む。「エネルギー欠乏状態」により、AMPKのγサブユニットが立体構造変化を受ける状態のことをいう。睡眠効果を促進するとは、そのような効果が、被験体において、AMPKアゴニストの非存在下で生じるよりも多く改善されることを意味する。
【0034】
開示される方法は、限定されないが、薬学技術の当業者に周知の投与方法、投与量および製剤を含む、AMPKアゴニスト単独、またはその製剤を受容する被験体における所望の概日サイクルの状態を誘導する所望の結果を有する他の概日調節剤もしくは睡眠補助剤との組合せでの任意の投与方法、投与量および/または製剤の使用を想定する。
【0035】
本開示のAMPKアゴニストは、薬物の形態でヒトまたは動物に投与してよい。代わりに、AMPKアゴニストは、ヒトまたは動物により消費されるように、多様な食品および飲料またはペットフードに組み込んでよい。AMPKアゴニストは、一般的な食品もしくは飲料に用いてよいか、あるいは機能性食品もしくは飲料、疾患に罹患している被験体のための食品、または特定の健康用途のための食品(この食品(または飲料)は、それが生理機能を有することを記載したラベルを有する);例えば睡眠補助剤に用いてよい。
【0036】
AMPKアゴニスト単独、または他の睡眠補助剤もしくは活性成分との組合せは、薬品、例えば、錠剤もしくは顆粒剤のような経口固体製品、または液剤もしくはシロップ剤のような経口液体製品に製剤化してよい。
【0037】
開示される方法におけるAMPKアゴニストまたは製剤の投与の方式は、それらに限定されないが、くも膜下内(intrathecal)、皮内、筋肉内、腹腔内(ip)、静脈内(iv)、皮下、鼻内、硬膜外、硬膜内、頭蓋内、脳室内および経口経路を含む。具体的な例において、AMPKアゴニストは、経口投与される。AMPKアゴニストの投与のための他の簡便な経路は、例えば、注入もしくはボーラス投与、局所、上皮もしくは皮膚粘膜層を通しての吸収(例えば口腔粘膜、直腸および腸粘膜など)、眼、鼻および経皮を含む。投与は、全身性または局所的であり得る。肺投与も(例えば吸入器またはネブライザにより)、例えばエアロゾル剤を含有する製剤を用いることにより、用いることができる。
【0038】
下に、より詳しく記載されるように、上記AMPKアゴニストは、経口、非経口、筋肉内、脈管内、または他の適切な経路により投与され得る。1つの実施形態において、そのAMPKアゴニストは、硬膜外投与される。1つの実施形態において、そのAMPKアゴニストは、血液脳関門の通過を促進するように製剤化される。
【0039】
特定の実施形態において、AMPKアゴニストを局所的に投与することが望ましい場合がある。このことは、例えば、局所的もしくは領域的な注入または灌流、局所塗布(例えば創傷包帯材)、注射、カテーテル、坐剤またはインプラント(例えば、シアラスティック(sialastic)膜または繊維のような、膜を含む多孔質、非多孔質またはゼラチン質の材料から形成されるインプラント)などにより達成してよい。
【0040】
アゴニストの使用に加えて、アンタゴニストもまた、覚醒状態を刺激するために使用され得ることが認識されるべきである。本開示はまた、AMPK活性に拮抗する作用物質を投与する工程を含む、活性状態を促進する方法を提供し、それにより「覚醒」または「活動」サイクルに対する代謝および活性を設定する。1つの実施形態において、そのAMPKアンタゴニストは、阻害抗体である。1つの実施形態において、そのAMPKアンタゴニストは、小分子阻害物質(例えば、コンパウンドC(ドルソモルフィン、6−[4−(2−ピペリジン−1−イル−エトキシ)−フェニル)]−3−ピリジン−4−イル−ピラゾロ(pyrrazolo)[1,5−a]−ピリミジン)、その類似体、誘導体、または塩)である。
【0041】
他の実施形態において、ポンプ(例えば移植されたミニポンプ)を用いてAMPKアゴニストまたは製剤を送達してよい(例えば、Langer Science 249巻、1527頁、1990年;Sefton Crit. Rev. Biomed. Eng. 14巻、201頁、1987年;Buchwaldら、Surgery 88巻、507頁、1980年;Saudekら、N. Engl. J. Med. 321巻、574頁、1989年を参照されたい)。別の実施形態において、AMPKアゴニストまたは製剤は、小胞、特にリポソームで送達される(例えば、Langer、Science 249巻、1527頁、1990年;Liposomes in the Therapy of Infectious Disease and Cancer中のTreatら、Lopez−BeresteinおよびFidler(編)、Liss, N. Y.、353〜365頁、1989年を参照されたい)。
【0042】
さらに別の実施形態において、AMPKアゴニストは、制御放出製剤で送達できる。Langer(Science 249巻、1527頁、1990年)による総説で論じられているもののような制御放出系が公知である。同様に、制御放出製剤において有用なポリマー材料が公知である(例えば、Rangerら、Macromol. ScL Rev. Macromol. Chem. 23巻、61頁、1983年;Levyら、Science 228巻、190頁、1985年;Duringら、Ann. Neurol. 25巻、351頁、1989年;Howardら、J. Neurosurg. 71巻、105頁、1989年を参照されたい)。例えば、アゴニストは、ポリ乳酸、ポリグリコール酸、ポリ乳酸とポリグリコール酸とのコポリマー、ポリイプシロンカプロラクトン、ポリヒドロキシ酪酸、ポリオルトエステル、ポリアセタール、ポリジヒドロピラン、ポリシアノアクリレート、およびヒドロゲルの架橋または両親媒性ブロックコポリマーを含む、化合物の制御放出を達成するのに有用なクラスの生分解性ポリマーと結合させてよい。
【0043】
開示される方法は、アゴニスト(複数可)を送達して所望の結果を達成するAMPKアゴニストの任意の剤形またはその製剤の使用を意図する。剤形は、一般的に公知であり、例えばAllenら、Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems、第8版、Philadelphia, PA: Lippincott Williams & Wilkins、2005年、全738頁を含む多様な参考書で教示されている。開示される方法で用いるための剤形は、それらに限定されないが、固体剤形および固体改変放出薬物送達系(例えば散剤および顆粒剤、カプセル剤ならびに/または錠剤);半固体剤形および経皮系(例えば軟膏剤、クリームおよび/またはゲル);経皮薬物送達系;薬学的挿入物(例えば坐剤および/または挿入物(insert));液体剤形(例えば液剤および分散系);ならびに/または滅菌剤形および送達系(例えば非経口製剤(parenterals)および/または生物製剤(biologies))を含む。具体的な例示的剤形は、エアロゾル(定量噴霧(metered dose)、粉末、溶液および/または噴霧剤なしを含む);ビーズ;カプセル(従来の、制御送達、制御放出、腸溶被覆および/または持続放出を含む);キャプレット;濃縮物;クリーム;結晶;ディスク(持続放出を含む);点滴剤;エリキシル;乳剤;フォーム;ゲル(ゼリーおよび/または制御放出を含む);小球;顆粒剤;ガム;インプラント;吸入薬;注射剤;挿入物(徐放(extended release)を含む);リポソーム;液体(制御放出を含む);ローション;ロゼンジ;定量噴霧(例えばポンプ);ミスト;うがい薬;噴霧化用溶液;眼用の系;油;軟膏;膣坐剤(ovule);粉末(パケット、発泡剤(effervescent)、懸濁用粉末、懸濁持続放出用粉末および/または溶液用粉末);ペレット;ペースト;液剤(長時間作用性および/または再構成されたものを含む);細片;坐剤(持続放出を含む);懸濁剤(レンテ、ウルトラレンテ(ultre lente)、再構成されたものを含む);シロップ(持続放出を含む);錠剤(咀嚼、舌下、持続放出、制御放出、遅延作用、遅延放出、腸溶被覆、発泡剤、フィルム被覆、即時溶解、緩慢放出を含む);経皮系;チンキ;および/またはカシェ剤を含む。典型的には、剤形は、AMPKアゴニストを含む少なくとも1つの薬学的活性成分の有効量(例えば治療有効量)と、薬学的に許容される賦形剤および/または他の成分(例えば1つ以上の他の活性成分)との製剤である。薬物製剤化の目的は、被験体に活性成分(例えばAMPKアゴニストまたはAMPKアンタゴニスト)を適切に投与することである。製剤は、投与の方式に適するものである。「薬学的に許容される」との用語は、連邦政府もしくは州政府の規制機関により承認されたか、または米国薬局方もしくは他の一般的に認識されている動物およびより具体的にはヒトにおける使用についての薬局方に列挙されていることを意味する。例示的な製剤において用いるための賦形剤は、例えば、1つ以上の以下のものを含む:結合剤、増量剤(filler)、崩壊剤、滑沢剤、コーティング、甘味料、香料、着色料、防腐剤、希釈剤、アジュバントおよび/またはビヒクル。賦形剤が、一括して、具体的な剤形の全重量(および/または容量)の約5%〜95%を構成するいくつかの場合がある。
【0044】
薬学的賦形剤は、例えば、水および/またはピーナツ油、大豆油、鉱油、ごま油のような石油、動物油、植物油または合成起源のものなどを含む油のような滅菌液体であり得る。水は、製剤を静脈内投与する場合の例示的なキャリアである。生理食塩水、血漿媒体、デキストロース水溶液およびグリセロール溶液を、特に注射用溶液用の液体キャリアとして用いることもできる。経口製剤は、それらに限定されないが、薬学的グレードのマンニトール、ラクトース、デンプン、ステアリン酸マグネシウム、サッカリンナトリウム、セルロース、炭酸マグネシウムなどを含み得る。非経口の薬学的賦形剤のより完全な説明は、Remington、The Science and Practice of Pharmacy、第19版、Philadelphia, PA: Lippincott Williams & Wilkins、1995年、第95章に見出すことができる。賦形剤は、例えば、浸透圧を調整するための薬学的に許容される塩、シクロデキストリンのような脂質キャリア、血清アルブミンのようなタンパク質、メチルセルロースのような親水性作用物質、界面活性剤、緩衝剤、防腐剤なども含んでよい。薬学的賦形剤の他の例は、デンプン、グルコース、ラクトース、スクロース、ゼラチン、麦芽、コメ、小麦粉、チョーク、シリカゲル、ステアリン酸ナトリウム、モノステアリン酸グリセロール、タルク、塩化ナトリウム、脱脂粉乳、グリセロール、プロピレン、グリコール(propylene, glycol)、水、エタノールなどを含む。所望により、製剤は、少量の湿潤剤もしくは乳化剤またはpH緩衝剤も含有できる。
【0045】
経口投与を含むいくつかの実施形態において、AMPKアゴニストの経口投与量は、通常、1日あたり体重1kgあたり約0.001mg(mg/kg/日)〜約100mg/kg/日、例えば約0.01〜10mg/kg/日の範囲である(そうでないと記載しない限り、活性成分の量は、遊離の酸または遊離の塩基であり得る中性分子に基づく)。例えば、80kgの被験体は、約0.08mg/日〜8g/日、例えば約0.8mg/日〜800mg/日を受容する。1日1回の投与のための適切に調製された医薬品は、よって、0.08mg〜8g、例えば0.8mg〜800mgを含有する。いくつかの場合において、AMPKアゴニストまたはアンタゴニストを含む製剤は、1日2回、3回または4回の分割用量で投与してよい。1日2回の投与のために、上記のような適切に調製された医薬品は、0.04mg〜4g、例えば0.4mg〜400mgを含有する。上記の範囲外の投与量が必要となる場合があり得る。1日あたり0.08mg〜8gの範囲で与えられ得る1日投与量の例は、0.1mg、0.5mg、1mg、2.5mg、5mg、10mg、25mg、50mg、100mg、200mg、300mg、400mg、500mg、600mg、800mg、1g、2g、4gおよび8gを含む。これらの量は、1日に1回より多く投与する場合は、より少ない用量に分けることができる(例えば、薬物を1日2回摂取する場合は、各投与において半分の量)。
【0046】
注射による投与(例えば静脈内または皮下注射)を含むいくつかの方法実施形態において、被験体は、ほぼ上記の量で活性成分を送達する注射量を受容する。量は、消化系を回避する注射薬物形態に起因する送達効率の差を考慮して調整してよい。このような量は、いくつかの適切な方法、例えば1回の長期間または1日に数回の間での低濃度で高容量の活性成分、短期間、例えば1日1回の間での高濃度で低容量の活性成分で投与してよい。典型的には、約0.01〜1.0mg/mlの間の、例えば0.1mg/ml、0.3mg/mlまたは0.6mg/mlなどの活性成分の濃度を含有する従来の静脈内製剤を調製し、上記の1日あたりの量に等しい1日あたりの量で投与してよい。例えば、0.5mg/mlの活性成分の濃度を有する静脈内製剤を1日2回8ml受容する80kgの被験体は、1日あたり8mgの活性成分を受容する。
【0047】
他の実施形態において、AMPKアゴニストまたはアンタゴニスト(またはその製剤)は、治療期間を通してほぼ同じ用量、漸増用量計画または負荷用量計画(例えば負荷用量が維持用量の約2〜5倍である)で投与できる。いくつかの実施形態において、用量は、使用期間の間に、組成物を受容する被験体の状態、組成物に対する見かけの応答および/または当業者により判断される他の因子に基づいて変動する。いくつかの実施形態において、例えば慢性不眠症または睡眠覚醒サイクル障害を管理するために、AMPKアゴニストまたはアンタゴニストの長期間の投与が意図される。
【0048】
本開示は、AMPK活性化または阻害を測定することによる、概日リズムを調整する作用物質のスクリーニング方法も提供する。概日リズムを調整する化合物をスクリーニングするための方法は、AMPK経路を備える細胞、組織または被験体(例えば動物)を提供するステップと、前記被験体を、概日リズム調整活性を有すると推測される作用物質と接触させるステップと、AMPK活性に対する作用を、直接、または下流のキナーゼ活性により測定するステップとを含む。被検作用物質は、概日リズム機能の少なくとも1つの観察可能な指標を有し、かつAMPKを発現する細胞調製物、組織、器官、生物または動物に対して提供することができる。概日リズムを調整する作用物質の能力は、概日リズム機能の徴候を示す多様な動物種、ならびにそのような動物から得られる器官、組織および細胞、およびそれらに由来する細胞調製物で試験できる。AMPK活性を調整する作用物質は、次いで、推定概日リズム調整活性を有する作用物質として同定できる。
【0049】
多様なin vitroスクリーニング方法が、概日リズムを調整するアンタゴニストまたはアゴニストを同定するために有用である。AMPKを調整する化合物の能力は、例えば、AMPKと結合してAMPKを活性化もしくは不活性化するか、下流のキナーゼ活性を遮断するか、リン酸化および脱リン酸化を調整するか、またはAMPKにより生成される予め決定されたシグナルを調整する化合物の能力により示され得る。よって、シグナル伝達および結合アッセイを用いて、概日リズムを調整する化合物を同定するための本開示の方法において提供されるAMPKのアンタゴニストまたはアゴニストを同定できる。
【0050】
「作用物質」は、目的または結果を達成するために有用である、任意の物質または物質の任意の組合せ、例えば、AMPK活性化カスケードと関連するタンパク質活性を調整するために有用であり(例えばAMPK依存性リン酸化事象)、またはタンパク質−タンパク質相互作用もしくはATP代謝を改変するかまたはそれに影響するために有用である物質あるいは物質の組合せである。
【0051】
例示的な作用物質は、それらに限定されないが、それらに限定されないがランダムペプチドライブラリーのメンバー(例えば、Lamら、Nature、354巻:82〜84頁、1991年;Houghtenら、Nature、354巻:84〜86頁、1991年を参照されたい)を含む例えば可溶性ペプチドのようなペプチド、ならびにDおよび/またはL立体配置のアミノ酸で作製されたコンビナトリアル化学由来分子ライブラリー、ホスホペプチド(それらに限定されないが、ランダムまたは部分的に縮重された、定向ホスホペプチドライブラリーのメンバーを含む;例えば、Songyangら、Cell、72巻:767〜778頁、1993年を参照されたい)、抗体(それらに限定されないが、ポリクローナル、モノクローナル、ヒト化、抗イディオタイプ、キメラまたは単鎖抗体、ならびにFab、F(ab’)2およびFab発現ライブラリーフラグメント、およびそれらのエピトープ結合フラグメントを含む)、有機または無機の小分子(例えば、いわゆる天然生成物または化学コンビナトリアルライブラリーのメンバー)、分子複合体(例えばタンパク質複合体)、あるいは核酸を含む。
【0052】
本開示の方法において有用なライブラリー(例えばコンビナトリアル化学ライブラリー)は、それらに限定されないが、ペプチドライブラリー(例えば米国特許第5,010,175号;Furka、Int. J. Pept. Prot. Res.、37巻:487〜493頁、1991年;Houghtonら、Nature、354巻:84〜88頁、1991年;PCT公報第WO91/19735号を参照されたい)、コードされたペプチド(例えばPCT公報第WO93/20242号)、ランダムバイオオリゴマー(例えばPCT公報第WO92/00091号)、ベンゾジアゼピン(例えば米国特許第5,288,514号)、ヒダントイン、ベンゾジアゼピンおよびジペプチドのようなダイバーソマー(diversomer)(Hobbsら、Proc. Natl. Acad. Sci. USA、90巻:6909〜6913頁、1993年)、ビニローグ(vinylogous)ポリペプチド(Hagiharaら、J. Am. Chem. Soc、114巻:6568頁、1992年)、グルコース足場を有する非ペプチド性ペプチド模倣物(Hirschmannら、J. Am. Chem. Soc、114巻:9217〜9218頁、1992年)、小化合物ライブラリーの類似した有機合成(Chenら、J. Am. Chem. Soc、116巻:2661頁、1994年)、オリゴカルバメート(Choら、Science、261巻:1303頁、1003年)および/またはペプチジルホスホネート(Campbellら、J. Org. Chem.、59巻:658頁、1994年)、核酸ライブラリー(Sambrookら、 Molecular Cloning, A Laboratory Manual、Cold Springs Harbor Press, N. Y.、1989年;Ausubelら、Current Protocols in Molecular Biology、Green Publishing Associates and Wiley Interscience, N. Y.、1989年を参照されたい)、ペプチド核酸ライブラリー(例えば米国特許第5,539,083号を参照されたい)、抗体ライブラリー(例えばVaughnら、Nat. Biotechnol、14巻:309〜314頁、1996年;PCT出願第PCT/US96/10287号を参照されたい)、炭水化物ライブラリー(例えばLiangら、Science、274巻:1520〜1522頁、1996年;米国特許第5,593,853号を参照されたい)、有機小分子ライブラリー(例えばベンゾジアゼピン、Baum、C&EN、1月18日、33頁、1993年;イソプレノイド、米国特許第5,569,588号;チアゾリジオノンおよびメタチアゾン、米国特許第5,549,974号;ピロリジン、米国特許第5,525,735号および第5,519,134号;モルホリノ化合物、米国特許第5,506,337号;ベンゾジアゼピン、第5,288,514号を参照されたい)などを含む。
【0053】
開示されるスクリーニング方法のために有用なライブラリーは、それらに限定されないが、空間的に整列させたマルチピンペプチド合成(Geysenら、Proc Natl. Acad. Sci.、81巻(13号):3998〜4002頁、1984年)、「ティーバッグ」ペプチド合成(Houghten、Proc Natl. Acad. Sci.、82巻(15号):5131〜5135頁、1985年)、ファージディスプレイ(ScottおよびSmith、Science、249巻:386〜390頁、1990年)、スポットまたはディスク合成(Dittrichら、Bioorg. Med. Chem. Lett.、8巻(17号):2351〜2356頁、1998年)、あるいはビーズ上での分割および混合固相合成(Furkaら、Int. J. Pept. Protein Res.、37巻(6号):487〜493頁、1991年;Lamら、Chem. Rev.、97巻(2号):411〜448頁、1997年)を含む多様な方法で生成できる。ライブラリーは、種々の数の構成成分(composition)(メンバー)、例えば約100メンバーまで、例えば約1000メンバーまで、例えば約5000メンバーまで、例えば約10,000メンバーまで、例えば約100,000メンバーまで、例えば約500,000メンバーまでまたは500,000メンバーより多くさえ含んでよい。
【0054】
1つの実施形態において、ハイスループットスクリーニング法は、多数の可能性のある治療化合物(例えば、AMPKタンパク質−タンパク質相互作用の影響因子)を含有するコンビナトリアル化学またはペプチドライブラリーを提供するステップを含む。このようなコンビナトリアルライブラリーを、次いで、本明細書に記載されるような1つ以上のアッセイでスクリーニングして、所望の特徴的な活性を示す(例えばAMPKタンパク質−タンパク質相互作用を増加または減少させる)ライブラリーメンバー(特に化学種またはサブクラス)を同定する。このようにして同定された化合物は、通常の「リード化合物」として用い得るか、またはそれら自体を可能性のあるもしくは実際の治療剤として用いることができる。いくつかの場合において、候補作用物質のプールを同定し、さらにスクリーニングして、どの個別の作用物質または集合的な作用物質のより小さいプールが所望の活性を有するか決定してよい。AMPK相互作用またはプロセスのAMP依存性リン酸化に影響する(例えば増加または減少させる)作用物質は、被験体において概日リズム(例えば睡眠行動)を調整する効果を有する場合があり、よって、同定することが望まれる。
【0055】
本明細書に記載されるスクリーニング法において、組織試料、単離細胞、単離ポリペプチドおよび/または被検作用物質は、ハイスループットスクリーニングに適する様式で提示できる。例えば、1または複数の単離組織試料、単離細胞または単離ポリペプチドを、マイクロタイタープレートのウェルに入れ、1または複数の被検作用物質をマイクロタイタープレートのウェルに加えることができる。代わりに、1または複数の被検作用物質を、マイクロタイタープレートのウェル(溶液でまたはプレート表面に接着した)のようなハイスループットフォーマットで提示でき、1または複数の単離組織試料、単離細胞および/または単離ポリペプチドと、組織試料もしくは単離細胞もしくは所望のポリペプチド機能および/または構造物を少なくとも維持する条件下で接触させる。被検作用物質は、組織試料、単離細胞または単離ポリペプチドに、組織もしくは細胞に致死的でなく、ポリペプチド構造物および/または機能に有害な影響を与えない任意の濃度で加えることができる。異なる被検作用物質は、異なる有効濃度を有することが予想される。よって、いくつかの方法において、被検作用物質濃度の範囲を試験することが有利である。
【0056】
タンパク質リン酸化を検出するための方法は、従来からあり(例えばGloffke、The Scientist、16巻(19号):52頁、2002年;Screatonら、Cell、119巻:61〜74頁、2004年を参照されたい)、検出キットは、多様な商業的供給源から入手可能である(例えばUpstate(Charlottesville、VA、USA)、Bio−Rad(Hercules、CA、USA)、Marligen Biosciences,Inc.(Ijamsville、MD、USA)、Calbiochem(San Diego、CA、USA)を参照されたい)。簡単に述べると、リン酸化タンパク質は、ゲル中のリン酸化タンパク質に特異的な染色を用いて検出できる。代わりに、リン酸化タンパク質に特異的な抗体を作製できるか、または商業的に入手できる。リン酸化タンパク質に特異的な抗体は、なかでも、ビーズに繋留されているか(特定の色のサインを有するビーズを含む)、またはELISAもしくはウェスタンブロットアッセイにおいて用いることができる。
【0057】
特定の方法において、ポリペプチドのリン酸化は、このような翻訳後修飾が検出可能に測定される場合、またはこのような翻訳後修飾が対照測定(例えば被検作用物質を加える前の同じ試験系、または被検作用物質の非存在下での同様の試験系、またはAMPKの非存在下での同様の試験系)よりも少なくとも20%、少なくとも30%、少なくとも50%、少なくとも100%または少なくとも250%高い場合に、増加している。
【0058】
AMPKサブユニット(例えばAMPKα1および/またはAMPKα2)の基本型のアミノ酸配列(および基本型のAMPKサブユニット(例えばAMPKα1および/またはAMPKα2)をコードする核酸配列)は、周知である。例示的なAMPKα1アミノ酸配列および対応する核酸配列は、例えば、GenBank受託番号NM_206907.3(GI:94557298)(アミノ酸配列および核酸配列を含むHomo sapiens転写産物バリアント2 REFSEQ);NM_006251.5(GI:94557300)(アミノ酸および核酸配列を含むHomo sapiens転写産物バリアント1 REFSEQ);NM_001013367.3(GI:94681060)(アミノ酸および核酸配列を含むMus musculus REFSEQ);NMJ)01039603.1(GI:88853844)(アミノ酸および核酸配列を含むGallus gallus REFSEQ);およびNM_019142.1(GI:11862979XRaJfWSアミノ酸配列および核酸配列を含むnorvegicus REFSEQ)に記載される。例示的なAMPKα2アミノ酸配列および対応する核酸配列は、例えば、GenBank受託番号NM_006252.2(GI:46877067)(アミノ酸配列および核酸配列を含むHomo sapiens REFSEQ);NM_178143.1(GI:54792085)(アミノ酸配列および核酸配列を含むMus musculus REFSEQ);NM_001039605.1(GI:88853850)(アミノ酸配列および核酸配列を含むGallus gallus REFSEQ);およびNM_214266.1(GI:47523597)(アミノ酸配列および核酸配列を含むMus musculus REFSEQ)に記載される。
【0059】
いくつかの方法実施形態において、AMPKサブユニットのホモログまたは機能的バリアントは、基本型のAMPKα1および/またはAMPKα2ポリペプチドと少なくとも60%のアミノ酸配列同一性、例えばGenBank受託番号NM_206907.3;NM_006251.5;NMJ)01013367.3;NM_001039603.1;NM_019142.1;NM_006252.2;NM_178143.1;NM_001039605.1;またはNM_214266.1に記載されるアミノ酸配列と、少なくとも75%、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%または少なくとも98%のアミノ酸配列同一性を共有する。他の方法実施形態において、AMPKサブユニットのホモログまたは機能的バリアントは、基本型のAMPKα1および/またはAMPKα2ポリペプチドと比較して1つ以上の保存的アミノ酸置換、例えばGenBank受託番号NM_206907.3;NM_006251.5;NM_001013367.3;NM_001039603.1;NM_019142.1;NM_006252.2;NM_178143.1;NM_001039605.1;またはNM_214266.1に記載されるアミノ酸配列と比較して、3以下、5以下、10以下、15以下、20以下、25以下、30以下、40以下または50以下の保存的アミノ酸の変化を有する。例示的な保存的アミノ酸置換は、本明細書において先に記載した。
【0060】
いくつかの方法実施形態は、AMPKまたはそのサブユニット(例えばAMPKα1および/またはAMPKα2)の機能的フラグメントを含む。AMPKまたはそのサブユニット(例えばAMPKα1および/またはAMPKα2)の機能的フラグメントは、例えばその約20、約30、約40、約50、約75、約100、約150または約200連続アミノ酸残基を含む、全長もしくはインタクトなAMPKポリペプチド複合体またはそのサブユニット(例えばAMPKα1および/またはAMPKα2)の任意の部分であり得るが、ただし、フラグメントが、対象とする少なくとも1つのAMPK(またはAMPKα1および/もしくはAMPKα2)機能を保持することを条件とする。AMPK経路におけるポリペプチド間のタンパク質−タンパク質相互作用は、少なくともAMPKαサブユニット(例えばAMPKα1および/またはAMPKα2)を含むと考えられる。
【0061】
「単離」生体成分(例えばポリヌクレオチド、ポリペプチドまたは細胞)は、混合試料(例えば細胞または組織の抽出物)中の他の生体成分から分けて精製されている。例えば、「単離」ポリペプチドまたはポリヌクレオチドは、ポリペプチドまたはポリヌクレオチドが存在していた細胞(例えば組換えポリペプチドまたはポリヌクレオチドについての発現宿主細胞)の他の成分から分けられたポリペプチドまたはポリヌクレオチドである。
【0062】
「精製された」との用語は、試料から1つ以上の無関係の成分を除去することをいう。例えば、組換えポリペプチドを宿主細胞において発現させる場合、ポリペプチドは、例えば、宿主細胞タンパク質を除去し、それにより試料中の組換えポリペプチドの割合が増加することにより精製される。同様に、組換えポリヌクレオチドが宿主細胞中に存在する場合、ポリヌクレオチドは、例えば、宿主細胞ポリヌクレオチドを除去し、それにより試料中の組換えポリヌクレオチドの割合が増加することにより精製される。
【0063】
単離ポリペプチドまたは核酸分子は、典型的には、試料の少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、少なくとも95%または99%(w/wまたはw/v)超をさらに含む。
【0064】
ポリペプチドおよび核酸分子は、当該技術において一般的に公知であり本明細書に記載される方法により単離される。ポリペプチドまたは核酸分子の純度は、ポリペプチドについてポリアクリルアミドゲル電気泳動、または核酸分子についてアガロースゲル電気泳動のようないくつかの周知の方法により決定してよい。
【0065】
2つの核酸配列間または2つのアミノ酸配列間の類似性は、これらの配列間で共有される配列同一性のレベルの点で表される。配列同一性は、典型的には、パーセント同一性に関して表される。パーセンテージが高いほど、2つの配列はより類似する。
【0066】
比較のために配列を整列させる方法は、当該技術において周知である。種々のプログラムおよびアラインメントアルゴリズムが、SmithおよびWaterman、Adv. Appl. Math.2巻:482頁、1981年;NeedlemanおよびWunsch、J. Mol. Biol.48巻:443頁、1970年;PearsonおよびLipman、Proc. Natl. Acad. ScL USA85巻:2444頁、1988年;HigginsおよびSharp、Gene73巻:237〜244頁、1988年;HigginsおよびSharp、CABIOS5巻:151〜153頁、1989年;Corpetら、Nucleic Acids Research16巻:10881〜10890頁、1988年;Huangら、Computer Applications in the Biosciences8巻:155〜165頁、1992年;Pearsonら、Methods in Molecular Biology24巻:307〜331頁、1994年;Tatianaら(1999年)、FEMS Microbiol. Lett.、174巻:247〜250頁、1999年に記載されている。Altschulらは、配列アラインメント法および相同性算出について詳細な考察を示している(J. Mol. Biol.215巻:403〜410頁、1990年)。国立バイオテクノロジー情報センター(NCBI)のBasic Local Alignment Search Tool(BLAST(商標)、Altschulら、J. Mol. Biol.215巻:403〜410頁、1990年)は、blastp、blastn、blastx、tblastnおよびtblastxの配列分析プログラムと関連して用いるために、国立バイオテクノロジー情報センター(NCBI、Bethesda、MD)およびインターネット上を含む種々の供給源から利用可能である。このプログラムを用いてどのようにして配列同一性を決定するかについての記載は、インターネット上で、BLAST(商標)についてのヘルプ部分から利用可能である。
【0067】
約30アミノ酸より大きいアミノ酸配列の比較のために、BLAST(商標)(Blastp)プログラムの「Blast2配列」機能を、デフォルトパラメータ(ギャップ開始コスト[デフォルト=5];ギャップ伸長コスト[デフォルト=2];ミスマッチペナルティ[デフォルト=−3];マッチ報酬[デフォルト=1];期待値(E)[デフォルト=10.0];ワードサイズ[デフォルト=3];1行の記載の数(V)[デフォルト=100];表示するアラインメントの数(B)[デフォルト=100])に設定されたデフォルトBLOSUM62行列を用いて行う。短いペプチド(30アミノ酸くらいより少ない)を整列させる場合、アラインメントは、デフォルトパラメータ(開始ギャップ9、伸長ギャップ1ペナルティ)に設定されたPAM30行列を用いるBlast2配列機能を用いて行う。参照配列に対してさらにより大きい類似性を有するタンパク質は、この方法により評価する場合に、パーセント同一性の増加を示す。
【0068】
核酸配列の比較のために、BLAST(商標)(Blastn)プログラムの「Blast2配列」機能を、デフォルトパラメータ(ギャップ開始コスト[デフォルト=11];ギャップ伸長コスト[デフォルト=1];期待値(E)[デフォルト=10.0];ワードサイズ[デフォルト=11];1行の記載の数(V)[デフォルト=100];表示するアラインメントの数(B)[デフォルト=100])に設定されたデフォルトBLOSUM62行列を用いて行う。参照配列に対してさらにより大きい類似性を有する核酸配列は、この方法により評価する場合に、パーセント同一性の増加を示す。
【0069】
特異的結合とは、一方の結合パートナー(例えば結合剤)と他方の結合パートナー(例えば標的)との間の特定の相互作用のことをいう。このような相互作用は、結合パートナー間(またはより頻繁には、各結合パートナーの特定の領域または部分間)の1または典型的にはそれより多い非共有結合により媒介される。非特異的結合部位とは対照的に、特異的結合部位は、飽和可能である。よって、特異的結合を特徴づける1つの例示的な方法は、特異的結合曲線による。特異的結合曲線は、例えば、一定量の一方の結合パートナーと結合した他方の結合パートナー(第1結合パートナー)の量を、第1結合パートナーの濃度の関数として示す。第1結合パートナーの濃度がこれらの条件下で増加すると、結合した第1結合パートナーの量が飽和する。非特異的結合部位とはまた別に対照的に、互いの直接の会合(例えばタンパク質−タンパク質相互作用)に関与する特異的結合パートナーは、このような会合(例えばタンパク質複合体)から、過剰量のいずれかの特異的結合パートナーにより競合的に除去(または置換)され得る。このような競合アッセイ(または置換アッセイ)は、当該技術において周知である。
【0070】
本開示は、概日リズムおよび睡眠行動をもたらすために有用な作用物質を同定する方法および作用物質も提供する。
【実施例】
【0071】
以下の実施例は、ある特定の特徴および/または実施形態を例示するために提供される。これらの実施例は、記載される特定の特徴または実施形態に本発明を限定すると解釈されない。
【0072】
(実施例1)
AMPKは、線維芽細胞における概日リズムの代謝的変更に寄与する。概日時計リセットのための摂食由来シグナルの重要性、グルコース利用力によるAMPKの調節、およびクリプトクロム不安定化におけるAMPKの役割についての蓄積している証拠に鑑みて、AMPK発現およびグルコース利用力の影響を、線維芽細胞における概日リズム性に対して調べた。野生型線維芽細胞を、制限されたグルコースを含有する培地で培養した場合、概日性reverbαおよびdbp発現の振幅は、著しく増進され(図1Aおよび図4)、これは、グルコース欠損がAMPKを活性化し、CRY安定性を低減させるモデル(これは、CLOCK:BMAL1標的であるreverbαおよびdbpの脱抑制を導く)と一致した。予想されたように、培養培地にAICARを加えることは、グルコース欠損の効果を模倣した。目ざましいことに、グルコース欠損もAICAR処理も、AMPKを欠くMEF(ampkα1−/−;ampkα2−/−、「AMPK−/−」)におけるreverbαおよびdbpの発現に影響せず(図1Aおよび図4)、このことは、線維芽細胞概日リズムに対するグルコース制限の影響が、AMPKにより媒介されることを示した。
【0073】
Bmal1プロモーターは、REVERBαにより抑制される。よって、グルコース利用力の低減が概日リズムに与える影響を、Bmal1プロモーターの制御下でルシフェラーゼを安定的に発現する線維芽細胞を用いて調べた。標準的(高グルコース)培養条件下では、Bmal1−ルシフェラーゼの発現の高振幅概日リズムが、25.3時間の周期で観察された(図1B、C)。培地中のグルコース量の低下は、概日周期を30.7時間まで増加させた。Bmal1−ルシフェラーゼ発現細胞を、AICARを補った高グルコース培地で培養した場合、概日周期は、低グルコースで観察されたものと同様であり、グルコース欠損の概日性の影響が、AMPKにより媒介されるという考えを補強した。制限されたグルコース条件のもとで観察されたREVERBαの発現の増加は、Bmal1を含むREVERBαにより抑制される遺伝子の発現の低下をもたらすと予想される。実際に、グルコース濃度の低下またはAICAR処理のいずれかによるAMPKの活性化は、Bmal1−ルシフェラーゼ発現の振幅を低下させた(図1D)。
これらの結果はまとめて、培養線維芽細胞の概日リズムが、グルコース利用力の変更を担い、これらの効果が、AMPK誘導リン酸化により媒介されることを示す。
【0074】
in vivoでのAMPKの概日性の調節。AMPKの日周期性調節を調べるために、AMPK転写、局在化および基質リン酸化を、インタクトな動物の末梢器官において調べた。全ての実験は、標準的な明暗サイクルへの同調化の後に定常的な暗所に維持した動物を用いて行って、観察された効果が、外部の環境における変化に対する日周期性の応答よりもむしろ概日性であることを確実にした。
【0075】
調べた両方のAMPK基質、ACC1−Ser79およびRaptor−Ser792のリン酸化は、主体的な昼において夜よりも再現可能により高く(図2A)、ネガティブフィードバックタンパク質が不安定な昼の時間にほぼ対応し、これは、リズム性のAMPK活性化が分解に寄与するモデルと一致した。マウス肝臓におけるAMPKの概日性の調節を探索する一方、最小限の核クリプトクロムタンパク質の時間と一致するピーク発現(図2C)を有する調節性ampkβ2サブユニットの堅固な概日性の発現(図2B)。AMPKβ2は、AMPK複合体の核局在化を駆動すると報告されているが、AMPKβ1含有複合体は、形質膜を標的にする。よって、ampkβ2の概日転写は、変動するAMPKβ2が、AMPKα1およびAMPKα2の核局在化を日周期性に調節することを示唆する。この仮説を試験するために、概日サイクル全体にわたって回収した肝臓核(liver nucleus)におけるAMPKα1およびAMPKα2のタンパク質レベルを測定し(図2C)、ampkβ2発現と同期してピークになる核AMPKα1のリズム性を観察した。AMPKα2は、核局在化シグナルを含有し、核に常に存在した。AMPKα1核局在化がピークになる時間は、肝臓核における最小CRY1タンパク質の時間でもあり、このことは、AMPKの核へのリズム性の移入が、AMPK媒介リン酸化およびクリプトクロムの分解に寄与し得ることを示唆する。
【0076】
AMPKは、概日時計をin vivoにて変更する。マウスにおいてAMPKα1およびAMPKα2の両方を遺伝子欠失させることにより、早期の胚致死性が導かれる。よって、肝臓概日時計におけるAMPKの役割をさらに調べるために、概日タンパク質および転写産物を、明暗サイクルへの同調化の後に定常的な暗所で飼育した対照マウス(LKB1+/+)または肝細胞におけるlkb1が喪失した同腹子(LKB1L/L)の肝臓において24時間にわたって調べた。lkb1の肝臓特異的欠失は、この器官におけるAMPK活性化を廃止し、概日サイクル全体で、特に、変更されていないマウスにおいてAMPKが最も活性であることが見出された昼間の時間中に、肝臓核に存在するCRY1およびCRY2タンパク質の量を著しく増加させた(図3B)。この増加は、昼光に対応する期間におけるREVERBα発現の減少(図3B)および概日サイクルを通しての概日転写産物の振幅の減少(図3C)と関連した。よって、AMPKシグナル伝達のin vivoにおける喪失は、クリプトクロムを安定化し、概日リズムを混乱させ、光非依存性末梢概日時計についての同期化の機構を確立する。
【0077】
本開示は、具体的な実施形態に重点をおいて記載しているが、具体的な実施形態の変形を用いることができることが当業者に明らかであり、本開示を、本明細書に具体的に記載する以外の別な方法で行うことができることを意図する。よって、本開示は、以下の特許請求の範囲により定義される本開示の精神および範囲内に包含される全ての改変を含む。

【特許請求の範囲】
【請求項1】
被験体における概日リズムを調整するための医薬品の製造のための、AMPキナーゼアゴニストまたはアンタゴニストの使用。
【請求項2】
前記AMPKアゴニストが、ビグアナイド誘導体、AICAR、メトホルミンまたはその誘導体、フェンホルミンまたはその誘導体、レプチン、アディポネクチン、AICAR(5−アミノイミダゾール−4−カルボキサミド、ZMP、DRL−16536、BG800化合物(Betagenon)、およびフラン−2−カルボン酸誘導体からなる群から選択される、請求項1に記載の使用。
【請求項3】
前記被験体が哺乳類である、請求項1に記載の使用。
【請求項4】
有効量が、単一用量または分割用量での1日あたり約0.5mg/kg〜1日あたり約100mg/kgである、請求項1に記載の使用。
【請求項5】
化合物が、経口投与、静脈内注射、筋肉内注射、硬膜外送達、頭蓋内、局所、眼内、坐剤として、または皮下注射用に製剤化される、請求項1に記載の使用。
【請求項6】
AMPキナーゼアゴニストおよび少なくとも1つの他の概日リズム改変作用物質を含む組成物。
【請求項7】
前記少なくとも1つの他の概日リズム改変作用物質が、睡眠補助剤である、請求項6に記載の組成物。
【請求項8】
前記AMPKアゴニストが、ビグアナイド誘導体、AICAR、メトホルミンまたはその誘導体、フェンホルミンまたはその誘導体、レプチン、アディポネクチン、AICAR(5−アミノイミダゾール−4−カルボキサミド、ZMP、DRL−16536、BG800化合物(Betagenon)、およびフラン−2−カルボン酸誘導体からなる群から選択される、請求項6に記載の組成物。
【請求項9】
前記化合物が、経口投与、静脈内注射、筋肉内注射、硬膜外送達、頭蓋内送達、局所、眼内、坐剤として、または皮下注射用に製剤化される、請求項6に記載の組成物。

【請求項10】
哺乳類における睡眠を調整する方法であって、該方法は、哺乳類における概日リズムを調整するのに有効な量のAMPKアゴニストを該哺乳類に投与する工程を含む、方法。
【請求項11】
前記哺乳類がヒトである、請求項10に記載の方法。
【請求項12】
前記概日リズムが睡眠行動である、請求項10に記載の方法。
【請求項13】
被験体における概日リズムまたは睡眠を調整する作用物質を同定する方法であって、該方法は、
(a)AMPK経路を備える試料を少なくとも1つの被検作用物質と接触させる工程;および
(b)AMPKまたはAMPK経路の活性を、該被検作用物質の存在下および非存在下で比較する工程を含み、ここで該活性を変化させる被検作用物質が、概日リズムの活性を調整する作用物質であることを示す、
方法。
【請求項14】
被験体における概日リズムを調節するための、請求項6、7、または8に記載の組成物の使用。
【請求項15】
前記被験体が哺乳類である、請求項14に記載の使用。
【請求項16】
有効量が、単一用量または分割用量での1日あたり約0.5mg/kg〜1日あたり約100mg/kgである、請求項14に記載の使用。
【請求項17】
化合物が、経口投与、静脈内注射、筋肉内注射、硬膜外送達、頭蓋内、局所、眼内、坐剤として、または皮下注射用に製剤化される、請求項14に記載の使用。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公表番号】特表2012−521364(P2012−521364A)
【公表日】平成24年9月13日(2012.9.13)
【国際特許分類】
【出願番号】特願2012−501029(P2012−501029)
【出願日】平成22年3月22日(2010.3.22)
【国際出願番号】PCT/US2010/028155
【国際公開番号】WO2010/108179
【国際公開日】平成22年9月23日(2010.9.23)
【出願人】(510177832)ザ ソーク インスティテュート フォー バイオロジカル スタディーズ (3)
【Fターム(参考)】