説明

水流発電装置

【課題】低流速から高流速まで、広い流速範囲にわたる流水域で電力を効率良く得ることができるようにする。
【解決手段】この水流発電装置は、水流の流体力に応じて撓み、かつ、撓んだ状態で振れ回り、振れ角に応じた張力を発生する振れ回り振動体1と、該振れ回り振動体1から張力を受けて発電する圧電素子5からなる張力発電部2とを備えている。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、水流から電力を得る水流発電装置に係り、詳しくは、水流を受けると、撓んで張力を発生する弦状又は弓状部材の振れ回りを利用して発電する水流発電装置に関する。
【背景技術】
【0002】
この種の発電装置の一形式として、例えば、特許文献1に記載されているように、海流エネルギーを機械的回転エネルギーに変換する水流発電装置が知られている。この水流発電装置は、海流によって回転する軸流水車(回転翼)と、この軸流水車の機械的回転エネルギーによって発電する電磁的な発電部とから構成されている。
【0003】
しかしながら、軸流水車構造の水流発電装置では、回転摺動部が海中に暴露されると、金属部分の電蝕が進み、また、回転摺動部が磨り減ると漏水が起きて、発電装置が故障する虞がある。加えて、この構成では、生物や浮遊物などが回転摺動部に侵入すると、摺動が阻害されて、発電効率が低下するという問題もある。それゆえ、軸流水車を備える方式のものは、信頼性に乏しく、海中などで長期にわたり利用できないので、メンテナンスを必要とする、という不都合がある。水流用の軸流水車が高価であるという欠点もある。加えて、簡易な構造で、軸流水車の向きを常に流向に合わせる構成とすることは困難であるので、この水流発電装置は、流向の変化が激しい潮流や海流などに設置する用途には適していない。
【0004】
このような軸流水車構造の発電装置の不都合を解消する水流発電装置として、カルマン渦を利用する方式のもの、ギャロップ振動を利用する方式のもの、及びはためき振動を利用する方式のものなどが提案されている。
【0005】
カルマン渦を利用する方式のものとしては、例えば、特許文献2、3に記載の振動発電装置を挙げることができる。特許文献2、3に記載の振動発電装置は、円柱体(円筒体を含む)に水流が当たったときに、円柱体の両側に発生するカルマン渦によって励起される振動を電磁的又は圧電的に電気出力に変換することで、軸流水車などの複雑な機構を不要としている。
【0006】
次に、ギャロップ振動を利用する方式のものとしては、例えば、特許文献4に記載の発電装置を挙げることができる。この発電装置は、流体流を受ける平面を有し、流体流と常に直交する方向にギャロップ振動する振動発生体と、ギャロップ振動が伝達されてたわみ振動を行う振動体と、撓み振動のエネルギーを電気エネルギーに変換するトランスデューサとを備えている。
【0007】
さらに、はためき振動を利用する方式のものとしては、非特許文献1に記載の風水力発電装置を挙げることができる。非特許文献1に記載の風水力発電装置は、複数軸で連結された複数枚の平板からなる多関節平板のはためき振動を圧電素子に伝達して発電する構成となっている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2007−009833号公報
【特許文献2】特開2001−157433号公報
【特許文献3】特開2010−136535号公報
【特許文献4】特開2006−226221号公報
【非特許文献】
【0009】
【非特許文献1】山岸真幸他「一様流中における多関節平板の振動特性に関する研究」、「境界層遷移の解明と制御」研究会講演論文集(第43回、第44回、2010年2月、P.41-44、宇宙航空研究開発機構)
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかしながら、カルマン渦を利用する特許文献2、3に記載の振動発電装置には、以下のような問題点がある。
すなわち、カルマン渦を利用する方式において、効率の良い機械振動を得て発電効率を高めるためには、カルマン渦の発生周波数と円柱体の共振周波数とを一致させる必要がある。両周波数が一致するとき、カルマン渦によって円柱体に発生する横方向振動変位は、図4に示すように、カルマン渦により発生する(流れに直交する)横方向振動の変位βが最大(図中B)のとき、円柱体の張力σが最大となり、出力電位も最大となる。
【0011】
ところで、カルマン渦の発生周波数は、流体の密度や粘性などの性質と流速及び円柱体の直径により一義的に決定される。これに対して、円柱体の機械的振動の共振周波数は、円柱体の重さなどの材料定数、直径、長さ、及び支持体の弾性率などで決まる上、円柱体は、剛性の高い金属や合成樹脂などで作られること、また、両端支持構造又は片持ち梁構造とされるので、その共振周波数は高く、共振の鋭さQも非常に高いものとなる。
【0012】
このような理由のため、流速が時刻に対して一様でない水域で使用する場合には、円柱体の共振周波数を、流速によって変動するカルマン渦の発生周波数に常に一致させるように設計するのは、容易ではない。それゆえ、高い発電効率を得ようとすれば、大きな径の円柱体は、高流速の流水域でしか使用することができず、また、小さな径の円柱体は、低流速の流水域でしか使用することができないという、問題がある。つまり、カルマン渦を利用する発電方式にあっては、適用できる流速範囲が狭小である、という欠点がある。ロックインと呼ばれる現象を利用して共振が継続する流速範囲を広げても、たかだか2倍の流速範囲に限られる。
【0013】
ここで、円柱体として、弦などの細径の円柱体を用いるようにすれば、張力を加えることで所望の共振周波数にすることができるが、張力印加機構が必要であり、また、流体力による張力変化に伴って、弦の共振周波数が変動してしまうため、張力変化を補正する複雑な張力制御機構も必要となる。
【0014】
また、実運用においては、生物や浮遊物の付着などのために、円柱体の表面平滑性が阻害されて、カルマン渦の発電効率が低下する、という問題もある。
なぜなら、平滑な円筒表面の流体剥離が、カルマン渦の発生起源であり、円筒表面の平滑化が損なわれると、流体剥離は乱流となって、カルマン渦の発生起源とはなり得なくなるためである。
【0015】
さらに、カルマン渦を利用する発電装置も、軸流水車構造の発電装置と同様に、流れの方向により、発電効率が変動し低下するので、流向の変化が激しい潮流や海流などに設置する用途には、適さない、という問題もある。なぜなら、潮流到来方向は方位方向の変化だけではなく、とくに、浅い海域などでは上下方向斜めの潮流がほとんどであるが、このような斜め方向からの水流に対しては、カルマン渦は安定的に発生しないためである。
【0016】
また、ギャロップ振動を利用する発電装置では、ギャロップ振動を生じさせるために、振動発生体の平面を流体の到来方向に常に正対させて置かなければならない、という技術課題がある。特許文献4に記載の発電装置では、水流の方向の変化に応じて回動する方向決定材(風見鶏)を設けることで、上記技術課題を克服している反面、構造の複雑化を招き、高価であるという欠点がある。
加えて、特許文献4に記載の発電装置は、ギャロップ振動に起因する振動体の湾曲振動が圧電素子に加わる構造であるため、剛性の高い高価な材料を用いて振動体を形成する必要がある。
【0017】
さらに、はためき振動を利用する非特許文献1に記載の風水力発電装置では、多関節平板の機械的構造が複雑である上、流向の変化や流量の変化などの様々な外力変動に対して長期信頼性を確保することは難しい、という問題がある。とくに、ヒンジ構造の機械的摺動部が磨耗するなどの特定要素の脆弱性が問題である。
また、この風水力発電装置では、多関節平板の影響を受けて、周囲や下流の流れに乱れが生じる虞があるので、複数の風水力発電装置を近接して設置すると、相互の影響が無視できないという問題もある。
【0018】
この発明は、上述の事情に鑑みてなされたもので、小型軽量で、かつ簡易で安価な構成ながら、低流速から高流速まで、広い流速範囲にわたる流水域で電力を効率良く得ることができる水流発電装置を提供することを第1の目的としている。
また、この発明は、保守性・耐久性に優れ、水流の到来方向を選ばずに、安定的に電力を得ることができる水流発電装置を提供することを第2の目的としている。
【課題を解決するための手段】
【0019】
上記課題を解決するために、この発明の水流発電装置は、水流の流体力に応じて撓み、かつ、撓んだ状態で振れ回り、振れ角に応じた張力を発生する振れ回り振動体と、該振れ回り振動体から張力を受けて発電する電磁的又は圧電素子からなる張力発電部とを備えてなることを特徴としている。
【発明の効果】
【0020】
この発明の構成によれば、水流力や振れ回り振動体の構造形状に依存して、振れ回り振動の自励周期は変化するものの、広い流速にわたって振れ回りを利用できるので、低流速から高流速まで、広い流速範囲で安定した電力を得ることができる。
また、弦状又は弓状の振れ回り振動体を用いるので、小型軽量で、かつ簡易で安価な水流発電装置を具現できる上、生物付着などの影響が少ないため、保守性・耐久性に優れ、水流の到来方向を選ばずに、効率良く電力を得ることができる。
【図面の簡単な説明】
【0021】
【図1】この発明の第1の実施形態である水流発電装置の機械的電気的構成を斜視断面図とブロック図とを結合して示す概念図である。
【図2】同水流発電装置を構成する振れ回り振動体が、水流の流体力によって撓み、振れ角αで振れ回る振動をする様子を模式的に示す状態説明図である。
【図3】同振れ回り振動体の振動変位及び張力変化と張力発電部の出力電圧を示すグラフである。
【図4】関連技術の説明に供される、円柱体の振動変位及び張力変化と出力電圧を示すグラフである。
【発明を実施するための形態】
【0022】
水流の流体力に応じて撓み、かつ、撓んだ状態で振れ回り、振れ角に応じた張力を発生する弦状又は弓状の振れ回り振動体を設け、張力発電部を、振れ回り振動体から、張力伝達体を介して、張力(圧縮力)を受けて発電する圧電素子で構成した。
【実施形態1】
【0023】
以下、図面を参照して、この発明の実施形態について詳細に説明する。
図1は、この発明の第1の実施形態である水流発電装置の機械的電気的構成を斜視断面図とブロック図とを結合して示す概念図、図2は、同水流発電装置を構成する振れ回り振動体が、水流の流体力によって撓み、振れ角で振れ回る振動をする様子を模式的に示す状態説明図、また、図3は、同振れ回り振動体の振動変位及び張力変化と張力発電部の出力電圧を示すグラフである。
この水流発電装置は、図1に示すように、水流の流体力に応じて撓み、振れ回り、振れ角に応じた張力を発生する弦状の振れ回り振動体1と、該振れ回り振動体1から張力を受けて発電する圧電方式の張力発電部2、2とを備えて構成されている。
【0024】
まず、この実施形態の機械的構成から説明する。
この水流発電装置は、図1に示すように、弦状の振れ回り振動体1と、該振れ回り振動体1の両端部に配設された一対の円板状の張力発電部2、2と、水流部を画成するための複数本の支柱3、3…とから概略構成されている。
【0025】
次に、装置の各部について説明する。
上記振れ回り振動体1は、長尺の弦状部材から構成され、水流の流体力に応じて下流側に流されて撓み、かつ、撓んだ状態で振れ回り、振れ角((振動偏角))に応じた張力を発生する。ここで、水流とは、潮流や海流はもちろん、河川の流れも含む概念である。
【0026】
振れ回り振動体1を構成する上記弦状部材の素材としては、耐張力と耐屈曲性に優れ、塑性変形しない材質のものである限り、金属材、合成樹脂材、これらの複合材のいずれも好ましい。好適な合成樹脂材としては、経時的な伸びが少ないアラミド繊維を挙げることができるが、これに限定されない。また、好適な金属材としては、耐蝕性に優れたステンレス材やチタン材、ピアノ線のような伸びの少ない鋼材を挙げることができるが、これらに限定されない。
【0027】
ここで、ピアノ線のような鋼材などを用いる場合には、防蝕性を確保するために、鋼材の周囲に防水樹脂などを塗布して用いても良く、あるいはクロロプレンやシリコンゴムなどでモールドして用いても良い。なお、この実施形態の張力発電装置を定常流の中に設置するのでなければ、張力は常時発生する訳ではないので、このような用途では、必ずしも高剛性の弦状部材を用いる必要はない。振れ回り振動体1を構成する弦状部材の断面形状は、円に限らず、楕円や多角形でも良いし、また、振れ回りの振動は、生物付着などの影響を受けにくいため、弦状部材は、単線に限らず、例えばロープのように、複数の素線を縒り合せたものでも良い。
【0028】
振れ回り振動体1の両端部には、一対の円板状で圧電式の張力発電部2、2が、相対向する態様で配設されていて、振れ回り振動体1から張力を受けると、圧電効果により発電する構成となっている。各張力発電部2は、相対向する両面に一対の電極4a、4bを有する円環状の圧電素子5と、圧電素子5の外側の電極4bに当接積層され、振れ回り振動体1に発生した張力を圧電素子5に伝達する張力伝達板6とから概略構成されている。
【0029】
圧電素子5と張力伝達板6の各中心部には、軸心を共通にする貫通孔7a、7bが穿孔されていて、貫通孔7a、7bには、振れ回り振動体(弦状部材)1の端部が挿通されている。振れ回り振動体(弦状部材)1の一端部は、一方の張力発電部2を構成する圧電素子5と張力伝達板6の貫通孔7a、7bに挿通されて、固定手段8を用いて、張力伝達板6に固着又は係着されている。また、振れ回り振動体(弦状部材)1の他端部は、他方の張力発電部2を構成する圧電素子5と張力伝達板6の貫通孔7a、7bに挿通されて、固定手段8を用いて、張力伝達板6に固着又は係着されている。なお張力発電部2を構成する圧電素子5や電力引き出し線などには、電気的短絡を防止するために、樹脂塗布やモールドなどにより、図示せぬ防水構造が施されている。
【0030】
相対向する2つの張力発電部2、2(圧電素子5、5)は、複数本の支柱3、3…によって、所定の距離だけ離隔されて配置されている。このようにして、振れ回り振動体(弦状部材)1は、相対向する2つの張力発電部2、2(圧電素子5、5)の間に、振れ回り可能に張設されている。ここで、圧電素子5の貫通孔7aの孔径は、振れ回り振動体(弦状部材)1の振れ回り運動を考慮して、比較的大に設定され、張力伝達板6の貫通孔7bの孔径は、固定手段8による固着又は係止を考慮して、比較的小に設定されている。
【0031】
複数の支柱3、3…は、円板状の張力発電部2、2の周縁部に等角間隔で立設されている。このようにして、2つの張力発電部2、2と各支柱3、3…とで画成される空間が、海水や淡水などの水流があらゆる方向・角度から自在に通過できる水流部をなすことで、振れ回り振動体1には、常に、ほぼ直交する方向から水流の流体力を受けることができる構成となっている。
【0032】
振れ回り振動体1は、図2に示すように、水流Fにより下流側に流されて(撓み)、凧や潜航板のように、左右(横方向)に、振れ角(振動偏角)αで振れ回る振動をする。図3に示すように、振れ回り振動の周期で発生する振れ回り振動体1の張力σの変化が、張力伝達板6を介して、圧電素子5に変動圧力P(図1)として作用すると、圧電素子5は、変動圧力を圧縮応力に応じた電力に変換する。ここで、振れ回り振動の自励振動周期は、流体の種類や振れ回り振動体の構造(断面構造や長さ、密度、柔軟性)や張力によって決定され、張力は流体の流体力により発生する。それゆえ、この実施形態では、振れ回り振動体1に張力を印加する複雑な機構や、振れ回り振動体1を弾性支持する機構を必要とせずに、振れ回り振動体1の弾性限界の範囲で適用できる流速を任意に設定できる。
【0033】
図3に示すように、振れ回り振動体1の振動変位(同図(a))は、流体力Fにより発生するバイアス張力(同図(b))のみが重畳した変動張力となり、この張力σが、圧電素子5、5によって電気出力(同図(c))に変換される。このように、この実施形態では、振れ回り振動体1の振動変位による張力変化σが、圧力変動Pとして圧電素子5、5に加えられて出力電圧に変換されるので、水流の到来方向、すなわち、振れ回り振動体1の振動方向の影響を受けることはない。
【0034】
次に、この実施形態の電気的構成について説明する。
この水流発電装置は、図1に示すように、張力発電部2、2から出力される電力のうち、交流成分のみを出力する直流・交流分離部9と、該直流・交流分離部9から出力された交流電力を蓄積する蓄電部10とを備えている。蓄電部10に蓄積された電力は、図示せぬ観測機器などに供給される。
【0035】
振れ回り振動体1の振れ回り(横方向回動振動)は剛性が低いことから、低流速下でも振動が励起される。また、振れ回り振動体1の振動は、その両端において張力σの変化としてあらわれる。すなわち、振れ回り振動体1が変位したときの質量による慣性力と張力による弾性力によるエネルギーによって、振れ回り振動は維持され、持続振動となる。振れ回り振動体1は、流体側にカルマン渦を利用しないため、共振周波数を所定の範囲に強制的に拘束する必要がないので、材料や形状の選択の自由度が大きく、それゆえ、簡易な構成で、低流速から高流速まで、幅広い流速範囲で、使用できる。
【0036】
次に、この実施形態の動作について説明する。
振れ回り振動体1は、図2に示すように、水流(水流力)Fに応じて撓み、流れの下流側で、振れ角αの振れ回りの態様で振動する。振れ回りの際には、振れ回り振動体(弦状部材)1は、その両端を固定手段8、8にて固定した状態で、円弧状に撓み下流側に張り出した状態で、振れ回りの振動を行う。振れ回り振動体(弦状部材)1の振れ角が0のとき(図2.図3(a))、すなわち、振れ回り振動体1が最も遠くまで流されたとき(図2中A)、振れ回り振動体1に生じる張力σは最大となる(図3(b))。この最大張力は、張力伝達板6を介して、圧電素子5、5に最大圧力として作用するので、各張力発電部2、2からの出力電圧も最大となる(図3(c))。なお、図2では、振れ回り振動体1の弧状変形が、実際よりも強調的に示されている。
【0037】
一方、振れ回り振動体(弦状部材)1の振れ角が最大αのとき(図2、図3(a))、すなわち、振れ回り振動体1の弧が緩んだとき(図2中B)、振れ回り振動体1に生じる張力σは最小となる(図3(b))。この最小張力は、張力伝達板6を介して、圧電素子5、5に最大圧力として作用するので、各張力発電部2、2からの出力電圧も最小となる(図3(c))。振れ回り振動体(弦状部材)1は、流れの中で、振れ角0から最大振れ角αの間で、振れ回り、その両端において張力σの変化としてあらわれる。すなわち、振れ回り振動体1が変位したときの質量による慣性力と張力による弾性力によるエネルギーによって、持続振動として、捻れ、振れ回りを続ける。
【0038】
浅海域での潮流は、水流の流速や流向が時間的に変化することが一般的である。このような場合には、振れ回り振動体1の振動周期は変動することになるが、振れ回り振動体1の張力変動の振幅は大きくは変らないので、上記構成の水流発電装置によれば、常に安定した電力を得ることができる。また、振れ回り振動体1が、繰り返し使用により、弾性を維持しつつも、塑性伸びを生じたときでも振動周期や発生応力はほとんど変化しないという点からも、上記構成の水流発電装置によれば、常に安定した電力を得ることができる。
【実施形態2】
【0039】
次に、この発明の第2の実施形態について説明する。
この第2の実施形態では、図示せぬ振れ回り振動体(弦状部材)が、帯状又はへら状の張力発生部材から構成されている点で、第1の実施形態で用いる断面円状、楕円状、又は多角形状の振れ回り振動体(弦状部材)1と相違している。なお、上記以外の点では、上記した第1の実施形態とほぼ同様であるので、その説明を省略する。この第2の実施形態を構成する張力発生部材の素材も、上記した第1の実施形態で用いる弦状部材の素材と同様のものを用いることができる。
【0040】
この第2の実施形態によれば、周期的な振動が発生し易い形状であるので、一段と大きな振動振幅および張力変化を得ることができ、したがって、一段と大きな電力を取り出すことができる。なお、帯状又はへら状の張力発生部材を、横断面円弧状に形成するようにすれば、さらに一段と大きな振動振幅および張力変化を得ることができ、したがって、さらに一段と大きな電力を取り出すことができる。
また、帯状又はへら状の張力発生部材は、中央部に最大の広幅部を有するように構成しても良い。このように構成すれば、大きな張力を得ることができる。
第1の実施形態の弦状部材は、水流の流向が時間的に激しく変化する水域で用いて、とくに好適であるが、この第2の実施形態の帯状又はへら状の張力発生部材は、水流の流向が時間的に激しく変化しない水域に用いて、とくに好適である。
【実施形態3】
【0041】
次に、この発明の第3の実施形態について説明する。
この第3の実施形態では、図示せぬ振れ回り振動体が、水流力を受けていなくても、予め弓形(弧状)に設置されている点で、第1の実施形態の振れ回り振動体(弦状部材)1と相違している。なお、上記以外の点では、上記した第1の実施形態とほぼ同様であるので、その説明を省略する。この第3の実施形態を構成する振れ回り振動体の素材も、上記した第1の実施形態で用いる弦状部材の素材と同様のものを用いることができる。
【0042】
この第3の実施形態による図示せぬ水流発電装置は、予め弓形の形状を保持する態様で設置され、水流の流体力に応じて撓み、かつ、撓んだ状態で振れ回り、振れ角に応じた張力を発生する弓状の振れ回り振動体と、該振れ回り振動体から張力を受けて発電する電磁的又は圧電素子からなる張力発電部とを備えて構成されている。
【0043】
この第3の実施形態によっても、上記した第1の実施形態で述べたとほぼ同様の効果を得ることができる。加えて、この第3の実施形態によれば、斜め上昇流、斜め下降流などの水流力を受けとめ易い構成であるので、斜め上昇流、斜め下降流などが発生し易い水域で用いて、とくに好適である。
【0044】
また、このような弓状の振れ回り振動体を、第2の実施形態で述べたと同様に、帯状又はへら状の張力発生部材を用いて構成しても良いし、その横断面形状を円弧状に形成するようにすれば、第2の実施形態で述べたとほぼ同様の効果を得ることができる。また、帯状又はへら状の張力発生部材は、中央部に最大の広幅部を有するように構成しても良い。このように構成すれば、大きな張力を得ることができる。
【0045】
以上、この発明の実施形態を図面により詳述してきたが、具体的な構成はこの実施形態に限られたものではなく、この発明の要旨を逸脱しない範囲の設計の変更などがあってもこの発明に含まれる。たとえば、振動モードは、厚み振動に限らず、必要に応じて、例えば、厚みすべり振動、撓み振動でも良く、上記以外の振動モードでも良い。また、上記した実施形態では、圧電素子に圧力を加える構成としたが、これに限らず、引張力を加えるようにしても良い。また、圧電素子は、一体構成のものでも良く、積層体構成のものでも良い。また、円環状の圧電素子は、角度分割した複数の圧電素子の複合体として構成しても良い。
【0046】
また、この発明の水流発電装置は、図1に示すように、縦に立設状態に設置されても良いが、これに限定するものではなく、横倒しの状態で設置されても良く、斜傾状態に設置されても良い。また、上記した実施形態では、振れ回り振動体の両端部に張力発電部を設けるようにしたが、必要に応じて、振れ回り振動体の一端側のみに設けても良い。
【0047】
また、この発明の水流発電装置を複数用意し、これらを並列又は直列に接続するようにすれば、出力の増加を図ることができるし、出力の時間的変動を低減することもできる。カルマン渦を発生させる円柱同士を、近接して配置すると、カルマン渦の発生に影響を与えるが、振れ回り振動体同士を近接配置しても、接触しない限り、振れ回り振動に影響を与える虞はないため、密度の高い間隔で配置できる。
また、この実施形態では、張力発電部を圧電素子で構成したが、これに代えて、振れ回り振動体の端部に磁性体を設け、周囲にコイルを設けることにより、張力の変動を変位変動に変換して電磁的に発電するようにしても良い。
【産業上の利用可能性】
【0048】
この発明の水流発電装置は、長期間継続的に行う海洋環境観測、とくに、海洋資源開発における海中及び海底の環境変動の観測や、長期的な作動が求められる水中航行船艇の位置計測に利用される音響灯台などへの電源供給手段として利用できる。
また、電池交換や電源供給の困難な流体配管内など微小空間に設置する各種センサの電源供給手段としても利用できる。
【符号の説明】
【0049】
1 振れ回り振動体
2 張力発電部
3 支柱
4a、4b 電極
5 圧電素子
6 張力伝達板
7a、7b 貫通孔
8 固定手段
9 直流・交流分離部
10 蓄電部
F 水流(水流力)
σ 張力
P 圧力

【特許請求の範囲】
【請求項1】
水流の流体力に応じて撓み、かつ、撓んだ状態で振れ回り、振れ角に応じた張力を発生する振れ回り振動体と、該振れ回り振動体から張力を受けて発電する電磁的又は圧電素子からなる張力発電部とを備えてなることを特徴とする水流発電装置。
【請求項2】
前記振れ回り振動体が弦状部材からなることを特徴とする請求項1記載の水流発電装置。
【請求項3】
前記弦状部材が、帯状又はへら状の張力発生部材からなることを特徴とする請求項2記載の水流発電装置。
【請求項4】
前記張力発生部材が、横断面円弧状に形成されていることを特徴とする請求項3記載の水流発電装置。
【請求項5】
前記張力発生部材は、中央部に最大の広幅部を有していることを請求項3記載の水流発電装置。
【請求項6】
予め弓形の形状を保持する態様で設置され、水流の流体力に応じてさらに撓み、かつ、撓んだ状態で振れ回り、振れ角に応じた張力を発生する弓状の振れ回り振動体と、該振れ回り振動体から張力を受けて発電する電磁的又は圧電素子からなる張力発電部とを備えてなることを特徴とする水流発電装置。
【請求項7】
前記弓状の振れ回り振動体は、帯状又はへら状の張力発生部材からなることを特徴とする請求項6記載の水流発電装置。
【請求項8】
前記張力発生部材は、横断面円弧状に形成されていることを特徴とする請求項7記載の水流発電装置。
【請求項9】
前記張力発生部材は、中央部に最大の広幅部を有していることを請求項7記載の水流発電装置。
【請求項10】
前記張力発電部は、前記振れ回り振動体の一端側又は両端側に設けられた前記圧電素子からなると共に、前記振れ回り振動体に発生した張力が張力伝達体を介して前記圧電素子に伝達されて、前記圧電素子内に圧縮応力又は撓み応力を生じさせる構成になされていることを特徴とする請求項1又は6記載の水流発電機構。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate