説明

水素化物複合体及び水素貯蔵材料、並びに、これらの製造方法

【課題】 希少元素の含有量が少なく、軽量であり、かつ、多量の水素を相対的に低温で吸蔵/放出することが可能な水素化物複合体及び水素貯蔵材料、並びに、これらの製造方法を提供すること。
【解決手段】 X(BH)(mは、元素Xのイオンの価数)で表される1種又は2種以上のボロハイドライドと、Y(NH)(nは、元素Yのイオンの価数)で表される1種又は2種以上のアミドとを機械的混合プロセスで複合化することにより得られる水素化物複合体及びその製造方法。また、水素化物複合体に含まれる水素の全部又は一部を放出させることにより得られる水素貯蔵材料及びその製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、可逆的な水素の貯蔵・放出が可能な水素化物複合体及び水素貯蔵材料、並びに、これらの製造方法に関する。
【背景技術】
【0002】
近年、二酸化炭素の排出による地球の温暖化等の環境問題や、石油資源の枯渇等のエネルギー問題から、クリーンな代替エネルギーとして水素エネルギーが注目されている。水素エネルギーの実用化に向けて、水素を安全に貯蔵、輸送する技術の開発が重要となる。水素の貯蔵方法にはいくつかの候補があるが、中でも可逆的に水素を貯蔵・放出することのできる水素化物/水素貯蔵材料を用いる方法は、最も安全に水素を貯蔵・輸送する手段と考えられており、燃料電池車に搭載する水素貯蔵媒体として期待されている。
【0003】
水素貯蔵材料としては、活性炭、フラーレン、ナノチューブ等の炭素材料や、LaNi、TiFe等の水素吸蔵合金が知られている。これらの内、水素吸蔵合金は、炭素材料に比べて単位体積当たりの水素密度が高いので、水素を貯蔵・輸送するための水素貯蔵材料として有望視されている。
しかしながら、LaNi、TiFe等の水素吸蔵合金は、La、Ni、Ti等の希少金属を含んでいるため、その資源確保が困難であり、コストも高いという問題がある。
また、LaNi等の希土類系合金のように、初めから容易に水素を吸蔵するものもあるが、水素吸蔵合金は、一般に、合金表面に吸着しているガスや酸化被膜のため、水素吸蔵能力は低い。そのため、このような合金においては、清浄な合金表面を露出させるための前処理(初期活性化)が必要となる。特に、TiFeは、初期活性化が難しく、相対的に多量の水素を吸蔵・放出させるためには、高温・高圧下での水素の吸蔵と吸蔵された水素の放出とを複数回繰り返す処理(活性化処理)が必要となる。
さらに、従来の水素吸蔵合金は、合金自体の重量が大きいために、単位重量当たりの水素密度が小さい、すなわち、大量の水素を貯蔵するために極めて重い貯蔵材料を必要とするという問題がある。
【0004】
そこでこの問題を解決するために、軽元素を含む錯体系水素化物及びこれから水素を放出することにより得られる水素貯蔵材料の開発が試みられている。これまでに開発されている軽元素を含む水素化物/水素貯蔵材料としては、
(1) LiNH、LiBH等のリチウム(Li)を含む錯体水素化物/水素貯蔵材料(例えば、特許文献1、非特許文献1等参照)、
(2) NaAlH等のナトリウム(Na)を含む錯体水素化物/水素貯蔵材料、
(3) Mg(NH)等のマグネシウム(Mg)を含む錯体水素化物/水素貯蔵材料、
などが知られている。
また、単相の金属間化合物ではなく、複数の相を複合化させることによって、水素吸蔵量を増大させたり、あるいは、水素の吸蔵・放出温度を低下させる試みがなされている。軽元素を含み、かつ、複数の相の複合体からなる水素化物/水素貯蔵材料としては、LiNH+LiH、LiBH+MgHなどが知られている。
また、非特許文献2には、LiNH+LiHの複合体が分解して水素を放出する際の反応メカニズムが提案されている。同文献には、LiNHの分解によってNHが放出され、放出されたNHがLiHと速やかに反応し、水素が生成すると考えられる点、及び、複合体が相対的に低温で水素を放出するのは、LiHとLiNHとの間の相互作用によると考えられる点、が記載されている。
【0005】
【特許文献1】特表2002−526658号公報
【非特許文献1】P.Chen、他4名、"Interaction of hydrogen with metal nitrides and imides"、「Nature」、2002年、vol.420/21、p.302-304
【非特許文献2】T.Ichikawa et al., J.Phys.Chem.B, 2004, 108, 7887-7892
【発明の開示】
【発明が解決しようとする課題】
【0006】
軽元素を含む水素化物/水素貯蔵材料は、合金重量が相対的に軽く、資源確保も比較的容易であり、相対的に低コストである。しかしながら、軽元素を含む水素化物/水素貯蔵材料であって、相対的に低温で大量の水素を容易に放出することが可能なものが開発された例は、従来にはない。例えば、NaAlHは、水素貯蔵量が十分ではない。また、LiNH及びLiBHは、水素放出温度が高いという欠点がある。さらに、LiNH+LiH、及び、LiBH+MgHは、大量の水素を実用温度域で放出できるものではない。
【0007】
本発明が解決しようとする課題は、希少元素の含有量が少なく、軽量であり、かつ、多量の水素を相対的に低温で放出/吸蔵することが可能な水素化物複合体及び水素貯蔵材料、並びに、これらの製造方法を提供することにある。
【課題を解決するための手段】
【0008】
上記課題を解決するために本発明に係る水素化物複合体の製造方法は、X(BH)(mは、元素Xのイオンの価数)で表される1種又は2種以上のボロハイドライドと、Y(NH)(nは、元素Yのイオンの価数)で表される1種又は2種以上のアミドとを機械的混合プロセスで複合化する複合工程を備えていることを要旨とする。また、本発明に係る水素化物複合体は、本発明に係る方法により得られたものからなる。この場合、前記元素X又は前記元素Yの少なくとも一つがNa又はMgであることが望ましい。
本発明に係る水素貯蔵材料の製造方法は、X(BH)(mは、元素Xのイオンの価数)で表される1種又は2種以上のボロハイドライドと、Y(NH)(nは、元素Yのイオンの価数)で表される1種又は2種以上のアミドとを機械的混合プロセスで複合化する複合工程と、該複合工程で得られた水素化物複合体に含まれる水素の全部又は一部を放出させる脱水素化工程とを備えていることを要旨とする。また、本発明に係る水素貯蔵材料は、本発明に係る方法により得られたものからなる。
【発明の効果】
【0009】
ボロハイドライドとアミドとを機械的混合プロセスで複合化することにより得られる水素化物複合体は、500K近傍において、相対的に多量の水素を容易に放出する。また、このような水素化物複合体から水素を放出することにより得られる水素貯蔵材料は、500K近傍において、相対的に多量の水素を容易に吸蔵する。これは、
(1) ボロハイドライドとアミドとを複合化させることによって、両者が熱的に不安定となり(すなわち、水素を放出しやすい不安定物質(新規な化合物)が生成し)、より低温での分解が生ずること、及び、
(2) 特に、元素X又は元素Yの少なくとも一方がNa又はMgである場合には、水素が放出されることによって、水素の吸蔵が極めて容易な化合物(中間生成物を含む)が生成すること、
によると考えられる。
【発明を実施するための最良の形態】
【0010】
以下、本発明の一実施の形態について詳細に説明する。
本発明に係る水素化物複合体の製造方法は、1種又は2種以上のボロハイドライドと、1種又は2種以上のアミドとを機械的混合プロセスにより複合化する複合工程を備えている。また、本発明に係る水素化物複合体は、本発明に係る方法により得られたものからなる。
【0011】
本発明において、「ボロハイドライド」とは、組成式:X(BH)(mは、元素Xのイオンの価数)で表されるものをいう。ボロハイドライドを構成する元素Xの種類は、特に限定されるものではなく、金属元素であれば良い。特に、元素Xがアルカリ金属元素又はアルカリ土類金属元素であるときには、高い水素吸蔵/放出能力が得られる。出発原料には、(1)1種類の元素Xを含むボロハイドライド又はその混合物、(2)2種以上の元素Xを含むボロハイドライドの固溶体、(3)これらの組み合わせ、のいずれを用いても良い。
本発明において、「アミド」とは、組成式:Y(NH)(nは、元素Yのイオンの価数)で表されるものをいう。アミドを構成する元素Yの種類は、特に限定されるものではなく、金属元素であれば良い。特に、元素Yがアルカリ金属元素又はアルカリ土類金属元素であるときには、高い水素吸蔵/放出能力が得られる。出発原料には、(1)1種類の元素Yを含むアミド又はその混合物、(2)2種以上の元素Yを含むアミドの固溶体、(3)これらの組み合わせ、のいずれを用いても良い。
【0012】
本発明において、「水素化物複合体」とは、1種又は2種以上のボロハイドライドと、1種又は2種以上のアミドとを機械的混合プロセスにより複合化することにより得られる複合体であって、水素ガスを放出する能力を有するものをいう。ボロハイドライドに含まれる元素Xとアミドに含まれる元素Yとは、互いに同一であっても良く、あるいは、異なっていても良い。
これらの中でも、元素X及び元素Yが、それぞれ、Li、Na及びMgから選ばれる1種以上の元素であるときには、高い水素吸蔵/放出能力が得られる。特に、元素X及び元素Yの少なくとも1つがNa又はMgであるときには、高い水素吸蔵/放出能力が得られる。一方、元素X及び元素YがいずれもLiのみからなるときには、高い水素放出能力を示すが、水素の再吸蔵能力に乏しいという欠点がある。
【0013】
出発原料として使用するボロハイドライドとしては、具体的には、
(1) LiBH、NaBHなどのアルカリ金属ボロハイドライド、
(2) Mg(BH)、Ca(BH)などのアルカリ土類金属ボロハイドライド、
などがある。
また、アミドとしては、具体的には、
(1) LiNH、NaNHなどのアルカリ金属アミド、
(2) Mg(NH)、Ca(NH)などのアルカリ土類金属アミド、
などがある。
【0014】
ボロハイドライドとアミドの混合物の理想的な水素吸蔵放出反応は、次の(a)式で表すことができる。
(1/m)X(BH4)m+(2/n)Y(NH2)n ⇔ X1/m2/nBN2+4H2↑ ・・・(a)
(但し、mは、元素Xのイオンの価数。nは、元素Yのイオンの価数。)
従って、ボロハイドライドとアミドの配合比(モル比)が1/m:2/nであれば、理想的には、ボロハイドライドとアミドからボロナイトライド(X1/m2/nBN2)が生成し、出発原料に含まれるすべての水素を放出させることができる。
しかしながら、ボロハイドライドとアミドの配合比が化学量論比(1/m:2/n)から多少ずれた場合であっても、過剰成分は、反応に寄与しないだけであり、水素吸蔵放出反応を阻害することはない。但し、化学量論比からのずれが大きくなりすぎると、水素の吸蔵/放出量が低下するので好ましくない。高い水素の吸蔵/放出量を得るためには、ボロハイドライド及びアミドに対するボロハイドライドの配合比(モル比)は、化学量論比(=(1/m)/{(1/m)+(2/n)}=n/(n+2m))の0.5倍以上1.5倍以下が好ましく、さらに好ましくは、0.8倍以上1.2倍以下、さらに好ましくは、0.9倍以上1.1倍以下である。
例えば、ボロハイドライド及びアミドがいずれもアルカリ金属のみを含む場合、(a)式におけるボロハイドライドとアミドの化学量論比は、1:2である。従って、この場合、ボロハイドライドの配合比(モル比)は、0.33±0.165が好ましく、さらに好ましくは、0.33±0.066、さらに好ましくは、0.33±0.033である。
なお、本発明に係る水素化物複合体及び水素貯蔵材料は、必ずしも(a)式に従って水素の吸蔵放出を可逆的に繰り返すものではなく、(a)式の反応の途中で生成する中間生成物の間で水素の吸蔵放出が起こる場合もある。この点については、後述する。
【0015】
本発明に係る水素化物複合体は、ボロハイドライド及びアミドが、均一かつ微細に分散しているのが好ましい。同様に、後述する水素貯蔵材料は、水素化物複合体から水素を放出することにより得られる各構成物質が、均一かつ微細に分散しているのが好ましい。水素の吸蔵放出反応は、一般に元素の拡散を伴うので、各物質が均一かつ微細に分散しているほど可逆的な水素の吸蔵/放出を容易に行うことができる。
【0016】
本発明に係る水素化物複合体は、具体的には、以下のような手順により作製する。
すなわち、まず、出発原料であるボロハイドライド及びアミドを所定の比率で配合する。この場合、出発原料の形態は、特に限定されるものではないが、通常は、粉末を用いる。また、出発原料として粉末を用いる場合、その粒径は、特に限定されるものではない。一般に、出発原料として粒径の細かい粉末を用いるほど、複合化させる際の負荷を軽減することができる。一方、必要以上に細かい粉末を出発原料として用いると、粉末表面が酸化等により被毒されるおそれがある。従って、粉末の粒径は、作業性、コスト、被毒の有無等を考慮して、最適な粒径を選択するのが好ましい。
なお、ボロハイドライド及びアミドの組み合わせは、他の水素化物と比べて反応が容易であり、相対的に粒径が粗い(具体的には、平均粒径100μm程度)場合であっても、容易に水素を吸蔵/放出できるという利点がある。
【0017】
次に、所定の比率で配合された出発原料を機械的混合プロセスで複合化する。
ここで、「機械的混合プロセス」とは、出発原料に機械的応力を与え、粉砕しながら均一に混合するプロセスをいう。このような機械的混合プロセスとしては、具体的には、遊星ボールミル、回転ミル、振動ミル等の粉砕機で原料粉末を混合粉砕する方法、乳鉢で原料粉末を混合粉砕する方法などがある。
機械的混合プロセスは、出発原料の酸化を防ぐために、非酸化雰囲気下(例えば、アルゴン雰囲気下、水素雰囲気下など)で行うのが好ましい。
また、機械的混合プロセスの処理時間は、出発原料の均一かつ微細な混合物が得られるように、処理方法、出発原料の種類、形態等に応じて、最適な処理時間を選択する。一般に、処理時間が長くなるほど、出発原料が微細に粉砕され、粉砕された粉末が均一に混合した複合体が得られる。但し、必要以上の処理は、効果に差がなく、実益がない。例えば、遊星ボールミルを用いて混合粉砕する場合において、出発原料として粉末を用いる時には、処理時間は、1〜十数時間が好ましい。
【0018】
このようにして得られた水素化物複合体は、粉末状態のまま使用しても良く、あるいは、これを適当な大きさに成形した圧粉体の状態で使用しても良い。さらに、粉末の表面を他の材料(例えば、銅などの熱伝導性の良い材料)からなる被膜で被覆し、これを成形して使用しても良い。この場合、被覆方法には、PVD法、CVD法などの物理的方法を用いるのが好ましい。
【0019】
次に、本発明に係る水素貯蔵材料及びその製造方法について説明する。本発明に係る水素貯蔵材料の製造方法は、複合工程と、脱水素化工程とを備えている。また、本発明に係る水素貯蔵材料は、本発明に係る方法により得られたものからなる。なお、複合工程は、上述した水素化物複合体の製造方法の複合工程と同一であるので説明を省略する。
【0020】
本発明において、「水素貯蔵材料」とは、水素ガスを貯蔵する能力を有するものをいう。また、「水素貯蔵材料」という時は、水素を完全に放出した材料だけでなく、最大貯蔵量に満たない水素を貯蔵している材料も含まれる。
【0021】
脱水素化工程は、複合工程で得られた水素化物複合体に含まれる水素の全部又は一部を放出させる工程である。
複合工程で得られた水素化物複合体は、ボロハイドライド及びアミドを出発原料に用いており、既に水素を貯蔵している状態にある。また、本発明に係る水素化物複合体は、熱的に不安定であり、水素を放出しやすい状態になっている。この水素化物複合体に対して脱水素化処理をすると、水素化物複合体から水素が放出され、水素貯蔵材料となる。
【0022】
脱水素化処理は、水素化物複合体を所定温度に加熱することにより行う。脱水素化処理の処理条件は、特に限定されるものではなく、水素化物複合体の組成や、水素貯蔵材料に要求される特性等に応じて、最適な条件を選択する。
一般に、加熱温度が高くなるほど、水素放出量は多くなる。但し、加熱高温が高くなりすぎると、水素放出量が飽和し、実益がないだけではなく、構成物質の結晶構造が壊れるなど変質する場合があるので好ましくない。
また、一般に、加熱時の雰囲気圧力が低くなるほど、加熱時間が長くなるほど、及び/又は、加熱時の昇温速度が小さくなるほど、相対的に低温で大量の水素を放出させることができる。
【0023】
例えば、ボロハイドライドとアミドのいずれか一方にNa又はMgを含む水素化物複合体の場合、昇温速度5K/min、0.1MPaアルゴンガス気流中の条件下で加熱すると、370〜420Kで水素の放出が始まり、520〜700Kで6〜9mass%相当の水素ガスを放出することができる。
また、水素化物複合体を脱水素化することにより得られる水素貯蔵材料と水素ガスとを所定の条件下で反応させると、再び水素が吸蔵され、最終的には水素化物複合体に戻る。最適な水素との反応条件は、出発原料の組成によって異なるが、通常は、水素ガスの圧力:0.1〜50MPa程度、温度:20〜400℃(293〜673K)程度である。
例えば、ボロハイドライドとアミドのいずれか一方にNa又はMgを含む水素化物複合体から水素を放出することにより得られる水素貯蔵材料の場合、水素ガスの圧力:0.1〜10MPa、温度:293〜423Kの条件下において水素と反応させると、2.5mass%相当又はそれ以上の水素ガスを吸蔵することができる。
【0024】
次に、本発明に係る水素化物複合体及び水素貯蔵材料、並びに、これらの製造方法の作用について説明する。
本発明に係る水素化物複合体及び水素貯蔵材料は、500K程度の低温において、相対的に多量(5wt%程度)の水素を放出/吸蔵することができる。このような優れた水素放出/吸蔵特性を示す理由の詳細については、明らかではないが、以下のような理由によると考えられる。
【0025】
すなわち、ボロハイドライド(X(BH))とアミド(Y(NH))は、熱力学的に安定であり、これらの単独物質から大量の水素を放出させるためには、相対的に高温(>600K)に加熱する必要がある。しかしながら、両者を複合化させると、メカノケミカル反応により両物質の界面に不安定物質(新規な化合物)が形成され、熱的に不安定となる。その結果、両物質単独の場合に比べて、より低温で分解が生ずると考えられる。
また、ボロハイドライド及びアミドのいずれか一方にNa又はMgを含む場合、可逆的な水素の吸蔵/放出がさらに容易になる。これは、
(1)Na系物質又はMg系物質を出発原料に用いると、水素を放出させた際に水素化物複合体がボロナイトライドまで完全に分解せず、中間生成物(新規な化合物)が生成すること、及び、
(2)生成した中間生成物の水素の再吸蔵特性が極めて高いこと、
によると考えられる。
【0026】
本発明に係る水素化物複合体及び水素吸蔵材料は、軽元素を主成分とするので、軽量であり、単位重量当たりの水素密度が高い。また、希少元素を含まないので、資源確保が容易であり、低コストである。さらに、本発明に係る水素化物複合体及び水素吸蔵材料は、相対的に低温において、多量の水素を吸蔵/放出することができる。
そのため、これを例えば、燃料電池システム用の水素貯蔵物質に応用すれば、燃料電池システムのエネルギー効率を飛躍的に向上させることができる。
【実施例】
【0027】
(実施例1)
純化したArで満たされたグローブボックス中でNaBHとLiNHとをモル比で1:2となるように混合し、さらにAr雰囲気下で遊星ボールミル装置を用いて2時間ミリング処理した。ミリング処理後、グローブボックス中で評価用セルに入れ、容量法を用いて300℃における水素放出量を測定した。その結果、7.9mass%の水素が放出された。また、ミリング処理後の試料を不活性ガス気流中で示差熱分析を行ったところ、水素放出に伴う吸熱ピークが観測された。
次に、水素放出前後の粉末について、粉末X線回折測定を行った。図1に、その結果を示す。図1より、
(1)水素放出前後において、結晶構造が変化していること、
(2)水素放出後において、ボロナイトライド以外の新規な化合物が生成していること、
がわかる。
次に、水素放出後の粉末(水素貯蔵材料)に対し、9MPaの水素圧力、温度300℃の条件下で水素の再吸蔵を行わせた。その結果、2.5mass%の水素が吸蔵された。図2に、水素放出後及び水素再吸蔵後の粉末のX線回折パターンを示す。図2より、水素を再吸蔵させることによって結晶構造が変化していることがわかる。なお、図1の水素放出前のX線回折パターンと図2の水素再吸蔵後のX線回折パターンが完全に一致しないのは、吸蔵水素量が放出水素量より少ないため、水素放出前の水素化物複合体が生成していないためと考えられる。
【0028】
(実施例2)
純化したArで満たされたグローブボックス中でLiBHとNaNHとをモル比で1:2となるように混合し、さらにAr雰囲気下で遊星ボールミル装置を用いて2時間ミリング処理した。ミリング処理後、グローブボックス中で評価用セルに入れ、容量法を用いて400℃における水素放出量を測定した。その結果、6.4mass%の水素が放出された。また、粉末X線回折測定から、水素放出前後で結晶構造が変化していることを確認した。
【0029】
(実施例3)
純化したArで満たされたグローブボックス中でLiBHとLiNHとNaNHとをモル比で2:3:1となるように混合し、さらにAr雰囲気下で遊星ボールミル装置を用いて2時間ミリング処理した。ミリング処理後、グローブボックス中で評価用セルに入れ、容量法を用いて250℃及び300℃における水素放出量を測定した。その結果、250℃、300℃で、それぞれ、4mass%、8.7mass%の水素が放出された。また、粉末X線回折測定から、水素放出前後で結晶構造が変化していることを確認した。
次に、250℃で水素放出後の粉末(水素貯蔵材料)に対し、10MPaの水素圧力、温度200℃の条件下で水素の再吸蔵を行わせた。その結果、3.5mass%の水素が吸蔵された。図3に、水素放出後及び水素再吸蔵後の粉末のX線回折パターンを示す。図3より、水素を再吸蔵させることによって結晶構造が変化していることがわかる。
【0030】
(実施例4)
純化したArで満たされたグローブボックス中でLiBHとMg(NH)とをモル比で1:1となるように混合し、さらに水素雰囲気下で遊星ボールミル装置を用いて2時間ミリング処理した。ミリング処理後、グローブボックス中で評価用セルに入れ、容量法を用いて250℃における水素放出量を測定した。その結果、7.2mass%の水素が放出された。また、粉末X線回折測定から、水素放出前後で結晶構造が変化していることを確認した。図4に、水素放出前後の粉末のX線回折パターンを示す。図4より、水素放出前後において結晶構造が変化していることがわかる。
【0031】
(実施例5)
純化したArで満たされたグローブボックス中でLiBHとLiNHとをモル比で1:2となるように混合し、さらにAr雰囲気下で遊星ボールミル装置を用いて2時間ミリング処理した。ミリング処理後、グローブボックス中で評価用セルに入れ、容量法を用いて250℃における水素放出量を測定した。その結果、8mass%の水素が放出された。また、粉末X線回折測定から、水素放出前後で結晶構造が変化していることを確認した。
次に、水素放出後の材料(水素貯蔵材料)について、水素圧力10MPa、温度100〜400℃の条件下で水素の再吸蔵を行わせた。しかしながら、この条件下では、水素の再吸蔵はほとんど生じなかった。
【0032】
(実施例6)
第一原理計算を用いて、以下の2つの脱水素化反応のエンタルピー変化(ΔH)を見積もった。
LiBH+2LiNH→LiBN+4H ・・・(1)
NaBH+2NaNH→NaBN+4H ・・・(2)
反応式(1)と(2)のΔHは、それぞれ、23kJ/molH、42kJ/molHであった。この結果から、(Li1-xNax)BH4+2(Li1-yNay)NH2→(Li1-zNaz)3BN2+4H2(z=(x+2y)/3)の反応において、zの値を変えることにより、ΔHの調節が可能であることが予測される(図5)。
また、反応式(1)及び(2)において、エンタルピー変化ΔHが大きいことは、水素の再吸蔵が容易であることを示す。図5より、ΔHの小さいLi系物質にNa系物質を添加すると、ΔHが大きくなることがわかる。
【0033】
以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。
【産業上の利用可能性】
【0034】
本発明に係る水素化物複合体及び水素貯蔵材料、並びに、これらの製造方法は、燃料電池システム用の水素貯蔵手段、超高純度水素製造装置、ケミカル式ヒートポンプ、アクチュエータ、金属−水素蓄電池用の水素貯蔵体等に用いられる水素化物/水素貯蔵材料及びその製造方法として使用することができる。
【図面の簡単な説明】
【0035】
【図1】実施例1で得られた水素放出前の水素化物複合体及び水素放出後の水素貯蔵材料のX線回折パターンである。
【図2】実施例1で得られた水素放出後の水素貯蔵材料及び水素再吸蔵後の水素貯蔵材料のX線回折パターンである。
【図3】実施例3で得られた水素放出後の水素貯蔵材料及び水素再吸蔵後の水素化物複合体のX線回折パターンである。
【図4】実施例4で得られた水素放出前の水素化物複合体及び水素放出後の水素貯蔵材料のX線回折パターンである。
【図5】ボロハイドライド及びアミドに含まれるNa量と、第一原理計算を用いて計算された脱水素化反応のエンタルピー変化(ΔH)との関係を示す図である。

【特許請求の範囲】
【請求項1】
X(BH)(mは、元素Xのイオンの価数)で表される1種又は2種以上のボロハイドライドと、Y(NH)(nは、元素Yのイオンの価数)で表される1種又は2種以上のアミドとを機械的混合プロセスで複合化する複合工程を備えた水素化物複合体の製造方法。
【請求項2】
前記元素X及び前記元素Yは、それぞれ、アルカリ金属元素、アルカリ土類金属元素から選ばれる1種以上の元素である請求項1に記載の水素化物複合体の製造方法。
【請求項3】
前記元素X及び前記元素Yは、それぞれ、Li、Na及びMgから選ばれる1種以上の元素である請求項1又は2に記載の水素化物複合体の製造方法。
【請求項4】
前記元素X又は前記元素Yの少なくとも一つがNa又はMgである請求項1から3までのいずれかに記載の水素化物複合体の製造方法。
【請求項5】
前記ボロハイドライドの配合比(前記ボロハイドライドのモル数/(前記ボロハイドライドのモル数と前記アミドのモル数の和))は、前記ボロハイドライドと前記アミドからボロナイトライドが生成する反応の化学量論比の0.5倍以上1.5倍以下である請求項1から4までのいずれかに記載の水素化物複合体の製造方法。
【請求項6】
前記ボロハイドライドは、NaBHであり、
前記アミドは、LiNHである
請求項1から5までのいずれかに記載の水素化物複合体の製造方法。
【請求項7】
前記ボロハイドライドは、LiBHであり、
前記アミドは、NaNHである
請求項1から5までのいずれかに記載の水素化物複合体の製造方法。
【請求項8】
前記ボロハイドライドは、LiBHであり、
前記アミドは、LiNHとNaNHとの混合物である
請求項1から5までのいずれかに記載の水素化物複合体の製造方法。
【請求項9】
前記ボロハイドライドは、LiBHであり、
前記アミドは、Mg(NH)である
請求項1から5までのいずれかに記載の水素化物複合体の製造方法。
【請求項10】
請求項1から9までのいずれかに記載の方法により得られる水素化物複合体。
【請求項11】
請求項1から9までのいずれかに記載の複合工程と、
該複合工程で得られた水素化物複合体に含まれる水素の全部又は一部を放出させる脱水素化工程とを備えた水素貯蔵材料の製造方法。
【請求項12】
請求項11に記載の方法により得られる水素貯蔵材料。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2007−8738(P2007−8738A)
【公開日】平成19年1月18日(2007.1.18)
【国際特許分類】
【出願番号】特願2005−188905(P2005−188905)
【出願日】平成17年6月28日(2005.6.28)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成16年度、独立行政法人 新エネルギー・産業技術総合開発機構、車載可能リチウム系水素貯蔵材料の委託研究、産業活力再生特別措置法第30条の適用を受ける特許出願
【出願人】(000003609)株式会社豊田中央研究所 (4,200)
【Fターム(参考)】