説明

油水分離装置

【課題】浮上分離法に基づく油水分離装置の処理槽が小型であっても低油分濃度まで高速で処理でる油水分離装置を提供する。
【解決手段】処理槽11に送る被処理液に空気を混合溶解せしめ、空気を混合溶解した被処理液を処理槽11内の被処理液中に吐出し、処理液に混合溶解した空気を気泡として処理槽11内の被処理液に供給することによって被処理液中の油分を浮上させ油水の分離を行う油水分離装置であり、第1処理槽81内に空気を混合溶解した被処理液を被処理液中に吐出するものとしてノズル33を用い、第1処理槽81内の微細気泡を含む被処理液を第2処理槽82内の被処理液に吐出するものとしてノズル47を設け、2つの処理槽を被処理液面近傍で連通したものとした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は油水分離装置に係わり、特に、処理槽に送る被処理液に空気を供給しポンプで加圧して被処理液に空気の一部または全部を溶解させ、被処理液を処理槽の下部から空気を気泡として被処理液とともに吹き出させることによって、処理槽における被処理液に含まれる油分を気泡とともに浮上させ被処理液を水と油分とに分離させる浮上分離法による油水分離装置に関するものである。
【背景技術】
【0002】
従来の浮上分離法による油水分離装置は、下記の特許文献1に記述されたものでは、大容量の処理槽からポンプで汲み上げた被処理液にポンプ入口で空気を混合し、ポンプ出口の気液混合手段(空気粉砕手段)で更に空気を混合・溶解させた後に被処理液を処理槽内に戻し、その際ノズル(又は圧力弁)から噴射、減圧することによって微細気泡を発生させて、この微細気泡が被処理液中の油分に付着することで油分が水中を浮上し、油と水分が分離するようにしている。
【特許文献1】特開2005−246183号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
上記従来技術において、気液混合手段(空気粉砕手段)の出口までに被処理液中に溶解できなかった空気は大部分が処理槽内で大気泡となり浮上分離性能を低下させるので、ノズルと処理槽をつなぐ大気泡分離器を設け、この大気泡分離器には大気泡のみを分離排出する大気泡排出管を設けている。
【0004】
そして、この装置の油分離能力を高める1つの方法として被処理液中に溶解する空気量を多くすることがあるが、実現手段として気液混合手段の容積を大きくし、被処理液滞留時間を長くして溶解量を増加する方法では、装置が大型化しかつ処理時間がかかるという問題がある。
【0005】
また、処理対象が空気圧縮機のドレンの場合は少量の被処理液が連続して排出され、大気中の水分量によってその流量および油分濃度が変化する。これを確実に処理するには最大の油分濃度の処理能力を備えていることが必要である。他方、ニーズとして油水分離装置自体の設置面積が小さく、処理槽を小型にすることが望まれる。
【0006】
設置面積を単純に小型化すると、処理槽を深く(高く)しなければならず、処理槽内で上下する循環流が強くなり、一旦液面上まで浮上した油粒子が水の下降流に乗って処理槽底部近傍まで下降するため、油分濃度が一定値以下には下がらない。
【0007】
油分分離性能を向上させるべく、圧力弁(ノズル)から大量の微細気泡を発生させるように圧力弁から噴出させる被処理液量を増加させると、処理槽内を上下する循環流は一層強くなり、油水分離性能が低下する。
【0008】
本発明の目的は、小型の処理槽であっても低油分濃度まで高速で処理できる浮上分離法に基づく油水分離装置を提供するものである。
【課題を解決するための手段】
【0009】
上記目的を達成するために本発明は、処理槽に送る被処理液に空気を混合溶解せしめ、空気を混合溶解した被処理液を処理槽内の被処理液中に吐出し、被処理液に混合溶解した空気を気泡として処理槽内の被処理液に供給することによって被処理液中の油分を浮上させ油水の分離を行う油水分離装置において、前記処理槽は第1処理槽と第2処理槽からなり、第1処理槽に処理液を送る第1ポンプ、処理液に空気を混合溶解させる空気溶解器、およびこの空気溶解器からの空気を混合溶解した処理液を処理槽内の被処理液中に吐出する第1ノズルからなる第1循環系と、前記第1処理槽の気泡を含む被処理液を吸込む第2ポンプ、および吸込んだ被処理液を第2処理槽内に吐出して微細な気泡を供給する第2ノズルからなる第2循環系を備えたことを特徴とする。
【0010】
また、前記第1処理槽の底面積を前記第2処理槽の底面積よりも大きくしたことを特徴とする。
【0011】
また、本発明では、処理槽に送る被処理液に空気を混合せしめ、空気を含んだ被処理液を処理槽内の被処理液中に吐出し、被処理液に溶解した空気と溶解しなかった空気の一部を気泡として処理槽内の被処理液に供給することによって被処理液中の油分を浮上させ油水の分離を行う油水分離装置において、処理槽を被処理液液面下で水平方向に2つに分割する仕切壁を設けて第1処理槽と第2処理槽に分け、第1処理槽では被処理液に空気を混合溶解せしめ、空気を混合溶解した被処理液を処理部内の被処理液中にノズルを用いて吐出する第1循環系統を構成し、被処理液に混合溶解した空気を微細気泡として処理部内の被処理液に供給することによって被処理液中の油分を浮上させ、第2処理槽では第1処理槽から微細気泡を含む被処理液を汲み出し、空気を混合することなくポンプで加圧して処理槽下部のノズルから処理槽内の被処理液中に噴射する第2循環系統を構成する。第1処理槽と第2処理槽は液面を共有しており、処理運転中は被処理液が第2処理槽から第1処理槽へと連続して流れるようにした。
【発明の効果】
【0012】
本発明によれば、第2処理槽の循環系統が第1処理槽から吸い込む被処理液に微細気泡を一様に含んでいるが、被処理液の溶解空気量が多いことと配管内滞留時間が短いことから、ポンプでの加圧だけではこの微細気泡の過半の被処理液への溶解に不足があるため、補強としてノズルから第2処理槽内の被処理液中に噴射される。この噴射によって噴射流近傍に負圧領域が形成されるので噴射流内の微細気泡が一旦膨張し、その下流部で圧力が回復することによって膨張した気泡が圧縮されることで分裂し、初期よりも径の小さい微細気泡になる。気泡径が小さくなると表面積が増加し、油粒子を吸着する性能が向上する。
【0013】
しかし、気泡径が小さくなると浮上分離に必要な浮上速度が小さくなるので油分離性能が低下すると考えられる。そこで第2処理槽では被処理液を下部から上部へ向けて一様に流している。このため、微細気泡はこの被処理液の上昇速度と静止液体中を浮上する速度を合計した速度で処理槽内を上昇することになり、第1処理槽内で微細気泡が浮上する速度と同等以上にできる。
【0014】
この結果、第1処理槽と同等径の微細気泡では油分離速度が遅い微細油粒子を、第2処理槽では短時間で分離でき、第1処理槽での大きめの油粒子分離の高い能力と合わせて、全体の油分離速度が速くなる。これらの効果によって、小さな処理槽でも直接排水路へ排出可能な低油分濃度にまで短時間でしかも確実に油水分離ができる。
【発明を実施するための最良の形態】
【0015】
以下、図に示す実施形態について説明する。
【実施例1】
【0016】
図1は、本発明実施例の油水分離装置10を示している。図1において、処理槽11の内部は被処理液面位置61よりも下方の仕切壁13によって、第1処理槽81と第2処理槽82に区画してあり、遮蔽板12により第2処理槽82と浮上油受け部83とに区画している。第1処理槽81、第2処理槽82は処理液を収容して油水分離を行ない、浮上油受け部83では処理槽81、82で分離浮上し遮蔽板12を溢流した油分64を受ける。
【0017】
この遮蔽板12は、設計上の被処理液面位置61および浮上油面位置62より高くなるように配置してある。
【0018】
処理槽11の第1処理槽81側の下方には大気泡分離器14があり、大気泡分離器14の内部には処理液を吐出するノズル(第1ノズル)33があり、大気泡分離器14から第1処理槽81の上部に連通するように大気泡排出管15が設けてある。大気泡分離器14の上部に下端部を接続してある大気泡排出管15はその上端部が処理液面位置61近傍に開口するようにしてある。大気泡分離器14は止む無く生じる大気泡を抜くものであるが、加圧しておらず上部は開放状態にあり、大気泡分離器14から第1処理槽81に吐出される微細気泡に影響しないようになっている。
【0019】
第1処理槽81には、油水分離されて浄化された被処理液を下部から排出する排出配管68が設けてあり、この排出配管68の途中にはバルブ66を設けている。
【0020】
第1処理槽81の底部には被処理液循環系統を構成する配管30が接続してあり、配管30の途中にはバルブ36を有し、配管32を介して第1ポンプ31に接続し、第1ポンプ31の出口側は配管35、空気溶解器39を介して大気泡分離器14内部に設けたノズル33に接続している。なお、第1ポンプ31出口の配管35には第1ポンプ入口の配管32とを接続する配管37を設けており、この途中にはバルブ38を設けている。
【0021】
配管32には空気を導入する空気供給管51がバルブ52を介して接続しており、更に、被処理液タンク18から被処理液を導入する系統を構成する供給管23を接続しており、供給管23にはバルブ22を設けている。
【0022】
また、処理槽11の第2処理槽82下方には気泡発生筒16を設けており、気泡発生筒16の内部には被処理液を吐出するノズル(第2ノズル)47を設けている。第1処理槽81の底部には第2の処理液循環系統を構成する配管42が接続してあり、配管42の途中に設けているバルブ44を介して第2ポンプ41に接続し、第2ポンプ41の出口側は配管43を介して気泡発生筒16内部に設けたノズル47に接続している。なお、第2ポンプ41出口の配管43には第2ポンプ入口の配管42とを接続する配管45を設けており、配管45の途中にはバルブ46を設けている。
【0023】
第2処理槽82には清浄になった被処理液を下部から排出する排出配管68が設けてあり、この排出配管68は第1処理槽81からの排出配管67に接続しており、その位置はバルブ66よりも上流側である。浮上油受け部83の底部には、油分64を排出する油分排出管63を設けている。なお、供給管23を第1処理槽81の下部に接続してその途中にポンプを設置し、被処理液を第1処理槽81に直接供給するようにしてもよい。
【0024】
次にその動作を説明する。図1の油水分離装置10は第1処理槽81、第2処理槽82に被処理液を一定量供給し、油水分離の処理を行った後に排出する、間歇運転法で処理する。
【0025】
先ず、処理槽11の第1処理槽81に清水または処理済液を大気泡分離器14の上端まで供給した状態で、第1ポンプ31を運転する。この時、バルブ36は開放状態にしてあり、バルブ38は第1ポンプ31の出口圧力が所定値になるように調節してある。この運転を行うと、第1処理槽81内部の清水または処理済液は、第1ポンプ31により配管30から汲み上げられ、配管32、35や空気溶解器39を経てノズル33から大気泡分離器14に吐出され、第1処理槽81に戻る第1の被処理液循環(第1循環系)が行なわれる。
【0026】
続いて第1の被処理液循環系統を運転しながら、第1ポンプ31の入口圧力が負圧の所定値になるようにバルブ36の開度を調節する。そして被処理液供給系統のバルブ22を開放にすると、被処理液は第1ポンプ31、配管35、空気溶解器39、ノズル33を通って第1処理槽81に供給され、さらに仕切壁13の上部を通って第2処理槽82にも供給される。被処理液面位置61が所定位置に達したことが液面計71によって検知されると、バルブ22を閉じ被処理液供給を終了する。
【0027】
次に負圧になっている空気供給管51の途中に設けてあるバルブ52を開くと、空気が吸引されるので所定量になるようにバルブ開度を調節する。流入した空気は配管32内を流れる被処理液に混合し、第1ポンプ31で加圧される過程で一部が被処理液に溶解する。溶解しきれなかった空気は第1ポンプ31下流の空気溶解器39で混合されることによって溶解量が増加し、空気の溶解した被処理液と一緒にノズル33から大気泡分離器14内に吐出する。
【0028】
ノズル33から吐出することで圧力の加わっていた液体および気体は減圧されるので、水に溶解していた空気は微細気泡となり、溶解しきれなかった空気の一部はそのまま微細気泡となり、残りは大気泡となる。空気溶解器39を設けると内部での攪拌効果によって大気泡が細かくなり、気泡と液体との接触面積が増加するとともに滞留時間も長くなるので溶解空気量が増加し、大気泡は大幅に減少する。
【0029】
つぎにノズル33を出た被処理液と空気は大気泡分離器14内部を旋回しながら流れ、中心部の圧力が低下することで逆流領域が形成され、空気が被処理液によってせん断される。この効果によって大気泡の一部が粉砕され、溶解空気とともに微細気泡となる。そして第1処理槽81全体に微細気泡が存在する状態になる。被処理液に純水を用いるとこの微細気泡発生量は減少し、微細気泡径は大きくなる特性を有するが、上記の装置では純水を用いた場合でも不透明の乳白色状態になり、平均気泡径は40〜50μmである。そして第1処理槽81の底部、とくに大気泡分離器14よりも下部は被処理液の下降流速が遅いために、第1処理槽81内に存在する微細気泡のなかの特に微細な気泡が存在する。
【0030】
つぎに第2処理槽82では前記第1の被処理液循環系統を運転しながら、第1処理槽81内の特に微細な気泡を含む被処理液を第1処理槽81の底部から汲み出し、配管42、バルブ44を介して空気を混合することなく第2ポンプ41で加圧して、配管43を経て気泡発生筒16内部のノズル47から、槽内の被処理液中に被処理液を噴射する第2の循環系統(第2循環系)を運転する。この第2循環系統運転時には外部から空気を供給しない。
【0031】
第2の循環系統では、第1処理槽81から吸い込む被処理液に微細気泡を一様に含んでおり、被処理液の溶解空気量が多いことと配管内滞留時間が短いことから、ポンプでの加圧だけではこの微細気泡は被処理液にほとんど溶解しない。そして、ノズル47から第2処理槽82内の被処理液中に噴射されることによって噴射流近傍に負圧領域が形成され、噴射流内の微細気泡が一旦膨張し、その下流部で圧力が回復することによって膨張した気泡が圧縮されることで初期よりも径の小さい微細気泡(10〜20μm)になる。したがって、第2処理槽82内は第1処理槽81内よりも小さな微細気泡で満たされる。これらの小さな微細気泡には、第1処理槽81内では吸着できなかった微細な油粒子が吸着され、浮上することで油分離が進行する。
【0032】
被処理液油分濃度が所定値になるとバルブ52を閉止し、第1ポンプ31と第2ポンプ41を停止する。そしてバルブ66を開き、被処理液面位置61が大気泡分離器14の上面になるまで被処理液を排出して1回目の処理運転を終了する。2回目以降も同様の手順で油分離運転を繰り返す。この運転を繰り返すと浮上油が上部に溜まり、浮上油面位置62と被処理液面位置61との差が大きくなる。処理液面位置61が遮蔽板12と同一高さになるまで被処理液供給を続行することによって、浮上した油分は遮蔽板12を溢流(オーバフロー)し、浮上油受け部83へ流出させ、分離した油分64は配管63から回収する。
【0033】
この排出時期は運転時間で決定するだけでなく、浮上油量、浮上油厚さを測定することによっても決定できる。
【0034】
次に図2を用いて第1処理槽81内部及び第2処理槽82内部の被処理液流動状態と油分離機能を説明する。第1処理槽81の下部には、ノズル33から噴射した被処理液が微細気泡とともに大気泡分離器14から流入する。微細気泡は密度が被処理液よりも小さいので浮上するが、この際に被処理液も同伴流となって上昇する流れが形成される。上昇流が存在すると同流量の下降流が第1処理槽81内に形成される。
【0035】
一方、第1処理槽81の上部には第2処理槽82から被処理液が流入しており、また、第1処理槽81の底部には第1ポンプ31へ被処理液を送る配管30と、第2ポンプ41へ被処理液を送る配管42が接続しており、連続して被処理液を送っている。このために第1処理槽81には底部に向かう下降流が形成される。微細気泡による油浮上分離を実現するためには油粒子が付着した微細気泡が一旦浮上した後に下降流によって第1処理槽81の底部へ戻ることを防ぐ必要があり、第1処理槽81の下降流速度が微細気泡の上昇速度よりも遅くなるように、第1処理槽81の底面積をより大きく形成するのが良い。
【0036】
しかし、微細気泡径は一様ではないので平均よりも小さい微細気泡は下降流によって下降しやすく、油吸着性能は高いが浮上分離性能は低い。したがって、第1処理槽81では平均よりも大き目の微細気泡を活用して油を浮上分離することになる。
【0037】
第2処理槽82の下部には、ノズル47から噴射した被処理液が微細気泡とともに気泡発生筒16から低速で流入する。第2処理槽82では被処理液が仕切壁13の上部から第1処理槽81へと排出される。このため第2処理槽82内では被処理液が下部から上部へとゆるやかに流れ、微細気泡は密度が被処理液よりも小さいので、被処理液の上昇流に乗りながら被処理液よりもわずかに速い速度で浮上する。このように第2処理槽82内は一方向のゆるやかな流れであるので下降流はほとんど存在せず、油の浮上分離に必要な微細気泡の上昇速度を第1処理槽81と同等以上に設定することができる。なお、下降流がほとんど存在しないので、底面積は小さくても良い。
【0038】
この結果、第2処理槽82内では微細な油粒子を吸着しやすい非常に微細な気泡を活用して油粒子を高速で浮上分離できる。
【0039】
本実施例と従来例の油分離特性を図3を用いて説明する。縦軸は対数表示の油分濃度であり、横軸は処理運転時間である。処理槽11内の被処理液の初期油分濃度がAであり、従来例では破線で示すように、油分濃度Bまでは処理運転時間に対してほぼ直線的に分離できる。しかし、油分濃度が低くなると、残留油粒子径が小さくなって径の大きい微細気泡では吸着しにくくなり、油分濃度の低下速度が小さくなる。この結果、排水基準の油分濃度Cまで分離する処理運転時間はT1となる。
【0040】
本実施例では、実線で示すように初期油分濃度Aから油分濃度B以下までほぼ直線的に分離でき、さらに排水基準の油分濃度Cまで分離した場合の油分濃度低減速度が小さくならず、全体の処理運転時間は従来法よりも短いT2で分離可能である。これは、油分濃度AからB近傍までは、比較的大きな粒子径の残留油が分離され、B以降は小さくなった粒子径の残留油が効率的に分離するためである。
【図面の簡単な説明】
【0041】
【図1】本発明の実施例を示す油水分離装置の全体系統図である。
【図2】同じく油水分離装置の処理槽内流動状態図である。
【図3】本発明の実施例と従来例を比較して示す油分離特性図である。
【符号の説明】
【0042】
10…油水分離装置、11…処理槽、12…遮蔽板、13…仕切壁、31…第1ポンプ、33…第1ノズル、32、35…配管、39…空気溶解器、41…第2ポンプ、42、43…配管、47…第2ノズル、81…第1処理槽、82…第2処理槽、83…浮上油受け部、31、33、39…第1循環系、41、47…第2循環系。

【特許請求の範囲】
【請求項1】
処理槽に送る被処理液に空気を混合溶解せしめ、空気を混合溶解した被処理液を処理槽内の被処理液中に吐出し、被処理液に混合溶解した空気を気泡として処理槽内の被処理液に供給することによって被処理液中の油分を浮上させ油水の分離を行う油水分離装置において、
前記処理槽は第1処理槽と第2処理槽からなり、第1処理槽に処理液を送る第1ポンプ、処理液に空気を混合溶解させる空気溶解器、およびこの空気溶解器からの空気を混合溶解した処理液を処理槽内の被処理液中に吐出する第1ノズルからなる第1循環系と、前記第1処理槽の気泡を含む被処理液を吸込む第2ポンプ、および吸込んだ被処理液を第2処理槽内に吐出して微細な気泡を供給する第2ノズルからなる第2循環系を備えたことを特徴とする油水分離装置。
【請求項2】
前記第1処理槽の底面積を前記第2処理槽の底面積よりも大きくしたことを特徴とする請求項1に記載の油水分離装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate