説明

温度均一性を提供するための熱循環装置および方法

熱拡散プレートを備える迅速な熱循環のための装置および方法。この熱拡散プレートは、熱電モジュールによる熱循環の間に熱ブロックアセンブリ全体の実質的温度均一性を提供し得る。縁部ヒーターは、熱循環の間に熱ブロックアセンブリ全体の実質的温度均一性を提供し得る。具体的には、生物学的サンプルを熱的に循環させるための装置は、以下を備える。該生物学的サンプルを受容するための熱ブロックアセンブリ;該熱ブロックアセンブリに結合された熱電モジュール;およびヒートシンクであって、ここで該ヒートシンクは該熱電モジュールに結合され、ここで該ヒートシンクは、基部プレート、フィン、および熱拡散プレートを備え、そしてここで該熱拡散プレートは、該基部プレートおよびフィンとは異なる材料を含み、ここで該熱拡散プレートは、熱循環の間に実質的な温度均一性を該熱ブロックアセンブリに提供する、ヒートシンク。

【発明の詳細な説明】
【技術分野】
【0001】
(分野)
本教示は、生物学的サンプルの熱循環に関する。熱循環における改善は、熱拡散プレートにより提供され得る。
【背景技術】
【0002】
(緒言)
生物学分野において、熱循環は、反応容器中の反応物質の加熱および冷却を提供するために利用され得る。生物学的サンプルの反応の例としては、ポリメラーゼ連鎖反応(PCR)および他の反応(例えば、リガーゼ連鎖反応、抗体結合反応、オリゴヌクレオチド連結アッセイ、およびハイブリダイゼーションアッセイ)が挙げられる。PCRにおいて、生物学的サンプルは、温度−時間プロトコルを介して熱循環され得、このプロトコルは、DNAを一本鎖に融解すること、プライマーをその一本鎖にアニールさせること、およびこれらのプライマーを伸長して、二本鎖DNAの新たなコピーを作ることを包含する。異なるサンプルウェルが均一に加熱および冷却されて、均一なサンプル収量が得られるように、熱循環の間に、熱ブロックアセンブリ全体の温度均一性を維持することが望ましい。均一な収量は、サンプルウェル間の定量化を提供し得る。
【発明の開示】
【課題を解決するための手段】
【0003】
(要旨)
種々の実施形態に従って、生物学的サンプルを熱的に循環するための装置は、上記生物学的サンプルを受容するための熱ブロックアセンブリ;上記熱ブロックアセンブリに結合された熱電モジュール;およびヒートシンクを備え得る。ここで上記ヒートシンクは、上記熱電モジュールに結合されている。ここで上記ヒートシンクは、基部プレート、フィン、および熱拡散プレートを備え、そして上記熱拡散プレートは、上記基部プレートおよびフィンとは異なる材料を含む。ここで上記熱拡散プレートは、熱循環の間に実質的温度均一性を上記熱ブロックアセンブリに提供する。
【0004】
種々の実施形態に従って、生物学的サンプルを熱的に循環するための装置は、上記生物学的サンプルを受容するための熱ブロックアセンブリ;上記熱ブロックアセンブリに結合された熱電モジュール;ヒートシンク;ならびに上記熱電モジュールおよび上記ヒートシンクに結合した熱拡散プレートを備え得る。ここで上記熱拡散プレートは、上記熱電モジュールと上記ヒートシンクとの間に配置され、ここで上記熱拡散プレートは、上記ヒートシンクより有意に大きい熱拡散性を有する。
【0005】
種々の実施形態に従って、生物学的サンプルを熱的に循環するための方法は、熱電モジュールを熱ブロックアセンブリに接触させる工程;上記熱ブロックアセンブリを加熱する工程であって、ここで上記熱ブロックアセンブリは、上記生物学的サンプルを受容するために適合されている、工程;ならびに上記熱ブロックアセンブリを冷却する工程を包含し得る。ここで上記冷却する工程は、熱を、ヒートシンクへと熱拡散プレートを介して拡散する工程を包含する。
【0006】
前述の一般的な説明および以下の種々の実施形態の説明はともに、例示的であり、かつ説明のためであるに過ぎず、限定的でないと理解されるべきである。
【0007】
(種々の実施形態の説明)
種々の実施形態についての参照を行う。実施形態の例は、添付の図面において図示される。図面中および同一の部分または同種の部分を参照する説明においては、可能な限り同一の参照番号を使用する。
【0008】
種々の実施形態によると、生物学的サンプルを熱的に循環するための装置は、熱ブロックアセンブリの内と外に熱ポンプ、その熱ブロックアセンブリの抵抗型加熱、およびその熱ブロックアセンブリの拡散性の冷却を提供する。用語「熱的に循環する」、または本明細書中に記載されるその文法的なバリエーションは、加熱、冷却、温度の上昇、および/または温度の下降を指す。熱ブロックアセンブリを周囲(20℃)を越えて加熱する場合、温度が上昇する間の熱循環は、熱ブロックアセンブリの抵抗型加熱、および/または熱ブロックアセンブリからの熱の拡散に対抗して、熱電モジュールによって熱ブロックアセンブリに熱を注入することを含み得る。熱ブロックアセンブリを周囲(20℃)を越えて冷却する場合、温度が下降する間の熱循環は、熱電モジュールによって熱ブロックアセンブリから熱を排出すること、および抵抗型加熱に対する熱ブロックアセンブリからの熱の拡散を含み得る。
【0009】
種々の実施形態によると、図1〜図5および図14〜図15は、生物学的サンプルを熱的に循環するための装置の一部分を図示する。図1はヒートシンク10、熱拡散プレート12、基部プレート14およびフィン16を図示する。種々の実施形態によると、熱拡散プレート12は、ヒートシンク10から分離され得る。種々の実施形態によると、ヒートシンク10は熱拡散プレート12を備え得る。種々の実施形態によると、熱拡散プレート12は、銅を含み得る。種々の実施形態によると、基部プレート14およびフィン16は、アルミニウムを含み得る。
【0010】
例えば、銅、アルミニウムなどのような本明細書に記載される金属の名前は、純粋な金属、金属の合金、金属のアマルガム、または材料科学の分野で公知である金属の任意のバリエーションを指す。
【0011】
種々の実施形態によると、この熱拡散プレートは、熱拡散プレートがヒートシンクの残部よりも有意に大きな熱拡散性を有し得るように、ヒートシンクの残部とは異なる金属で構成され得る。種々の実施形態によると、この基部プレートおよびフィンは、異なる金属で構成され得る。種々の実施形態によると、この熱拡散プレートは、材料科学の分野で公知の熱拡散性を提供する他の複合材料を含み得る。種々の実施形態によると、図1に図示されるように、トレンチ18は、熱拡散プレートおよび基部プレートの周辺を囲んで配置され得る。種々の実施形態によると、図5aに図示されるように、トレンチ18は電熱性モジュール30まで伸展し得る。トレンチ18は、熱ブロックアセンブリからの熱拡散の量を制限し得、そしてトレンチ18によって制限された領域からの熱損失を減少し得る。フレーム32は、トレンチ18の効果を実質的に打ち消すのを避けるために、非伝導性材料で構成され得る。
【0012】
熱拡散プレートに有意に大きな熱拡散性を提供しつつ、上記ヒートシンクのコストおよび重量を減少することは望ましくあり得る。種々の実施形態によると、銅はアルミニウムよりも重く、高価であり得るので、上記熱拡散プレートは銅で構成され得、かつ上記基部プレートおよびフィンはアルミニウムで構成され得る。種々の実施形態によると、この熱拡散プレート、基部プレートおよびフィンは、ヒートシンク全体にわたって同様の熱拡散性を提供する同一の材料で構成され得る。
【0013】
「熱拡散性」もしくは熱の「拡散」または本明細書中に使用される文法的なバリエーションは、一過性の伝導についての移動特性を指す。熱拡散性は、材料が熱エネルギーを保持する能力に相対して、材料が熱エネルギーを伝導させる能力を測定し得る。より大きな熱拡散性を有する材料は、それらの熱的な環境の変化に対して、より急速に応答し得る。熱拡散性は、以下の式(1)を用いて計算され得る:
a=k/ρ*C (1)
ここで、aは1秒あたりの1平方メートルおいて測定され得る熱拡散性であり、kはメータ−ケルビンあたりのワット単位で測定され得る熱伝導性であり、Cはキログラム−ケルビンあたりのジュール単位で測定され得る比熱容量あり、そしてρは1立方メートルあたりのキログラム単位で測定され得る密度である。材料科学の分野で公知のように、これらの熱特性を測定する代替的な方法が存在する。
【0014】
種々の実施形態によると、上記熱拡散プレートは、銅、銀、金または炭化ケイ素を含み得る。本明細書で使用される「熱容量」は、材料が熱エネルギーを保持する能力を指す。熱が上記熱拡散プレートに拡散するよう、有意に小さい熱容量を有し得る熱ブロックアセンブリを提供することは望ましくあり得る。熱容量は、以下の式(2)を用いて計算され得る:
=ρ×C (2)
ここで、Cは1立方メートル−ケルビンあたりのジュール単位で測定され得る熱容量であり、Cはキログラム−ケルビンあたりのジュール単位で測定され得る比熱容量であり、そしてρは1立方メートルあたりのキログラム単位で測定され得る密度である。本明細書中に使用される「有意に」大きいか、または小さいとは、比較した値より少なくとも25%大きいか、または小さい値の熱拡散性または熱容量を指す。表1は、種々の実施形態による上述の各熱特性に関する値を包含する:
【0015】
【表1】

種々の実施形態によると、銅、銀、金または炭化ケイ素で構成される熱拡散プレート(例えば、化学蒸着によりメッキされた炭化ケイ素)で構成された熱拡散プレートは、アルミニウムまたはマグネシウムで構成された基部プレートおよびフィンよりも有意に大きな熱拡散性を有し得る。種々の実施形態によると、銅で構成される熱拡散プレートは、銀、金またはマグネシウムで構成される熱ブロックアセンブリよりも有意に大きな熱容量を有し得る。
【0016】
種々の実施形態によると、図2は複数の開口部24および底22を備える熱ブロックアセンブリ20を例示する。この実施形態において、複数の開口部24は、生物学的サンプルを含むサンプルウェルを受容するよう適合される。このサンプルウェルは、サンプルウェルトレイ中に設置され得る。各サンプルウェルの頂部は、キャップ、接着フィルム、ヒートシールまたはギャップパッドにより封され得る。種々の実施形態によると、上記熱ブロックアセンブリは、複数の開口部において生物学的サンプルを受容し、かつ包むよう適合され得る。種々の実施形態によると、この生物学的サンプルは、ウェルの代わりに表面により受容および含まれ得る。これらの表面は、上記熱ブロックアセンブリと別個または一体であり得る。
【0017】
種々の実施形態によると、上記熱ブロックアセンブリは、銀、金、アルミニウム合金、炭化ケイ素およびマグネシウムの少なくとも1種を含み得る。熱循環の分野において公知な他の材料は、この熱ブロックアセンブリを構成するために使用され得る。これらの材料は、高い熱伝導性を有し得る。
【0018】
種々の実施形態に従って、図3は、熱電モジュール30に結合された、図1に図示されるヒートシンク10を図示する。種々の実施形態に従って、熱電モジュール30は、熱拡散プレート12に重なる。種々の実施形態に従って、その熱拡散プレートまたは上記熱電モジュールのいずれかが、より大きい表面積を有し得る。図3に図示されるように、熱電モジュール30は、プリント回路基板(PCB)34の上に位置し、熱電モジュール30の両方の部分は、熱電モジュール30および溝(trench)18の各部分の間の熱電間隙(thermoelectric gap)を埋め得るフレーム32により、裏打ちされる。リード38は、熱電モジュール30に電力を供給し得る。ガスケット36は、PCB34の上に配置され得、熱電モジュール30およびフレーム32の両方を裏打ちし得る。種々の実施形態に従って、そのガスケットは、EPDMゴム、シリコーンゴム、ネオプレン(CR)ゴム、SBRゴム、ニトリル(NBR)ゴム、ブチルゴム、ハイパロン(Hypalon)(CSM)ゴム、ポリウレタン(PU)ゴム、およびバイトンゴムのうちの少なくとも1つから構成され得る。種々の実施形態に従って、上記フレームは、上記ガスケットと類似の材料、Ultem(登録商標)樹脂(General Electric Plastics;非晶性熱可塑性ポリエーテルイミド)、または他の適切な材料から構成され得る。種々の実施形態に従って、フレーム32は、熱ブロックアセンブリ20および熱拡散プレート12との配列のために、熱電モジュール30の周囲に配置され得る。種々の実施形態に従って、そのフレームは、フレーム32の取扱いを容易にするために、図3のフレーム32の隅に図示されるように、タブを備え得る。
【0019】
本明細書中で使用される場合、「熱電モジュール」は、熱電クーラー(TEC)としても公知の、ペルチエデバイスをいい、それは、ヒートポンプとして機能する固体状態デバイスである。ペルチエデバイスは、2つのセラミックプレートを備え得、その間にテルル化ビスマスを備え得る。直流電流が付与され得る場合、熱は、そのデバイスの一方の側から他方の側へ移され、ここでそれはヒートシンクおよび/または熱拡散プレートを用いて取り除かれる。「冷たい」側は、上記熱ブロックアセンブリから熱を送り込むために使用され得る。その電流が逆にされると、そのデバイスは、その熱ブロックアセンブリへ熱を送り込むために使用され得る。そのペルチエデバイスは、熱送り込みの冷却効果および加熱効果の増加を達成するために、積み重ねられ得る。ペルチエデバイスは、当該分野で公知であり、Tellurex Corporation(Traverse City,Michigan)、Marlow Industries(Dallas,Texas)、Melcor(Trenton,New Jersey)、およびFerrotec America Corporation(Nashua,New Hampshire)を含むいくつかの会社により製造されている。
【0020】
種々の実施形態に従って、図3aは、縁部ヒーター40を図示する。縁部ヒーター40は、図4に図示されるリード42により電力供給される抵抗ヒーターであり得る。種々の実施形態に従って、縁部ヒーター40は、縁部ヒーター40が少なくとも部分的に熱ブロックアセンブリ20の周囲に最も近い開口部24に合致するように、熱ブロックアセンブリ20の周囲に配置され得る。種々の実施形態に従って、縁部ヒーターは、複数の開口部24に合致することなく、直線的であり得る。図4〜5は、熱ブロックアセンブリ20の周囲に結合された縁部ヒーター40を図示する。縁部ヒーター40は、リード42を介して電力供給される抵抗ヒーターであり得る。この実施形態では、図5は、熱ブロックアセンブリ20の底部22と頂部26との間での熱ブロックアセンブリ20の周囲への、そして熱ブロックアセンブリ20の側面を形成する複数の開口部24の一部周囲での、縁部ヒーター40の結合を図示する。用語「周囲に結合される」とは、熱ブロックアセンブリの端から熱を提供する縁部ヒーターに対して言及される。種々の実施形態に従って、縁部ヒーターは、複数の開口部24、頂部26および/または底部22の側で、熱ブロックアセンブリの周囲で浮動的であり得る。種々の実施形態に従って、縁部ヒーター40または複数のヒーターは、加熱の間のTNU(thermal non−uniformity(熱的不均質性))を低減するために、異なる電力供給ゾーンを提供し得る。
【0021】
種々の実施形態に従って、図4は、図3に図示された熱電モジュール30およびヒートシンク10に結合された、図2に図示された熱ブロックアセンブリ20を図示する。図5は、この開口部の拡大図を図示する。種々の実施形態に従って、熱ブロックアセンブリ20は、底部22が熱電モジュール30の表面と結合するように、熱電モジュール30と重なる。種々の実施形態に従って、熱ブロックアセンブリ20または熱電モジュール30のいずれかがより大きい表面積を有し得る。シール44は、熱ブロックアセンブリ20のその頂部26に配置され得、熱ブロックアセンブリ20において複数の開口部24の中へ嵌合するように配置されるサンプルウェルトレイ(示されず)を取り囲む、制御された環境を提供し得る。シール44は、熱ブロックアセンブリ20から熱ブロックアセンブリ20を取り囲む環境への熱拡散を低減し得る。種々の実施形態に従って、そのシールは、EPDMゴム、シリコーンゴム、ネオプレン(CR)ゴム、SBRゴム、ニトリル(NBR)ゴム、ブチルゴム、ハイパロン(Hypalon)(CSM)ゴム、ポリウレタン(PU)ゴム、およびバイトンゴムのうちの少なくとも1つから構成され得る。
【0022】
種々の実施形態に従って、熱循環のための上記装置は、熱ブロックアセンブリ20の頂部26にその環境への接近を提供し得る。熱電モジュール30を、環境の中の水分から保護することが望ましくあり得る。シール44は、熱ブロックアセンブリ20の頂部26と、ガスケット36の下のスカートを提供するカバー(示されず)との間の接続部を提供し得る。そのカバー(示されず)は、そのカバーが頂部に配置されているその構成要素を、その環境から隔離する。シール44および/またはガスケット36は、成形可能な接着剤/シーラント(RTVシリコーンゴム(Dow Corning)の付与によりまたはそれらによらずに、シーリングを提供し得る。
【0023】
種々の実施形態に従って、図4に図示されるように、締付け機構46は、熱ブロックアセンブリ20を熱電モジュール30に結合するための圧力を提供する。締付け機構46は、熱ブロックアセンブリ20とのその接触を最小にし、熱の拡散の実質的な増加を回避するように構成され得る。締付け機構46は、所望の圧力を提供するに十分な剛性を有する、ガラス充填プラスチックから構成され得る。
【0024】
種々の実施形態に従って、図15に図示されるように、加熱カバー150は、熱ブロックアセンブリ20の上に配置され得、上部からの加熱を提供し得る。加熱カバー150は、サンプルウェル(示されず)の上のキャップ(示されず)のための凹部156を提供することにより、エバポレーションによる上記生物学的サンプルからの熱の拡散を低減し得る。加熱カバー150は、上記キャップの内側を乾燥状態に保つことにより、相互汚染の可能性を低減し得、それによって、そのサンプルウェルがキャップをはずされた場合のエアロゾル形成を防止し得る。加熱カバー150は、そのキャップを、上記生物学的サンプルの種々の成分の凝縮温度より上に維持し得、その生物学的サンプルの凝縮および体積減少を防止し得る。加熱カバー150は、プラテン154の周囲にスカート158を提供し得る。種々の実施形態に従って、その加熱カバーは、当該分野で公知の従来型のいずれでもあり得る。加熱カバー150は、ハンドル152による手動の物理的作動により、閉位置へ、または閉位置から滑り得る。種々の実施形態に従って、この加熱カバーは、モーターにより、閉位置へそして閉位置から自動的に物理的に作動され得る。加熱カバー150は、サンプルウェルトレイの頂部表面に対して押付けるための少なくとも1つの加熱プラテン154を備える。プラテン154は、サンプルウェルの外側円錐表面が熱ブロックアセンブリ20の複数の開口部24に対してしっかりと押付けられるように、サンプルウェルトレイを下に押付け得る。このことは、そのサンプルウェルへの熱移動を増加させ得、そして熱ブロックアセンブリ20全体の温度均質性に類似の、サンプルウェルトレイ中のサンプルウェル全体の温度均質性を提供し得る。プラテン154およびスカート158は、熱ブロックアセンブリ20からの熱の拡散を実質的に防止し得る。上記加熱カバーおよびプラテンの詳細は、熱循環の分野で周知である。種々の実施形態に従って、そのカバーは、加熱され得ない。
【0025】
種々の実施形態に従って、図5aは、熱ブロックアセンブリ20に結合される縁部ヒーター40および熱電モジュール30に結合される熱ブロックアセンブリ20を図示する。熱拡散プレート12は、基部プレート14内に配置され得る。熱電モジュール30は、一方の側面で熱拡散プレート12に結合され得、他方の側面で熱ブロックアセンブリ20に結合され得、リード38により電力供給され得、そしてフレーム32により裏打ちされ得る。熱ブロックアセンブリ20は、底部22の上面で縁部ヒーター40に結合され得る。シール44は、熱ブロックアセンブリ20の頂部26に配置され得、頂部26の周囲を裏打ちし得る。
【0026】
種々の実施形態に従って、上記熱電モジュールは、TNUを最小にするために、種々の熱勾配を提供するように構成され得る。複数の熱電モジュールが、TNUを最小にするために、種々の熱勾配を提供し得る。種々の実施形態に従って、熱電モジュール30は、以下に記載されるように、TNUを最小にするために、隅の熱流束を増加させることにより、熱ブロックアセンブリ20への一定の熱の注入を提供するように構成され得る。種々の実施形態に従って、図14に図示されるように、熱電モジュール30は、異なる出力領域(power region)を提供する2つ以上のペルチエデバイスを備え得る。リード38は、異なる出力領域を生成する異なるペルチエデバイスに、異なる電力供給を提供し得る。第1の電力供給領域200は、上記熱ブロックアセンブリの中間部分に結合され得、一方第2の電力供給領域210は、エッジ効果を補償するために、その熱ブロックアセンブリの周囲に結合され得る。種々の実施形態に従って、その異なる電力供給領域は、均質な電力供給領域および不均質な電力供給領域を提供し得る。
【0027】
種々の実施形態に従って、TNUは、上記熱ブロックアセンブリ上の異なる点での温度をサンプリングすることにより測定され得る。TNUは、その熱ブロックアセンブリ内の場所ごとの温度の不均質性である。種々の実施形態に従って、TNUは、上記熱ブロックアセンブリ中の異なる開口部で、サンプルウェルトレイ中のサンプルの温度をサンプリングすることにより測定され得る。サンプルウェルトレイの各ウェル中のサンプルの温度の実際の測定は、各ウェルの小容積およびウェルの多さに起因して、困難であり得る。温度は、温度制御の分野で公知の任意の方法(温度センサーまたはサーミスターを含む)により測定され得る。
【0028】
種々の実施形態によれば、熱循環装置の構成要素は、熱グリースを含む熱相互伝達(thermal interface)媒体と一緒に結合され得る。種々の実施形態によれば、熱グリースは、熱ブロックアセンブリ、熱電モジュール、熱導電性プレートおよび基部プレートのうち少なくとも2つの界面に位置付けられ得る。熱グリースは、構成要素間の十分な熱接触を保証するための高い圧力要件を回避し得る。熱グリースは、一緒に結合される拡張する構成要素と収縮する構成要素との間に潤滑をもたらし、構成要素上の摩耗を減らし得る。熱グリースの例としては、ThermalcoteTMII(Aavid Thermalloy,LLC;k=0.699 W/m−K)が挙げられる。
【0029】
種々の実施形態によれば、生物学的サンプルを熱的に循環するための方法は、熱ブロックアセンブリに熱電モジュールを接触させる工程;熱ブロックアセンブリを加熱する工程であって、この熱ブロックアセンブリは、生物学的サンプルを受容するために適合されている、工程;およびこの熱ブロックアセンブリを冷却する工程であって、この冷却する工程は、熱拡散性プレートを備えるヒートシンクに熱を拡散する工程を包含する、工程を包含し得る。種々の実施形態によれば、生物学的サンプルを熱的に循環する工程は、上記熱ブロックアセンブリを縁部ヒーターに接触させる工程を包含し得、この縁部ヒーターは、上記熱ブロックアセンブリの周囲に結合されている。種々の実施形態によれば、生物学的サンプルを熱的に循環する工程は、熱ブロックアセンブリに実質的温度均一性を提供し得る。種々の実施形態によれば、拡散する工程は、上記生物学的サンプルについて、最大10秒で少なくとも10℃の冷却を提供し得る。種々の実施形態によれば、生物学的サンプルを熱サイクリングする工程は、加熱および冷却を提供して、30秒未満のPCRサイクル時間を達成し得る。例えば、30サイクルを要するPCRプロトコールは、15分未満で完了し得る。種々のPCRプロトコールが熱循環の分野で公知であり、1秒あたり4℃の温度の上昇または下降の維持を含み得る。
【実施例】
【0030】
種々の実施形態によれば、熱ブロックアセンブリは、熱ブロックアセンブリのための温度コントローラの設定点を上昇させることによって加熱され、そして、その温度コントローラの設定点を下降させることによって冷却される。以下は、図6〜13に温度曲線が図示されるいくつかの実施例である。図6〜13において、設定点温度曲線60は、温度(℃)を示すグラフの左縦軸上の目盛と、時間(秒)を示す横軸上の目盛とを伴う。図6〜13における時間フレームは、熱循環プロトコールの任意の時間ブロックである。図6〜13において、熱不均一曲線は、TNU(℃)を示すグラフの右縦軸上の目盛と、時間(秒)を示す横軸上の目盛とを伴う。
【0031】
(比較実施例1:熱拡散性プレート)
実施例1において、99.9%のEDM銅から作製され、8.0mmの厚みを有する熱拡散性プレートを、5.0mmの厚みを有する6063−T5アルミニウムから作製された基部プレートおよびピンフィンに結合した。金メッキした銀から作製された熱ブロックアセンブリを、テルル化ビスマスから作製された熱電デバイスに結合した。この熱電デバイスを、熱拡散性プレートに結合した。9.3ワットの電力出力を有する縁部ヒーター(Minco Products,Inc.(Minneapolis,Minnesota)製)を、この熱ブロックアセンブリに結合した。シリコーンラバーから作製されたシールを、熱ブロックアセンブリの上部に位置決めした。この熱循環装置を、熱拡散性プレートが13.0mmの厚みを有する基部プレートで置き換えたこと以外は上記のものと類似する熱循環装置と比較した。図6は、温度の上昇についての熱ブロックアセンブリの温度曲線およびTNU曲線を図示する。図7は、温度の下降についての温度曲線およびTNU曲線を図示する。図6〜7において、TNU曲線62は、熱拡散性プレートを備える熱循環装置に関するものであり、TNU曲線64は、熱拡散性プレートなしの熱循環装置に関するものである。
【0032】
(比較実施例2:ピンフィンおよびスエージフィン)
実施例2において、実施例1に記載したものと類似する熱拡散性プレートを備える熱循環装置を、ピンフィンヒートシンクをスエージフィンヒートシンクで置き換えて改変した。熱拡散性プレートおよびスエージフィンを備える熱循環装置を、熱拡散性プレートを、13.0mmの厚みを有する基部プレートで置き換えたこと以外は類似する熱循環装置と比較した。図8は、温度の上昇についての熱ブロックアセンブリの温度曲線およびTNUを図示する。図9は、熱の下降についての熱ブロックアセンブリの温度曲線およびTNUを図示する。図8〜9において、TNU曲線82は、スエージフィンヒートシンクおよび熱拡散性プレートを備える熱循環装置に関するものであり、TNU曲線84は、熱拡散性プレートなしのスエージフィンヒートシンクを備える熱循環装置に関するものである。
【0033】
実施例1および2において、図6〜9により図示されるように、熱拡散性プレートは、ピンフィンまたはスエージフィンのヒートシンクが熱を熱拡散性プレートから拡散させたとしても、熱循環の間にTNUを減少し得る。このことは、TNU曲線によって実証され得る、すなわち、TNU曲線62および82は、設定点の温度曲線60が図6〜9における20秒地点付近の設定点に到達した後に、TNU曲線64および84よりも低いTNU値に達する。
【0034】
(比較実施例3:複数の縁部ヒーター)
実施例3において、99.9%のEDM銅から作製され、8.0mmの厚みを有する熱拡散性プレートを、5.0mmの厚みを有する6063−T5アルミニウムから作製された基部プレートおよびフィンに結合した。金メッキした銀から作製された熱ブロックアセンブリを、テルル化ビスマスから作製された熱電デバイスに結合した。この熱電デバイスを、熱拡散性プレートに結合した。9.3ワットの電力出力を有する縁部ヒーター(Minco Products,Inc.(Minneapolis,Minnesota)製)を、この熱ブロックアセンブリに結合した。シリコーンラバーから作製されたシールを、熱ブロックアセンブリの上部に位置決めした。この熱循環装置を、1つ以上の縁部ヒーターを熱ブロックアセンブリに結合したこと以外は上記のものと類似する熱循環装置と比較した。図10〜11は、熱循環の間の、異なるフィン構成を備える種々の縁部ヒーターの熱ブロックアセンブリの温度曲線およびTNUを図示する。図10は、ピンフィンヒートシンクを備える1つの縁部ヒーターと2つの縁部ヒーターとの間の比較を図示する。TNU曲線102は、1つの縁部ヒーターを備える熱循環装置に関するものであり、TNU曲線104は、2つの縁部ヒーターを備える熱循環装置に関するものである。図11は、スエージフィンヒートシンクを備える1つの縁部ヒーターと3つの縁部ヒーターとの間の比較を図示する。TNU曲線112は、1つの縁部ヒーターを備える熱循環装置に関するものであり、TNU曲線114は、3つの縁部ヒーターを備える熱循環装置に関するものである。
【0035】
実施例3は、ピンフィンまたはスエージフィンのヒートシンクが熱を熱拡散性プレートから拡散させたとしても、加熱的に循環において、縁部の加熱の増加がTNUを減少することを例示する。スエージフィンの構成において、加熱の間に縁部ヒーターにより提供される追加の熱が、冷却の間にTNUを増加した。
【0036】
(比較実施例4:シール)
実施例4において、99.9%のEDM銅から作製され、8.0mmの厚みを有する熱拡散性プレートを、5.0mmの厚みを有する6063−T5アルミニウムから作製された基部プレートおよびピンフィンに結合した。金メッキした銀から作製された熱ブロックアセンブリを、テルル化ビスマスから作製された熱電デバイスに結合した。この熱電デバイスを、熱拡散性プレートに結合した。シリコーンラバーから作製されたシールを、熱ブロックアセンブリの上部に位置決めした。この熱循環装置を、このシールを取り除いたこと以外は上記のものと類似する熱循環装置と比較した。図12〜13は、熱循環の間の、熱拡散性プレートを備える熱ブロックアセンブリの温度曲線およびTNU曲線を図示する。図12は、熱ブロックアセンブリに対する温度の上昇に関するものであり、図13は、熱ブロックアセンブリに対する温度の下降に関するものである。図12〜13において、TNU曲線122は、シリコンラバーシールを備える熱循環装置に関するものであり、TNU曲線124は、シリコンラバーシールなしの熱循環装置に関するものである。
【0037】
実施例4は、シリコンラバーシールは、熱拡散性プレートおよびピンフィンヒートシンクを備える熱循環装置内のTNU変化に有意な影響を及ぼすことなく、凝集(condensation)に対する障壁を提供し得ることを例示する。
【0038】
本明細書および添付の特許請求の範囲の目的のために、特に示されない限り、量、割合または比率を表す全ての数字、ならびに明細書および特許請求の範囲で使用される他の数値は、全ての場合において、用語「約」により修飾されるものとして理解されるべきである。従って、逆に示されない限り、以下の明細書および添付の特許請求の範囲に示される数値パラメータは、本発明により得られると考えられる所望の特性に依存して変化し得る、近似である。最低限でも、そして、特許請求の範囲に対する均等論の適用を制限することは意図しないが、各数値パラメータは、少なくとも、報告された有効数字の数に照らして、そして、通常の四捨五入を適用することによって考慮されるべきである。
【0039】
本発明の広い範囲を示す数の範囲およびパラメータは近似であるにも関わらず、特定の実施例において示される数値は、可能な限り正確に報告されている。しかし、任意の数値は、そのそれぞれの試験指標において見られる標準偏差から必然的に生じる特定の誤差を本質的に含む。さらに、本明細書中に開示される全ての範囲は、その中に包含されるあらゆる部分的な範囲を包含すると理解されるべきである。例えば、「10未満」の範囲は、最小値0と最大値10との間(端を含めて)のあらゆる部分的な範囲、すなわち、0以上の最小値および10以下の最大値を有するあらゆる部分的な範囲(例えば、1〜5)を含む。
【0040】
本明細書および添付の特許請求の範囲において使用される場合、単数形「a」、「an」および「the」は、単一の対象に明白かつ明確に制限されない限り、複数の対象を含むことに注意すること。従って、例えば、「熱電モジュール(a thermoelectric module)」に対する言及は、2つ以上の熱電モジュールを含む。
【0041】
種々の改変およびバリエーションが、本教示の精神または範囲から逸脱することなく、本明細書中に記載される種々の実施形態に対してなされ得ることは、当業者に明らかである。従って、本明細書中に記載される種々の実施形態は、添付の特許請求の範囲およびその等価物の範囲内の他の改変およびバリエーションを網羅することが意図される。
【図面の簡単な説明】
【0042】
本明細書中に組み込まれ、かつ本明細書の一部をなす添付の図面は、種々の実施形態を図示する。
【図1】図1は、ヒートシンクの種々の実施形態を図示する。
【図2】図2は、熱ブロックアセンブリの種々の実施形態を図示する。
【図3】図3は、ヒートシンクに結合された熱電モジュールの種々の実施形態を図示する。
【図3a】図3aは、縁部ヒーターの種々の実施形態を図示する。
【図4】図4は、熱電モジュールおよびヒートシンクに結合され、そして縁部ヒーターに結合された熱ブロックアセンブリの種々の実施形態を図示する。
【図5】図5は、熱ブロックアセンブリへの縁部ヒーターの結合および熱電モジュールへの熱ブロックアセンブリの結合の種々の実施形態を図示する、図4の詳細な拡大図である。
【図5a】図5aは、熱ブロックアセンブリへの縁部ヒーターへの結合および熱電モジュールへの熱ブロックアセンブリの結合の種々の実施形態を図示する、図5の横断面図である。
【図6】図6は、実施例1〜実施例5についての熱ブロックアセンブリの温度曲線および熱ブロックアセンブリの熱の非均一性を図示するグラフである。
【図7】図7は、実施例1〜実施例5についての熱ブロックアセンブリの温度曲線および熱ブロックアセンブリの熱の非均一性を図示するグラフである。
【図8】図8は、実施例1〜実施例5についての熱ブロックアセンブリの温度曲線および熱ブロックアセンブリの熱の非均一性を図示するグラフである。
【図9】図9は、実施例1〜実施例5についての熱ブロックアセンブリの温度曲線および熱ブロックアセンブリの熱の非均一性を図示するグラフである。
【図10】図10は、実施例1〜実施例5についての熱ブロックアセンブリの温度曲線および熱ブロックアセンブリの熱の非均一性を図示するグラフである。
【図11】図11は、実施例1〜実施例5についての熱ブロックアセンブリの温度曲線および熱ブロックアセンブリの熱の非均一性を図示するグラフである。
【図12】図12は、実施例1〜実施例5についての熱ブロックアセンブリの温度曲線および熱ブロックアセンブリの熱の非均一性を図示するグラフである。
【図13】図13は、実施例1〜実施例5についての熱ブロックアセンブリの温度曲線および熱ブロックアセンブリの熱の非均一性を図示するグラフである。
【図14】図14は、異なる出力領域を有する熱電モジュールの種々の実施形態を図示する。
【図15】図15は、加熱カバーの種々の実施形態を図示する。

【特許請求の範囲】
【請求項1】
生物学的サンプルを熱的に循環させるための装置であって、以下:
該生物学的サンプルを受容するための熱ブロックアセンブリ;
該熱ブロックアセンブリに結合された熱電モジュール;および
ヒートシンクであって、ここで該ヒートシンクは、該熱電モジュールに結合され、ここで該ヒートシンクは、基部プレート、フィン、および熱拡散プレートを備え、そしてここで該熱拡散プレートは、該基部プレートおよびフィンとは異なる材料を含む、ヒートシンク、
を備え、
ここで該熱拡散プレートは、熱循環の間に、実質的な温度均一性を該熱ブロックアセンブリに提供する、装置。
【請求項2】
前記熱拡散プレートは、前記熱電モジュールに結合するように配置される、請求項1に記載の装置。
【請求項3】
前記熱拡散プレートは、銅、銀、金、および炭化ケイ素のうちの少なくとも1種を含む、請求項1に記載の装置。
【請求項4】
前記熱ブロックアセンブリは、銀、金、アルミニウム、炭化ケイ素、およびマグネシウムのうちの少なくとも1種を含む、請求項1に記載の装置。
【請求項5】
前記基部プレートおよび前記フィンは、アルミニウムを含む、請求項1に記載の装置。
【請求項6】
前記フィンは、ピンのフィン構成において配置されている、請求項5に記載の装置。
【請求項7】
前記フィンは、スエージフィン構成において配置されている、請求項5に記載の装置。
【請求項8】
前記熱電モジュールは、熱電間隙を備え、ここで該熱電間隙は、前記熱ブロックアセンブリ全体の実質的温度均一性を提供するために減少される、請求項1に記載の装置。
【請求項9】
前記熱電間隙は、5ミリメートル未満に減少される、請求項8に記載の装置。
【請求項10】
縁部ヒーターをさらに備え、ここで該縁部ヒーターは、前記熱ブロックアセンブリの周囲に結合されている、請求項1に記載の装置。
【請求項11】
前記装置は、30秒未満のPCRサイクル時間を提供する、請求項1に記載の装置。
【請求項12】
生物学的サンプルを熱的に循環するための装置であって、以下:
該生物学的サンプルを受容するための熱ブロックアセンブリ;
該熱ブロックアセンブリに結合した熱電モジュール;
ヒートシンク;ならびに
該熱電モジュールおよび該ヒートシンクに結合した熱拡散プレートであって、ここで該熱拡散プレートは、該熱電モジュールと該ヒートシンクとの間に配置されている、熱拡散プレート、
を備え、
該熱拡散プレートは、該ヒートシンクより有意に大きい熱拡散性を有する、
装置。
【請求項13】
前記熱拡散プレートは、熱循環の間に、実質的温度均一性を前記熱ブロックアセンブリに提供する、請求項12に記載の装置。
【請求項14】
前記実質的温度均一性は、前記熱ブロックアセンブリに対してわずか10秒で少なくとも10℃の冷却を提供する、請求項13に記載の装置。
【請求項15】
前記熱拡散プレートは、銅を含む、請求項12に記載の装置。
【請求項16】
前記熱ブロックアセンブリは、銀および金を含む、請求項15に記載の装置。
【請求項17】
前記ヒートシンクは、基部プレートおよびフィンを備え、ここで該フィンは、ピンのフィン構成およびスエージフィン構成のうちの少なくとも1つにおいて配置されている、請求項16に記載の装置。
【請求項18】
前記熱電モジュールは、熱電間隙を備え、ここで該熱電間隙は、前記熱ブロックアセンブリ全体に実質的温度均一性を提供するために減少される、請求項17に記載の装置。
【請求項19】
前記熱電間隙は、5ミリメートル未満に減少される、請求項18に記載の装置。
【請求項20】
縁部ヒーターをさらに備え、ここで該縁部ヒーターは、前記熱ブロックアセンブリの周囲に結合される、請求項12に記載の装置。
【請求項21】
生物学的サンプルを熱的に循環するための方法であって、該方法は:
熱電モジュールを、熱ブロックアセンブリに接触させる工程;
該熱ブロックアセンブリを加熱する工程であって、ここで該熱ブロックアセンブリは、該生物学的サンプルを受容するために適合されている、工程;および
該熱ブロックアセンブリを冷却する工程であって、ここで該冷却する工程は、ヒートシンクへと熱拡散プレートを介して熱を拡散する工程を包含する、工程、
を包含する、方法。
【請求項22】
前記熱ブロックアセンブリと縁部ヒーターを接触させる工程をさらに包含し、ここで該縁部ヒーターは、前記熱ブロックアセンブリの周囲に結合されている、請求項21に記載の方法。
【請求項23】
実質的温度均一性を前記熱ブロックアセンブリに提供する工程をさらに包含する、請求項22に記載の方法。
【請求項24】
前記拡散する工程は、前記熱ブロックアセンブリに対してわずか10秒で少なくとも10℃の冷却を提供する、請求項23に記載の方法。
【請求項25】
前記加熱する工程および冷却する工程は、30秒未満のPCRサイクル時間を提供する、請求項24に記載の方法。
【請求項26】
前記熱電モジュールは、少なくとも2つの出力領域を備える、請求項1に記載の装置。
【請求項27】
前記熱ブロックアセンブリの頂部に配置されているシールをさらに備える、請求項1に記載の装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図3a】
image rotate

【図4】
image rotate

【図5】
image rotate

【図5a】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公表番号】特表2007−515944(P2007−515944A)
【公表日】平成19年6月21日(2007.6.21)
【国際特許分類】
【出願番号】特願2006−533513(P2006−533513)
【出願日】平成16年5月28日(2004.5.28)
【国際出願番号】PCT/US2004/017017
【国際公開番号】WO2004/108288
【国際公開日】平成16年12月16日(2004.12.16)
【出願人】(500069057)アプレラ コーポレイション (120)
【住所又は居所原語表記】850 Lincoln Centre Drive Foster City CALIFORNIA 94404 U.S.A.
【Fターム(参考)】