説明

温熱環境評価装置、プログラム

【課題】冷暖房機器のような熱源と温熱環境の境界面とが人体に及ぼす影響を評価することを可能にする。
【解決手段】取得部12は、入力装置21などから3次元の仮想空間である温熱環境に配置された人体を含む複数の対象について温度を含む計算条件を取得する。計算部10は、温熱環境における評価の対象である人体と熱源と壁面との表面にそれぞれ複数個ずつの面要素を設定し、異なる種類の対象における2個ずつの面要素の間で輻射により授受される熱エネルギーを取得部12から与えられた計算条件に応じた熱流束として計算する。視覚化処理部15は、計算部10による計算結果を可視化して表示装置22に表示させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コンピュータを用いたシミュレーションにより温熱環境に人体が存在する場合の熱流束を評価する温熱環境評価装置、プログラムに関するものである。
【背景技術】
【0002】
従来から、室内空間のような温熱環境の解析のために、温熱環境の内部の発熱と、壁や床を通して伝達される熱とに加えて、窓からの入射、壁や床による日射の反射を考慮する技術が提案されている(たとえば、特許文献1参照)。
【0003】
特許文献1に記載された技術では、熱輻射による熱伝達の計算を行うために、3次元図形を複数の面要素に分割し、面要素ごとに入射および反射の分類を行って、面要素ごとの入熱量を計算している。特許文献1では、主として太陽光の入射に着目しており、入射については直達入射と散乱入射とに分類し、反射については散乱反射と鏡面反射とに分類して、面要素ごとに入射と反射とによる入熱量を積算している。
【0004】
また、特許文献1には、太陽輻射のみではなく、加熱源や空調機からの放射熱についてもシミュレーションを行いる旨の記載があり、さらに、各面要素からの輻射を計算するために形態係数を算出している。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2007−164667号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上述したように、特許文献1には、温熱環境に設定した複数の面要素への入熱量と各面要素の形態係数とを用いて各面要素からの輻射を計算することが記載されている。しかしながら、温熱環境に人体が存在する場合に、温熱環境が人体に及ぼす影響については評価されていない。すなわち、温熱環境に設けた冷暖房機器の温度や、温熱環境の境界面である壁面、床面、天井面の温度が、人体に及ぼす影響は評価されていない。
【0007】
本発明は、冷暖房機器のような熱源と温熱環境の境界面とが人体に及ぼす影響を評価することを可能にした温熱環境評価装置を提供することを目的とし、さらに、コンピュータを温熱環境評価装置として機能させるプログラムを提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明に係る温熱環境評価装置は、上記目的を達成するために、3次元の仮想空間である温熱環境に配置された人体を含む複数の対象について温度を含む計算条件を取得する取得部と、対象の表面に複数個ずつの小領域である面要素を設定し異なる種類の対象における2個ずつの面要素の間で輻射により授受される熱エネルギーを取得部から与えられた計算条件に応じた熱流束として計算する計算部と、計算部による計算結果を可視化して表示装置に表示させる視覚化処理部とを備えることを特徴とする。
【0009】
この温熱環境評価装置において、対象は、温熱環境の境界面と人体と温熱環境の温度を調節する熱源とであって、計算部は、対象間で授受される熱エネルギーを、熱源と人体との間と、人体と境界面との間と、熱源と境界面との間とに制限して計算することが好ましい。
【0010】
この温熱環境評価装置において、各2個の面要素ごとに計算部が計算した熱流束と計算条件とを対応付けてレコードとして記憶する結果記憶部と、取得部から温度を指定する計算条件が与えられると温度を除く計算条件が等しいレコードを結果記憶部から抽出する照合部とを備え、計算部は、照合部が抽出したレコードの温度と取得部から与えられた温度との相違による熱流束の変化分を計算し、結果記憶部から抽出されたレコードの熱流束に当該変化分の補正を行うことにより取得部が取得した計算条件に応じた熱流束を計算することが好ましい。
【0011】
この温熱環境評価装置において、計算条件における対象のうちのいずれかの温度を所定の時間間隔で変化させる条件作成部を備え、取得部は、条件作成部から与えられる温度を計算条件として計算部に与え、視覚化処理部は、計算部による熱流束の計算結果を時間間隔で表示装置に表示させることが好ましい。
【0012】
また、この温熱環境評価装置において、照合部は、取得部から人体の得たい熱流束を指定する計算条件が与えられると結果記憶部から人体の熱流束を除く計算条件が等しいレコードを結果記憶部から抽出し、計算部は、照合部が抽出したレコードにおける人体の熱流束と取得部から与えられた得たい熱流束との相違により熱源の温度の変化分を計算することが好ましい。
【0013】
この温熱環境評価装置において、計算部は、2個の面要素の間で輻射により伝達される熱エネルギーに、温熱環境において対象の間の対流により伝達される熱エネルギーを加算して熱流束を計算することがさらに好ましい。
【0014】
本発明に係るプログラムは、上記目的を達成するために、コンピュータを、構築された3次元の仮想空間である温熱環境に配置された人体を含む複数の対象について温度を含む計算条件を取得する取得部と、対象の表面に複数個ずつの面要素を設定し異なる種類の対象における2個ずつの面要素の間で授受される熱エネルギーを計算条件の下で熱流束として計算する計算部と、計算部による計算結果を可視化して表示装置に表示させる視覚化処理部として機能させるものである。
【発明の効果】
【0015】
本発明の構成によれば、温熱空間に存在する人体を含む対象の表面に複数個ずつの小領域である面要素を設定し、異なる対象における2個ずつの面要素の間で授受される熱エネルギーを評価するので、冷暖房機器のような熱源と温熱環境の境界面とが人体に及ぼす影響を評価することが可能になるという利点がある。
【図面の簡単な説明】
【0016】
【図1】実施形態を示すブロック図である。
【図2】同上の原理を説明する図である。
【図3】同上の原理を説明する図である。
【図4】同上の処理手順の一例を示す動作説明図である。
【発明を実施するための形態】
【0017】
以下では、コンピュータを用いることにより、実空間に相当する3次元の仮想空間を構築し、仮想空間に仮想的な人体を配置した状態で、所望の温熱環境についてコンピュータシミュレーションを行う技術について説明する。仮想的な人体は、いわゆる人体モデルであって、人体モデルに与える機能に応じて種々のシミュレーションを行うことが可能になる。ただし、本実施形態は、形状、サイズ、位置の指定のみが可能である人体モデルを例示する。なお、人体の表面における温度の分布を計算する場合には、関節に相当するジョイントで結合した複数個のセグメントを備えた人体モデルを用いてもよい。このシミュレーションにより、仮想空間に設定された温熱環境が人体に及ぼす影響を評価し、仮想空間に対応した実空間における温熱環境の設計を支援することができる。
【0018】
本実施形態においては、温熱環境を設計する際の対象として、暖房装置や冷房装置のように温熱環境に対する熱の受給を能動的に行う熱源と、温熱環境の境界面とを考慮する。
【0019】
熱源は、空調装置や温風ヒータのように対流を用いて温熱環境の温度を調節する装置のほか、赤外線ヒータ、オイルヒータ、床暖房装置、壁面暖房装置のように輻射熱により温熱環境の温度を調節する装置がある。温熱環境の境界面は、実空間においては、壁面、床面、天井面、窓、扉、温熱環境に配置した物品の表面などに相当し、温熱環境の内部で発生した熱の出入に影響する。温熱環境の境界面は、上述のように、壁面、床面、天井面、窓、扉、温熱環境に配置した物品の表面などの種々の面があるが、以下では温熱環境の境界面の代表例として壁面を用いて説明する。ただし、「壁面」の用語を用いている場合でも、とくに断りがない場合には、境界面を壁面に限定する趣旨ではなく、他の境界面についても同様に扱うことを意味している。
【0020】
壁面では、熱エネルギーの吸収、透過、反射を生じる。ただし、本実施形態では、温熱環境の内側から壁面に入射した熱エネルギーの再放射と損失とにのみ着目する。すなわち、壁面を通して外界から流入する熱エネルギーについては考慮しない。また、壁面における熱エネルギーの出入は、壁面の温度に依存して決定されるものとする。
【0021】
したがって、上述したシミュレーションを行うことにより、熱源の仕様に関する評価、壁面を形成する部材(以下、「壁材」という)の性能に関する評価、熱源および壁材の配置に関する評価などが可能になる。すなわち、温熱環境評価装置は、熱源を設計する際の支援、壁材を設計する際の支援、温熱環境を形成する際の熱源や壁材の性能および配置を決定する際の支援などに用いられる。
【0022】
図1に示す温熱環境評価装置1は、以下に説明する動作を可能にするプログラムをコンピュータで実行することにより実現される。つまり、コンピュータを温熱環境評価装置として機能させるためのプログラムにより、汎用のコンピュータで温熱環境評価装置の機能が実現される。この場合、キーボード、マウス、デジタイザのような入力装置21と、CRTあるいは液晶表示器を用いたモニタ装置やプロジェクタのように映像を提示することができる表示装置22とがコンピュータの一部として設けられる。また、表示装置22は、立体視が可能な立体映像表示装置であってもよい。もちろん、汎用のコンピュータではなく、専用の装置として温熱環境評価装置1を構成することも可能である。
【0023】
入力装置21は、温熱環境を規定するための情報をパラメータとして入力するために用いられる。本実施形態では、温熱環境は、熱源の仕様および配置と、壁材の性能および配置とにより既定される。また、入力装置21は、人体のサイズ、位置を入力するために用いられる。なお、人体の年齢、性別、着衣量などの属性を指定することは温熱感や正確な皮膚温の評価には必要であるが、本実施形態は、人体の表面での熱エネルギーの出入および人体の大まかな表面温度にのみ着目するので、年齢、性別、着衣量などは考慮しない。
【0024】
温熱環境は、入力装置21を操作して規定するほか、3次元CAD(Computer Aided Design)などを用いて温熱環境を規定するデータを別に作成してもよい。温熱環境を規定するデータは、記憶部23に設けた条件記憶部231に格納される。記憶部23は、コンピュータに設けた大容量記憶装置(ハードディスク装置など)を用いるのが一般的であるが、コンピュータがインターネットのような公衆網に接続されている場合は、コンピュータとは別の場所に設けられた公衆網上の記憶装置を用いることが可能である。
【0025】
入力装置21は、作成された温熱環境に存在する熱源の仕様および配置の変更、壁材の性能(ないし特性)および配置の変更も可能になっている。熱源および壁材の配置は、場所だけではなく向きも含む。
【0026】
上述のような変更の作業は、仮想空間の温熱環境や人体が表示装置22の画面に表示されている状態で、入力装置21の操作によって対話的に行われる。変更の作業を行う入力装置21の操作は、既存のデータを選択肢として選択する操作と、温熱環境の各対象をポインティングデバイスでドラッグアンドドロップにより移動させる操作と、画面上の入力領域に数値やコマンドを入力する操作とから選択される。
【0027】
上述した処理は、3次元のコンピュータグラフィックの分野においてモデリングとして知られている処理に相当する。ただし、熱源の仕様、壁材の性能(ないし特性)などは、通常のコンピュータグラフィックでは扱わない情報であって、この点ではモデリングとは異なる情報を扱うことになる。
【0028】
本実施形態は、温熱環境における人体の表面における熱流束を見積もることを目的にしている。人体の表面における熱流束を見積もるには、温熱環境における熱伝達を考慮する必要がある。一般に、熱伝達は、熱伝導、対流、熱放射により行われるが、本実施形態では、温熱環境における熱伝導を考慮しない。また、対流を考慮すると計算量が増加するので、まず、熱放射(輻射)のみを考慮したモデルを用いて人体の表面の熱流束分布を見積もる場合について説明する。また、温熱環境には、人体以外に物体(たとえば、家具)を配置してもよいが、モデルを単純化するために、人体のみが存在している温熱環境を想定する。
【0029】
ところで、温熱環境を形成している物体から他の物体に熱エネルギーが移動すると、熱エネルギーを受けた物体の温度が変化するから、当該物体から放射される熱エネルギーに変化が生じる。このような事象が温熱環境のすべての領域で繰り返されると、計算結果が収束するまでに膨大な計算を要することになり、汎用のコンピュータでは実用的な時間内でシミュレーションを行うことが困難になる。
【0030】
そのため、温熱環境において壁面と壁面との間では、熱エネルギーの移動を行わず、温熱環境において壁面との間で熱エネルギーの移動が可能な対象は、熱源および人体のみとする。したがって、熱エネルギーの移動を計算する際に、以下の制約条件を規定する。
(1)壁面および人体は、熱源から熱エネルギーの移動を受けるが、熱源への熱エネルギーの移動は行わない。
(2)人体は壁面との間で相互に熱エネルギーの移動を行う。
(3)壁面は受熱した熱エネルギーを1回だけ再放出する。すなわち、壁面の間では熱エネルギーの移動は行わない。
【0031】
以上説明した制約条件の下で、熱エネルギーの移動に関する計算を行うことにより、人体の表面における熱流速を見積もる。ここに、温熱環境についてシミュレーションを行っている間は、温熱環境を規定するデータは原則として変更されない。ただし、熱源の仕様および配置、壁面の特性(吸収率、透過率、反射率)、物体の配置などの特定のパラメータは、温熱環境の全体を変更することなく単独で変更してもよい。
【0032】
温熱環境評価装置1は、上述したように、コンピュータを用いて構築される3次元の仮想空間に評価対象である温熱環境を設定するとともに、温熱環境に配置する人体を設定することが必要である。そのため、温熱環境評価装置1は、3次元の仮想空間である温熱環境と人体とを3次元のコンピュータグラフィックスとして表現するための画像データを格納した空間設定部11を備える。
【0033】
空間設定部11は、温熱環境に配置する熱源と温熱環境の境界面である壁面とについて性能や配置を設定する。ここでは計算量を増加させることなく人体の表面における熱流束の目安が得られるように、熱源および壁面の性能を規定するパラメータとしては、温度と放射率とにのみ着目する。壁面の配置は、位置だけではなく表面の向きおよび形状も含む。空間設定部11は、熱源や壁面の配置を規定するために、3次元CADを用いて別に作成された仮想空間のデータを用いてもよい。空間設定部11は、入力装置21と表示装置22とを用いて、温熱環境の設定を対話的に変更する機能を有し、熱源、壁面の性能や配置を変更することを可能にしている。
【0034】
また、空間設定部11は、温熱環境に配置する人体の特性、形状、配置を設定する。人体の特性は温度と放射率で表し、人体の形状は、公開されている実測値のデータベースを用い、年齢、性別などをキーに用いて抽出されるデータの代表値を用いる。ここに、本実施形態の人体は、動作を伴わないので、人体の各部位の寸法がわかればよい。人体の体型が必要である場合、空間設定部11は、身長、体重、胴囲などのパラメータを用いて体型の補正を行う機能を備えていてもよい。また、空間設定部11は、人体に対して、生活場面での代表的な姿勢(床に立った立位、椅子に着座した座位、寝具上での仰臥位など)を指定してもよい。
【0035】
温熱環境評価装置1は、空間設定部11により温熱環境と人体とが設定されると、設定された温熱環境における熱流束を計算する。熱流束の計算は計算部10が行い、計算部10が熱流速を計算するための計算条件は取得部12が取得する。取得部12は、入力装置21からオペレータが入力した計算条件を取得するほか、後述する条件作成部13から計算条件を取得することもできる。計算部10は、取得部12から与えられた計算条件に応じて人体の表面における温度分布を計算する。計算部10は、熱源と壁面と人体との3つの対象の間での熱エネルギーの移動について、上述した制約条件に従って4種類の経路を想定する。
【0036】
すなわち、図2に示すように、熱源31については、壁面32に熱エネルギーが移動する経路(1)と人体30に熱エネルギーが移動する経路(2)とを想定する。人体30については、壁面32に熱エネルギーが移動する経路(3)を想定し、壁面32については、人体30に熱エネルギーが移動する経路(4)を想定する。
【0037】
実世界においては、人体30は熱源31や壁面32からの熱エネルギーの移動により温度が変化し、壁面32は熱源31や人体30からの熱エネルギーの移動により温度が変化するが、計算を簡単にするために、この温度変化については考慮しない。すなわち、計算部10は、壁面32の表面の温度と放射率とのみに依存して、壁面32から放射される熱エネルギーの大きさを決める。さらに、計算部10は、壁面32から放射される熱エネルギーのうち人体30に伝達される熱エネルギーだけを計算の対象として扱い、残りの熱エネルギーは計算の対象外とする。
【0038】
ところで、計算部10は、温熱環境における対象(人体30、熱源31、壁面32)とについて、記憶部23に設けた条件記憶部231に記憶されている温熱環境および人体30の表面に多数個の面要素を設定し、面要素ごとに代表点である計算点を規定する。すなわち、計算部10は、人体30、熱源31、壁面32をそれぞれ多数個の面要素に分割する。面要素の形状は三角形、四角形などの多角形を用い、面要素の面積は温熱環境における面の位置に応じて適宜に設定される。たとえば、熱源31から入射する熱エネルギーについて部位ごとの変化が大きい部位は、部位ごとの変化が小さい部位よりも面積を小さくする。このように面要素の面積を部位に応じて異ならせることにより、面要素の中での温度分布を小さくすることができる。
【0039】
面要素の面積は、入力装置21により指定される。すなわち、面要素の面積は、温熱環境に関して熱流束を求める精度(解像度)に応じて適宜に選択される。面要素の分割数が多いほど面要素の面積は小さくなり、結果的に解像度が高くなるが、計算に要する時間が増大する。一方、面要素の分割数が少ないほど面要素の面積は大きくなり、結果的に解像度が低下するが、計算に要する時間が減少する。したがって、解像度と計算時間とコンピュータの処理能力との兼ね合いで面要素の面積を決定する。
【0040】
面要素は、対象の表面の一部にのみ設定されてもよいが、通常は、対象の表面の全面に設定される。計算部10は、面要素の温度を計算点における温度として扱う。また、計算部10は、1つの面要素に出入する熱エネルギーを、上記制約条件の下で、他のすべての面要素との間で移動する熱エネルギーの合計として求める。以下では、計算部10が異なる対象の面要素の間で移動する熱エネルギーを計算する手順について説明する。
【0041】
まず、図3に示すように、2個の面要素Ai,Ajに着目し、面要素Aiから面要素Ajに移動する熱エネルギーを求める場合を説明する。面要素Aiから面要素Ajに移動する熱エネルギーを計算するには、まず数1に示す形態係数Fijを規定する。温熱環境には三次元直交座標による座標系が規定されているものとし、三次元の計算が必要である場合には、当該座標系で規定した成分を用いる。
【0042】
【数1】

形態係数Fijは、面要素Ajから面要素Aiへの熱エネルギーの到達率の平均値に相当する値であって、結果的に、面要素Ai,Ajの相対的な位置関係を表していることになる。数1では、2個の面要素Ai,Ajをさらに微面要素dAi,dAjに分割している。数1において、H(dAi,dAj)は、2個の面要素Ai,Ajについて微面要素dAi,dAjの間で熱エネルギーが直接到達するか否かの情報である。形態係数Fijは、微面要素dAi,dAjの間の距離rと、2つの面要素Ai,Ajの微面要素dAi,dAjを結ぶ直線が各微面要素dAi,dAjの法線方向ni,njに対してなす角度φi,φjとにより値が定まる。なお、H(dAi,dAj)は、微面要素dAiから微面要素dAjが見通せる場合に1、見通せない場合(微面要素dAi,dAjが向き合っていない場合)には0になる。
【0043】
いま、図3(a)に示すように、壁面32に設定された2つの面要素Ai,Ajについて、人体30あるいは熱源31に設定した面要素Akから熱エネルギーが移動する場合を想定する。ここで、面要素Ai,Aj,Akの温度Ti,Tj,Tkは、面要素Akがもっとも高く、次に面要素Aiの温度が高く、面要素Ajの温度がもっとも低いと仮定する(すなわち、Tk>Ti>Tj)。
【0044】
ステファン−ボルツマンの式で表される関係を用いると、輻射により単位時間に移動する熱エネルギーは温度の4乗に比例する。したがって、面要素Akから面要素Aiに移動する熱エネルギーQkiは、数2の(1)式のように表される。また、面要素Akから面要素Ajに移動する熱エネルギーQkjは、数2の(2)式のように表される。
【0045】
【数2】

制約条件では、壁面32では受熱した熱エネルギーを1回だけ再放射することが許容される。壁面32に設定した面要素Ai,Ajでは、面要素Aiの温度Tiが、面要素Ajの温度Tjより高いため、図3(b)のように、面要素Aiから面要素Ajに熱エネルギーが移動する。すなわち、面要素Aiが放熱側になり、面要素Ajが受熱側になる。面要素Aiから面要素Ajに単位時間に移動する熱エネルギーは、ステファン−ボルツマンの式で表される関係を用いると、数3のように表される。
【0046】
【数3】

図3に示した例では、壁面32に設定した面要素Ai,Ajにおいて、放熱および受熱による温度の変化を考慮していないが、実際には、受熱側では温度が上昇し、放熱側では温度が低下する。ただし、ここでは、熱エネルギーの移動による温度の変化は無視し、熱エネルギーにのみ着目する。温熱環境が定常状態(平衡状態)であるときには、熱エネルギーにのみ着目するだけで人体30の表面において出入する熱流束を見積もることが可能である。
【0047】
以上説明したように、本実施形態は、上述した4種類の熱流束のみを計算し、2つの壁面32の間の熱流束は演算の対象外としている。計算部10は、人体30と熱源31と壁面32との3種類の対象について、対象の表面を面要素に分割し、面要素の間での単位面積当たりの熱エネルギーの移動を熱流束として扱っている。したがって、対象の表面の面積が大きいほど当該対象に設定する面要素の個数が多くなる。つまり、計算部10が熱流束を求める際に、対象の表面の面積が大きいほど計算量が増加し、計算結果が得られるまでの時間が長くなる。
【0048】
このことから、人体30と壁面32との間の熱流束の計算と、壁面32と壁面32との間の熱流束の計算とは、人体30と熱源31との間の熱流束の計算や熱源31と壁面32との間の熱流束の計算と比較すると計算量が大幅に多くなる。とくに、温熱環境の境界となる壁面32は面積が大きいから、2つの壁面32の間の熱流束の計算は4種類の計算のうちもっとも計算量が多くなる。したがって、2つの壁面32の間の熱流束の計算を省略することにより、計算量が大幅に削減される。言い換えると、熱流束の計算に要する時間が大幅に短縮される。
【0049】
ここに、1つの面要素において出入する熱エネルギーは、上述したように、複数の面要素との間で出入する合計として求められる。したがって、数4において(i)で表している1つの面要素に出入する熱流束Qiは、実際には、数4において(j)で表される多数の面要素との間で出入する熱流束Qjの合計になる。
【0050】
【数4】

ところで、2つの面要素の間で移動する熱流束を計算する際に、数1のような形態係数Fijを計算する必要がある。数1からわかるように形態係数Fijの計算は複雑であり、計算部10が熱流束を計算する際の処理負荷を増大させる要因の一つになっている。
【0051】
温熱環境に配置した対象の位置を変更することなく対象の温度のみを変更する場合は形態係数Fijには変更がないから、温度に関わる計算のみを再計算すれば熱流束を求めることができる。しかも、熱流束は、2つの面要素の間で移動する熱エネルギーとみなしているから、温度の変化に伴う熱流束の変化は、面要素の温度の変化に伴って生じる2つの面要素の間での熱エネルギーの変化分(増加分または減少分)として表すことが可能である。すなわち、温熱環境における対象の位置を変化させずに対象の温度のみを変化させるのであれば、先に求めた熱エネルギーに、温度の変化に伴う熱エネルギーの変化分の変更を加えるだけで変更後の熱流束を求めることができる。
【0052】
このことから、計算部10が温熱環境の熱流束を計算したときに、計算条件と計算結果(熱流束)とを対応付けてレコードとして記憶させる結果記憶部232を記憶部23に設け、記憶させたレコードを再利用すると計算量が低減される。結果記憶部232に記憶させる計算条件は、基本的には、対象(人体30、温度制御装置31、壁面32)ごとの温度、形態係数、放射率である。たとえば、温熱環境における対象の配置を変更することなく温度を変更した場合は、結果記憶部232に記憶している計算条件のうち温度の変更により生じる熱エネルギーの変化分を求め、結果記憶部232に記憶している熱エネルギーを変化分で補正するのである。このような補正計算は、計算条件ごとにすべての計算を行う場合に比較すると、変更箇所のみの局所的な計算になるから、計算量の大幅な低減になる。
【0053】
たとえば、温熱環境に関して最初に熱流束を計算するときに、表1のように計算条件を設定しているとする。表1の計算条件では、熱源31の温度がもっとも高く、壁面32の温度がもっとも低い。したがって、熱エネルギーは、熱源31から人体30への移動と、人体30から壁面32への移動と、熱源31から壁面32への移動との3種類がある。ただし、表1は計算量の低減に関する例を示すことが目的であるから、熱源31と壁面32との間の熱エネルギーの移動については除外しておく。すなわち、人体30の周囲の熱エネルギーの出入Q0は、Q0=Q10−Q02の形式で表される。
【0054】
【表1】

表1において形態係数F10は、熱源31から人体30への熱エネルギーQ10を計算する際に用いる形態係数である。また、形態係数F02は、人体30から壁面32への熱エネルギーQ02を計算する際に用いる形態係数である。
【0055】
表1に示す計算条件で熱流束を計算した後に、表2に示すように、計算条件のうち壁面32の温度のみを15[℃]から18[℃]に変更したとする。温度は、入力装置21を用いて利用者が指定するか、または、後述するように、所定の時間間隔で温度を自動的に変化させる。この例では、人体30と壁面32との温度差が減少するから、表1のように計算条件を設定している場合よりも人体30から壁面32に移動する熱エネルギーが減少する。すなわち、熱エネルギーの変化分は減少分ΔQとして表される。
【0056】
【表2】

他の計算条件には変更がないから、壁面32の温度の変更に対応する減少分ΔQを求めることができれば、人体30から壁面32への熱流束を、Q02−ΔQという形式で求められる。ここに、熱流束は数3として示したように、着目する2つの対象の温度のそれぞれの4乗の差に比例し、比例定数は、ステファン−ボルツマン定数と、熱エネルギーの授受に関与する双方の面要素の放射率と、2つの面要素の形態係数とに比例する。
【0057】
いま、人体30の表面の温度をT0とし、壁面32の温度がT1からT2(>T1)に変化した場合について、人体30から壁面32に移動する熱流束Qについて考察する。熱流束Qについて、個々の比例定数を記述せずに一括して比例定数αとして表すとすれば、壁面32の温度がT2であるときに、人体30から壁面32に移動する熱エネルギーQは以下の関係になる。
Q=α(T0−T2
=α(T0−T1+T1−T2
=α(T0−T1)−α(T2−T1
=Q02−α(T2−T1
要するに、壁面32の温度がT1であるときに、人体30から壁面32に移動する熱エネルギーQ02に対して、移動する熱エネルギーがα(T2−T1)だけ減少したことになる。なお、この計算式からわかるように、受熱側に移動するエネルギーは放熱側の温度とは非線形の関係であって、放射側の温度を2分の1にすると、受熱側に移動する熱エネルギーは2分の1よりも小さくなる。
【0058】
上記した計算式のように、減少分ΔQは、ΔQ=α(T2−T1)と表すことができる。ステファン−ボルツマン定数σ、放射率ε0,ε2、形態係数F02を用いると、ΔQ=σ・ε0・ε2・F02(T2−T1)になる。温度T1,T2に表1、表2の値を当てはめると、ΔQ=σ・ε0・ε2・F02(291−288)になり、表1、表2の値を用いて簡単な四則演算で変化分ΔQを求めることができる。
【0059】
上述したように、温熱環境の計算条件のうち温度のみを変更した場合は、変化させた対象に関して局所的に変化分ΔQを簡単な計算で求めることができるから、全体の熱エネルギーの移動について計算条件ごとに計算する場合よりも計算量が低減される。上述の例では、計算条件のうちの温度のみを変更した場合を例に挙げたが、他のいずれかの計算条件を変更した場合でも同様である。すなわち、熱流束を計算した場合に、計算条件(基本的には、対象の温度、形態係数、放射率)と計算結果(熱流束)とを対応付けたデータ(レコード)を結果記憶部232に記憶させておくと、データの再利用が可能になる。言い換えると、温熱環境の熱流束を計算する際に、1種類を除いて残りの計算条件が同じであるレコードが結果記憶部232に記憶されていれば、当該レコードに対する変化分ΔQのみを計算することにより、新たな計算条件に対する熱流束が求められる。
【0060】
壁面32の温度を変化させる場合の例を説明したが、温度制御装置31の温度を変化させる場合も同様である。上述した計算によって対象の温度を指定したときの熱流束の変化が求められることから、逆に、対象の間で移動する熱エネルギー(熱流束)を指定することにより、対象の温度を求めることも可能である。たとえば、人体30の表面における任意の面要素において熱流束を指定すると、その熱流束に対する温度制御装置31の温度を逆算することが可能である。すなわち、計算部10は、所望の熱流束が指定されると、結果記憶部232に記憶されているレコードにおける熱流束Qに対する変化分ΔQから熱源31の温度を逆算する機能を備える。具体的には、計算部10は、以下の計算を行うことによって、指定される熱流束を得るのに必要な温度制御装置31の温度を確認する。
【0061】
いま、人体30に所望の熱流束を与えるのに必要な温度制御装置31の温度が未知の温度X[℃]であると仮定する。また、あらかじめ表1に示す計算条件で熱流束が計算されており、表1に示す計算条件と熱流束との関係が結果記憶部232に記憶されていると仮定する。ここで、指定した熱流束に対応する熱源31の温度X[℃]を求めるために、表3に示すように、熱源31の温度のみを40[℃]からX[℃]に変更する場合の熱流束の変化について考察する。
【0062】
【表3】

この場合、仮に、X>40であるとすれば、熱源31と人体30との温度差が増加するから、表1のように計算条件を設定している場合に対して熱源31から人体30が受ける熱エネルギーは増加する。すなわち、熱エネルギーの変化分は増加分ΔQとして表される。壁面32の温度を変更した場合と同様に、他の計算条件には変更がないから、熱源31から人体30への熱流束は、熱源31の温度の変更に対応する増加分ΔQを求めることにより、Q10+ΔQという形式で求められる。
【0063】
人体30の表面の温度をT0とし、熱源31の温度がT1からT2(>T1)に変化したとすれば、熱源31の温度がT2であるときに、人体30が熱源31から受ける熱流束Qは以下の関係になる。
Q=α(T2−T0
=α(T2−T1+T1−T0
=α(T2−T1)+α(T1−T0
=α(T2−T1)+T10
上式からわかるように、熱源31の温度がT1であるときに、熱源31から人体30に移動する熱流束Q10に対して、移動する熱流束がα(T2−T1)だけ増加したことになる。すなわち、ΔQ=α(T2−T1)になる。ここに、α=σ・ε0・ε1・F10である。温度T1,T2に表1、表3の値を代入すると、ΔQ=α{(273+X)−313}であるから、X+273={(ΔQ/α)−3131/4になる。すなわち、熱源31から人体30に移動する熱流束(熱エネルギー)の変化量ΔQを指定すれば、計算部10は、熱源31の温度X[℃]を求める。
【0064】
ここまで説明したように、温熱環境の全体の熱流束が1回計算されていれば、計算部10は、部分的な温度の変化に対応する熱流束の変化を変化分ΔQのみの計算によって求める機能を備える。この機能を用いると、計算部10に与える対象の温度を、所定の時間間隔で自動的に変化させると、計算部10は変化分ΔQを求める簡単な計算を行うだけで、人体表面上の熱流束の時間変化を求めることができる。変化分ΔQは計算量が少ないから、処理能力のとくに高いコンピュータを用いることなく、汎用のコンピュータでも比較的短い時間間隔に設定してリアルタイムの計算が可能である。
【0065】
計算部10に計算条件を自動的に与えるために、温熱環境評価装置1は、所定の時間間隔で計算条件(温度)を変化させて計算部10に与える条件作成部13を備える。条件作成部13は、時間経過とともに計算条件(たとえば、対象の温度)を所定温度(たとえば、1[℃])ずつ変化させ、各計算条件を計算部10に与えて熱流束を計算させ、計算条件と計算部10による計算の結果とを関係付けて結果記憶部232にレコードとして記憶させる。つまり、条件作成部13は、適宜の時間間隔で対象の温度を様々に変化させ、計算結果である熱流束を計算条件(温度)とともに結果記憶部232に記憶させることにより、対象の温度と熱流束との関係を多数作成して結果記憶部232に記憶させる。
【0066】
さらに、温熱環境評価装置1は、結果記憶部232に記憶されたレコードを利用するために、入力装置21から入力された検索条件に応じたレコードを抽出する照合部14を備える。条件作成部13が熱流束の計算を計算部10に行わせた後には、対象の様々な温度と熱流束とを関係付けた多くのレコードが結果記憶部232に存在する。したがって、入力装置21から指定された条件で照合部14が結果記憶部232を検索することにより、指定された条件において人体30が受ける熱流束を求めることが可能になる。
【0067】
たとえば、人体30の表面の温度が入力装置21から指定されると、照合部14は、指定された温度を有するレコードを結果記憶部232から抽出する。照合部14が抽出したレコードは、人体30の表面が入力装置21から指定した温度である場合について、熱源31の温度、壁面32の温度、人体30に出入する熱流束の情報を含む。すなわち、照合部14は、人体30の表面を入力装置21で指定された温度に変更する際の熱源31の温度および壁面32の温度を抽出する。
【0068】
さらに、照合部14は、入力装置21から人体30に対する熱エネルギーの出入が指定されると、温度制御装置31の温度以外の計算条件が同じであるレコードを抽出する。この場合は、結果記憶部232から抽出されたレコードの熱流束と入力装置21で指定された熱流束との差を求め、求めた差について計算部10において上述した逆算を行うことによって、温度制御装置31として必要な温度が計算される。
【0069】
なお、上述の例は、温熱環境を構成する対象を人体30と熱源31と壁面32とであって温熱環境の内部環境のみを扱っているが、壁面32(温熱環境の境界面)を通して外部環境との間で出入する熱エネルギーを考慮するように拡張してもよい。この場合には、結果記憶部232において外部環境を含めた計算条件を熱流束と対応付けて記憶させておくことが必要である。ただし、外部環境を考慮する場合には、熱回路網計算が必要になるから計算量は増加する。
【0070】
一方、計算部10における計算量を低減させて高速化を図る場合には、温度制御装置31と壁面32との間の熱エネルギーの移動を省略しても、熱流束の傾向を見積もることができる。すなわち、温熱環境を構成している対象のうち、人体30との間で熱エネルギーが移動する対象のみを計算に用い、他の対象の間での熱エネルギーの移動を省略するのである。具体的には、計算部10は、人体30と温度制御装置31との間の熱エネルギーの移動と、人体30と壁面32との間の熱エネルギーの移動とだけを計算するのである。
【0071】
上述した動作例は、輻射による熱伝達のみを対象にしているが、通常の温熱環境では対流による熱伝達も存在しているから、シミュレーションの精度を高めるには、対流による熱伝達も考慮することが必要である。対流により移動する熱量は、たとえば、温度と風速を用いた簡易式でシミュレーションを行う。対流を考慮する場合は、温熱環境の上部と下部との温度差についても考慮する必要がある。さらに、自然対流と強制対流とについても入力装置21から選択可能にしておくことが好ましい。
【0072】
対流を考慮する場合は、計算部10は、上述した輻射による熱伝達のモデルから求めた熱流束と、対流により生じる熱流束とを組み合わせた熱流束を求める。一般に、CFD(Computational Fluid Dynamics)によって熱流束を解析する場合は、輻射による熱伝達と対流による熱伝達とを分離することなく一体に計算している。そのため、温熱環境における計算条件に変更があると、温熱環境の全体について再計算を行う必要がある。
【0073】
これに対して、本実施形態は、輻射による熱伝達を対流による熱伝達とを分離して計算し、しかも輻射による熱流束は計算条件が変更された局所において変化分のみの補正計算を行っているから、計算量の増加を抑制することができる。また、計算量の増加が抑制されているから、とくに高速なコンピュータを用いることなく汎用のコンピュータを用いて実用的な速度での計算が可能である。
【0074】
計算部10が求めた熱流束、温度は、温熱環境評価装置1に設けた視覚化処理部15において画像データとして表現される。視覚化処理部15は、2個ずつの面要素で移動する熱エネルギーについて、面要素の単位面積当たりの熱エネルギーすなわち熱流束として、たとえば熱エネルギーが移動する面要素間を結ぶ線分として表示装置22の画面に表すように画像データを生成する。あるいは、視覚化処理部15は、計算により求めた熱流束の絶対値を複数段階に区分し、区分ごとに色を対応付けることによって、表示装置22の画面上で、壁面、人体表面上を着色し、分布表示を行う。また、熱流束を表す線分についても、上記区分により色を付けて表示するのが望ましい。
【0075】
さらに、上述したように、温熱環境に存在する物体の表面における温度を計算部10が求めているから、視覚化処理部15は、温度についても複数段階に区分し、区分ごとに色を対応付けることによって、表示装置22の画面上では温度分布を表す。
【0076】
以下に、図4を用いて本実施形態の動作例を説明する。ここでは、実空間に相当する仮想空間は、あらかじめ作成され、記憶部23が記憶しているものとする。また、温熱環境を規定するデータも記憶部23に設定されているものとする。入力装置21は、必要に応じて温熱環境に存在する対象(人体30、熱源31、壁面32)について計算条件を変更する。計算条件には、対象の配置(位置と向き)も含まれる。
【0077】
この状態において、入力装置21から面要素の分割数あるいは面要素のサイズが指定される(S1)。ここに、面要素の個数が増加すればシミュレーションの精度も高くなるが計算量も増加する。ただし、面要素の個数がある程度多くなれば、シミュレーションの精度の向上は鈍化し、計算量の増加は加速する。また、本実施形態で行うシミュレーションは、多くの制約条件を設定しており、面要素の個数が増加してもシミュレーションの信頼性が向上するわけではないから、表示装置22に表示される画像の精細度を基準に面要素の個数が決定される。面要素の個数は計算部10に与えられる。
【0078】
次に、計算部10に対して計算条件が設定される(S2)。計算条件は、基本的には、対象の温度、形態係数、放射率である。形態係数は、面要素の個数が定められると、計算部10が自動的に計算する。つまり、面要素の分割数が決まると、対象の表面が自動的に面要素に分割されるとともに、面要素ごとの面の向きが求められ、2個ずつの面要素の面の傾きの関係から形態係数が自動的に計算される。また、放射率は入力装置21から指定され、温度は初期値と終了値とが入力装置21から与えられる。温度は、初期値ではなく所望値が入力装置21から与えられる場合もある。ここでは、すべての対象について、温度の初期値を与える場合を想定する。
【0079】
すなわち、温度の初期値を与えると、条件作成部13は所定の時間間隔で1つずつの対象について温度を所定温度ずつ変化させ(S3)、計算部10は条件作成部13から与えられた計算条件で面要素の間の熱流束を計算する(S4)。条件作成部13は、1種類の対象について温度を終了値まで変化させると、次に、他の対象の温度を変化させ、あらためて計算部10に熱流束を計算させる。なお、温度を変化させる対象は壁面32など1種類の対象だけでもよい。
【0080】
計算部10が条件作成部13から与えられた計算条件で面要素の間の熱流束を計算すると、1つの計算条件の結果が得られるたびに、計算条件と計算結果とが対応付けられたレコードが結果記憶部232に記憶される(S5)。結果記憶部232に記憶されたレコードは、必要に応じて他の計算条件の計算に用いられる。すなわち、ステップS4における熱流束の計算において、照合部14が結果記憶部232から必要なレコードを抽出し、計算部10が上述した補正計算を行うことにより新たな計算条件に対する熱流束を計算する。
【0081】
結果記憶部232に種々の計算条件に対応した計算結果が記憶された状態では、入力装置21から人体30の表面の温度、得たい熱流束および壁面32の温度を指定することが可能である(S6)。入力装置21から人体30または壁面32の表面の温度が指定されると、照合部14は指定された人体30または壁面32の温度に対応するレコードを結果記憶部232から抽出する(S7)。さらに、計算部10は、結果記憶部232から抽出されたレコードを用いて上述した逆算を行うことにより、指定された人体30の得たい熱流束に対応した熱源31の温度を計算し(S8)、視覚化処理部15を通して計算結果を表示装置22に表示させる(S9)。
【0082】
動作の説明からわかるように、入力装置21を操作するオペレータは、表示装置22の画面を見ながら所望の温熱環境を対話的に構築し、計算条件を適宜に入力すると、計算条件に応じた熱流束を、表示装置22の画面上で確認することができる。また、計算部10での計算量は比較的少ないから、汎用のコンピュータを用いて実用的な時間での処理が可能である。さらに、熱流束を求めた後には結果記憶部232のレコードを用いることによって、人体30の表面の得たい熱流束から熱源31の温度を逆算によって求めるから、所望の温度環境を形成するにあたって必要な熱源31の性能を見積もることができる。すなわち、熱源31である冷暖房装置の設計者や温熱環境の境界面(壁面32など)を構成する建材の設計者などは、温熱環境を構築したときの人体への影響に関するシミュレーションを行って、温熱環境の適否を視覚的に確認することが可能になる。
【符号の説明】
【0083】
10 計算部
11 空間設定部
12 取得部
13 条件作成部
14 照合部
15 視覚化処理部
21 入力装置
22 表示装置
23 記憶部
231 条件記憶部
232 結果記憶部
30 人体
31 熱源
32 壁面(温熱環境の境界面)
Ai,Aj,Ak 面要素

【特許請求の範囲】
【請求項1】
3次元の仮想空間である温熱環境に配置された人体を含む複数の対象について温度を含む計算条件を取得する取得部と、前記対象の表面に複数個ずつの小領域である面要素を設定し異なる種類の対象における2個ずつの面要素の間で輻射により授受される熱エネルギーを前記取得部から与えられた計算条件に応じた熱流束として計算する計算部と、前記計算部による計算結果を可視化して表示装置に表示させる視覚化処理部とを備えることを特徴とする温熱環境評価装置。
【請求項2】
前記対象は、前記温熱環境の境界面と前記人体と前記温熱環境の温度を調節する熱源とであって、前記計算部は、対象間で授受される熱エネルギーを、前記熱源と前記人体との間と、前記人体と前記境界面との間と、前記熱源と前記境界面との間とに制限して計算することを特徴とする請求項1記載の温熱環境評価装置。
【請求項3】
各2個の前記面要素ごとに前記計算部が計算した熱流束と計算条件とを対応付けてレコードとして記憶する結果記憶部と、前記取得部から温度を指定する計算条件が与えられると温度を除く計算条件が等しいレコードを前記結果記憶部から抽出する照合部とを備え、前記計算部は、前記照合部が抽出したレコードの温度と前記取得部から与えられた温度との相違による熱流束の変化分を計算し、前記結果記憶部から抽出されたレコードの熱流束に当該変化分の補正を行うことにより前記取得部が取得した計算条件に応じた熱流束を計算することを特徴とする請求項1又は2記載の温熱環境評価装置。
【請求項4】
計算条件における前記対象のうちのいずれかの温度を所定の時間間隔で変化させる条件作成部を備え、前記取得部は、前記条件作成部から与えられる温度を計算条件として前記計算部に与え、前記視覚化処理部は、前記計算部による熱流束の計算結果を前記時間間隔で前記表示装置に表示させることを特徴とする請求項3記載の温熱環境評価装置。
【請求項5】
前記照合部は、前記取得部から前記人体の得たい熱流束を指定する計算条件が与えられると前記結果記憶部から前記人体の熱流束を除く計算条件が等しいレコードを前記結果記憶部から抽出し、前記計算部は、前記照合部が抽出したレコードにおける前記人体の熱流束と前記取得部から与えられた得たい熱流束との相違により前記熱源の温度の変化分を計算することを特徴とする請求項3記載の温熱環境評価装置。
【請求項6】
前記計算部は、前記2個の前記面要素の間で輻射により伝達される熱エネルギーに、前記温熱環境において前記対象の間の対流により伝達される熱エネルギーを加算して熱流束を計算することを特徴とする請求項1〜5のいずれか1項に記載の温熱環境評価装置。
【請求項7】
コンピュータを、3次元の仮想空間である温熱環境に配置された人体を含む複数の対象について温度を含む計算条件を取得する取得部と、前記対象の表面に複数個ずつの面要素を設定し異なる種類の対象における2個ずつの面要素の間で授受される熱エネルギーを前記計算条件の下で熱流束として計算する計算部と、前記計算部による計算結果を可視化して表示装置に表示させる視覚化処理部として機能させるプログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−194902(P2012−194902A)
【公開日】平成24年10月11日(2012.10.11)
【国際特許分類】
【出願番号】特願2011−59697(P2011−59697)
【出願日】平成23年3月17日(2011.3.17)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】