説明

照明装置

【課題】省エネ機能を達成しつつ、ヒトに不快感をもたらすことなく快適な環境において減光させることができる照明装置を提供する。
【解決手段】照明装置のメモリには、発光出力の減光制御を行なう際の、初期出力と目標出力と該初期出力から該目標出力まで減光するのに要する時間との対応関係が予め記憶されている。そして、初期出力と目標出力とが指定されると(S1でYES)、該対応関係から減光に要する時間が特定され(S3)、縦軸を発光出力とした対数軸、横軸を時間とした線形軸である片対数グラフにおいて、初期出力から目標出力まで特定された時間で発光出力が時間経過に対して線形関係となる変化率で発光出力を減少させる(S5)。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は照明装置に関し、特に、発光出力の制御を行なう照明装置に関する。
【背景技術】
【0002】
照明装置に作り出す光環境は、ヒトの心理面、生理面に大きな影響を与えるものであり、この光環境を適正に設計することは、健康で快適な生活環境を得る上で基本的な要素のうちの一つである。
【0003】
一方で、照明装置にも他の電気機器と同様に省エネ機能が求められている。
従来の照明装置での省エネ機能として、特開平11−204271号公報(特許文献1)においては、照明負荷の点灯を開始した時点から徐々に照明負荷の出力を低下させて、所定の光量まで減光させる方法が提案されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平11−204271号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、徐々に減光させる際、発光出力の変化率が大きいと、つまり減光のさせ方が急激であるとユーザに不快感をもたらすことがある。
【0006】
一方で、徐々に減光させる方法として特許文献1に示されたような、時間経過に比例して発光出力を減少させる方法では、エネルギー消費量が多くなり、省エネ機能が達成されにくいという問題がある。詳しくは、ヒトの視感の性質として、目標照度とした低照度に近づく照度変化に対して敏感になる特徴がある。つまり、低照度付近において減光の変化率が大きいとユーザに不快感をもたらすおそれがある。そのため、不快感を軽減しつつ減光するには減光の変化率(傾き)を小さくする、すなわち減光時間を長くする必要がある。しかしながら、減光時間が長くなるエネルギー消費量が増大してしまう、という問題がある。
【0007】
本発明はこのような問題に鑑みてなされたものであって、省エネ機能を達成しつつヒトに不快感をもたらすことなく快適な環境において減光させることのできる照明装置を提供することを目的の一つとしている。
【課題を解決するための手段】
【0008】
上記目的を達成するために、本発明のある局面に従うと、照明装置は、発光部と、発光部の出力制御を実行するための制御回路とを備える。制御回路は、発光出力変化時の発光部の発光出力を出力変化の開始から所定時間で第1の発光出力から第2の発光出力まで、横軸を時間とした線形軸および縦軸を発光出力とした対数軸の片対数グラフ上で時間経過に従って線形関係となるように徐々に減少させる。
【0009】
好ましくは、上記所定時間は、第1の発光出力と第2の発光出力とを決定することによって規定されることを特徴とする。
【0010】
より好ましくは、第1の発光出力E1から第2の発光出力E2まで変化させる際の上記所定時間Tは、第1の発光出力E1と第2の発光出力E2とを用いて、T=k・exp(mE1)・E2^(q・lnE1+n),またはT=k・exp(mE1)・E2^(q’E1n’)(定数:R,m,q(q’),n(n’))で規定されることを特徴とする。
【0011】
または、より好ましくは、第1の発光出力として初期色温度Tc1から第2の発光出力として目標色温度Tc2まで色温度を変化させる際の所定時間Tは、定数Aを初期色温度Tc1と目標色温度Tc2とを決定することで規定される定数とすると、初期色温度Tc1<目標色温度Tc2のときには、log(R)=+A・STcv、初期色温度Tc1>目標色温度Tc2のときには、log(R)=−A・STcv、(ただし、色温度変化率R=Tc2/Tc1,調光速度STc=|log(Tc1)−log(Tc2)|/T=|log(R)|/T,定数:v)で規定されることを特徴とする。
【0012】
より好ましくは、上記定数Aは、A=a・Tc1+b(初期色温度Tc1<目標色温度Tc2)、A=c・Tc1+d(初期色温度Tc1>目標色温度Tc2)、(ただし、定数:a,b,c,d)で表わされる。
【発明の効果】
【0013】
この発明によると、省エネ機能を達成しつつ、ヒトに不快感をもたらすことなく快適な環境において減光させることができる。
【図面の簡単な説明】
【0014】
【図1】実施の形態にかかる照明装置の外観構成図である。
【図2】照明装置のハードウェアを説明する概略ブロック図である。
【図3】照明装置に含まれるLEDモジュールの構成を説明する図である。
【図4】縦軸を発光出力、横軸を時間として両軸が対数である両対数グラフにおいて、調光率を時間に対して線形に減少させる方法での調光率の変化を線形グラフで表わしたときの具体例を示す図である。
【図5】減光のさせ方ごとの調光率の変化を線形グラフで表わしたときの具体例を示す図である。
【図6】発明者らによる第1の実験で得られた被験者からの回答について統計処理を行なった結果を表わす図である。
【図7】発明者らによる第1の実験で得られた被験者からの回答について統計処理を行なった結果を表わす図である。
【図8】発明者らによる第1の実験で得られた被験者からの回答について統計処理を行なった結果を表わす図である。
【図9】発明者らによる第1の実験で得られた被験者からの回答について統計処理を行なった結果を表わす図である。
【図10】発明者らによる第1の実験で得られた被験者からの回答について統計処理を行なった結果を表わす図である。
【図11】発明者らによる第1の実験で得られた被験者からの回答について統計処理を行なった結果を表わす図である。
【図12】発明者らによる第1の実験で得られた被験者からの回答について統計処理を行なった結果を表わす図である。
【図13】発明者らによる第1の実験で得られた被験者からの回答について統計処理を行なった結果を表わす図である。
【図14】発明者らによる第1の実験で得られた被験者からの回答について統計処理を行なった結果を表わす図である。
【図15】初期出力および照度の変化率を表わす値ごとの読み取られた限界変化割合を示す図である。
【図16】図15に示された関係より、初期出力ごとの、照度の変化率を表わす値に対する限界変化割合の推移を表わした図である。
【図17】図15に示された初期出力および照度の変化率を表わす値ごとの読み取られた限界変化割合から算出された、初期出力ごとの、限界変化割合となった目標出力とその際の照度の変化率を表わす値とを示す図である。
【図18】図17から分布図を作成することで得られる、初期出力および目標出力ごとの、適した照度の変化率の関係の関係を表わした図である。
【図19】照明装置における減光時の発光出力制御の流れの具体例を示すフローチャートである。
【図20】目標出力と発光出力の変化に要した時間との関係を初期出力ごとに表わしたグラフである。
【図21】図20のグラフから得られたT=AE2^Bの形の近似式の、変数Aと変数(−B)との組み合わせを表わした図である。
【図22】初期出力と変数Aとの関係を表わす図である。
【図23】近似式B=q・lnE1+nで近似した場合の初期出力E1と変数(−B)との関係を表わすグラフである。
【図24】近似式B=q’・E1^n’で近似した場合の初期出力E1と変数(−B)との関係を表わすグラフである。
【図25】図20のグラフから得られた近似式に図23のグラフから得られた近似式または図24のそれぞれのグラフから得られた近似式を代入して得られる、発光出力の変化に要する時間Tを初期出力E1と目標出力E2とで表わした近似式より描いた等高線を表わした図である。
【図26】発明者らによる第2の実験における照明条件を表わした図である。
【図27】第2の実験の、「瞬時変化実験」についての照明条件を表わす図である。
【図28】第2の実験の、「継時変化実験」についての照明条件を表わす図であり、図28(A)は「継時変化実験1」についての照明条件を表わす図である、図28(B)は「継時変化実験2」についての照明条件を表わす図である。
【図29】第2の実験において、初期色温度Tc1=3000[K]で目標色温度まで変化させたときの実験結果を表わす図である。
【図30】第2の実験において、初期色温度Tc1=4100[K]で目標色温度まで変化させたときの実験結果を表わす図である。
【図31】第2の実験において、初期色温度Tc1=5700[K]で目標色温度まで変化させたときの実験結果を表わす図である。
【図32】第2の実験のうちの、調光速度STc=∞[K/min]の瞬時変化実験の結果を表わす図である。
【図33】第2の実験のうちの、調光速度STc=0.279[K/min]の継時変化実験の結果を表わす図である。
【図34】第2の実験のうちの、調光速度STc=0.093[K/min]の継時変化実験の結果を表わす図である。
【図35】第2の実験のうちの、調光速度STc=0.063[K/min]の継時変化実験の結果を表わす図である。
【図36】第2の実験のうちの、調光速度STc=0.032[K/min]の継時変化実験の結果を表わす図である。
【図37】第2の実験のうちの、調光速度STc=0.014[K/min]の継時変化実験の結果を表わす図である。
【図38】図32〜図37の実験結果から得られた、80%許容率となる、調光速度STcごとの限界色温度変化率を示す図である。
【図39】図38の結果を、横軸を調光速度、縦軸を色温度の変化率としたグラフにプロットした図であって、初期色温度および当該初期色温度からの変化方向ごとの、調光速度に対する限界色温度変化率の推移を表わした図である。
【図40】80%許容率となる、初期色温度ごとの、上昇側と下降側とのそれぞれについての、目標色温度とその変化に要する時間との関係を表わした図である。
【図41】図40から分布図を作成することで得られる、初期色温度および目標色温度ごとの、上昇側と下降側とのそれぞれについて、その色温度の変化に適した時間の関係を表わした図である。
【図42】図40に示された、初期色温度ごとの、上昇変化と下降変化とのそれぞれについての、80%許容率となる色温度の対数変化率およびその変化の調光速度を、縦軸を色温度の対数変化率、横軸を調光速度としたグラフに表わした図である。
【図43】近似式log(Tc2/Tc1)で近似した場合の、初期色温度および目標色温度ごとの、その色温度の変化の適した時間の関係の関係を表わした図である。
【図44】調光速度ごとに、図41から読み取られた色温度の変化率と図43から読み取られた色温度の変化率との関係を表わす図である。
【図45】調光速度ごとに、図41から読み取られた目標色温度と図43から読み取られた目標色温度との関係を表わす図である。
【図46】調光速度ごとに、図41から読み取られた色温度の変化に要する時間と図43から読み取られた色温度の変化に要する時間との関係を表わす図である。
【発明を実施するための形態】
【0015】
以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。
【0016】
<装置構成>
図1は、実施の形態にかかる照明装置1の外観構成図である。図1に示す照明装置1は、天井に取り付けて使用される、いわゆるシーリングライトである。
【0017】
図1を参照して、照明装置1には、本体部を取り付けるためのシャーシ2と、シャーシ2とともに本体部全面を覆うカバー8,9とが設けられている場合が示されている。本例においては、一例として、照明装置1のシャーシ2が天井に取り付けられているものとする。
【0018】
カバー8は、照明用のLEDモジュールが配置される領域に対応して設けられる。当該カバー8の領域から光が照射される。
【0019】
カバー8の中央付近に設けられている別のカバー9は、LEDモジュールを制御する基板等の制御装置が配置される領域に対応して設けられる。当該カバー9に対応する領域には、LEDモジュールは設けられていないため光は照射されない。
【0020】
また、当該照明装置1を操作するための携帯型のリモコン50が設けられている。リモコン50を操作することにより照明装置1に対して各種動作指示を与えることが可能となる。
【0021】
図2は、照明装置1のハードウェアを説明する概略ブロック図である。
図2を参照して、本発明の実施の形態に従う照明装置1は、電源回路10と、照明制御部20と、照明部30と、インタフェース部40とを含む。
【0022】
電源回路10は、交流電源(AC)入力(100V)を受けて直流電圧に変換して装置の各部に電圧を供給する。なお、本例においては、一例として制御電源供給回路21および照明部30のみに電圧が供給されているように示されているが、特にこれに限られず、他の部位に対しても必要な電圧が供給されるものとする。
【0023】
照明制御部20は、電源回路10から供給される電圧をCPU(Central Processing Unit)22に供給するために調整する制御電源供給回路21と、照明装置1全体を制御するためのCPU22と、PWM(Pulse Width Modulation)制御回路23と、信号受信部25と、SW入力部26と、メモリ29とを含む。CPU22とメモリ29とPWM制御回路23とはマイコン(マイクロコンピュータ)によって構成される。
【0024】
CPU22は、各部と接続されるとともに、照明装置1全体を制御するために必要な動作を指示するための制御信号を出力する。
【0025】
PWM制御回路23は、CPU22からの制御信号に従って後述するLEDモジュール31を駆動するために必要なPWMパルスを生成する。
【0026】
信号受信部25は、インタフェース部40に含まれる赤外線受光部41と接続されて、赤外線受光部41で受光された赤外線信号に応答した指示信号をCPU22に対して出力する。
【0027】
SW入力部26は、操作SW(スイッチ)42と接続されて、操作SWの操作に応答した指示信号をCPU22に対して出力する。
【0028】
メモリ29は、各種照明装置1を制御するためのプログラムおよび初期値等が格納されるとともに、CPU22のワーキングメモリとしても用いられる。
【0029】
照明部30は、光源としてのLEDモジュール31と、LEDモジュール31を駆動するために用いられるFET(Field Effect Transistor)スイッチ33とを含む。なお、FETスイッチ33はPWM制御回路23にあってもよい。
【0030】
なお、ここでは、光源として1種類のLED(LEDモジュール31)が備えられる例が示されているが、光源としてのLEDは色温度の異なる複数個備えられてもよいし、色温度の異なる複数個のLEDからなる1組の光源が複数組備えられてもよい。また、照明部30に光源としてLED(LEDモジュール31)が含まれるものとするが、LEDに替えて(または加えて)蛍光灯、EL(Electro-Luminescence)等の光源が含まれてもよい。
【0031】
インタフェース部40は、赤外線受光部41と操作SW42とを含む。
赤外線受光部41は、リモコン50からの赤外線信号を受光する。そして、赤外線信号を光電変換して信号受信部25に対して出力する。
【0032】
操作SW42は、電源スイッチ等を含み、ユーザの電源スイッチ等のスイッチ操作に応答した信号がSW入力部26を介してCPU22に対して出力される。なお、電源スイッチがオンの場合には、照明装置1には必要な電源が供給され、電源スイッチがオフの場合には、照明装置1には電源が供給されないものとする。本例における各種動作については、電源スイッチがオンの場合とする。
【0033】
図3は、本発明の実施の形態に従うLEDモジュール31の構成を説明する図である。
図3を参照して、CPU22は、PWM制御回路23に指示してLEDモジュール31を駆動するためのPWMパルスS1を生成して出力する。
【0034】
LEDモジュール31は、電源回路10から必要な電圧の供給を受ける。LEDモジュール31と接地電圧GNDとの間には、FETスイッチ33が設けられている。
【0035】
そして、PWMパルスS1に応答してFETスイッチ33が導通/非導通となることによりLEDモジュール31に電流が供給/遮断される。LEDモジュール31に電流が供給されることによりLEDモジュール31は発光する。なお、ここでは、LEDモジュール31を駆動する構成について説明したが、他のLEDモジュールがさらに複数個設けられている場合についても同様である。
【0036】
リモコン50には、少なくとも点灯/消灯を指示するためのボタンと、発光出力の上げ下げを指示するためのボタンが備えられる。
【0037】
ユーザが点灯/消灯を指示するためのボタンを押下することにより点灯制御指示/消灯制御指示がリモコン50から出力される。
【0038】
照明装置1のCPU22は、リモコン50からの点灯制御指示の入力を受けて、PWM制御回路23に対して照明部30への点灯制御を開始するように指示する。これにより、点灯を指示するためのボタンの押下すなわち、リモコン50からの点灯制御指示の入力に従って、照明部30から調光率100%の光が照射される。
【0039】
照明部30から照射される光の出力は、発光出力の上げ下げを指示するためのボタンによって、たとえば段階的や連続的に調整される。たとえば、点灯を指示するためのボタンが押下されて全灯(調光率100%)である状態で調光率を下げるボタンが押下されたときには半灯(調光率50%)となり、その状態でさらに調光率を下げるボタンが押下されたときには微灯(調光率30%)となる。また、その状態で調光率を上げるボタンが押下されたときには半灯(調光率50%)となり、その状態でさらに調光率を上げるボタンが押下されたときには全灯(調光率100%)となる。なお、現在の調光率はメモリ29に記憶されているものとする。
【0040】
点灯中にユーザが消灯を指示するためのボタンを押下することにより消灯制御指示がリモコン50から出力される。照明装置1のCPU22は、リモコン50からの消灯制御指示の入力を受けて、PWM制御回路23に対して照明部30を消灯するように指示する。これにより、消灯を指示するためのボタンの押下すなわち、リモコン50からの消灯制御指示の入力に従って、照明部30からの光の照射が終了する。
【0041】
かかる制御信号を出力するため、リモコン50は、ハードウェア構成として、少なくとも、図示しない操作SW(スイッチ)と、上記制御信号を記憶するためのメモリと、操作SWからの操作信号に応じてメモリから対応した制御信号を読み出して送信するための送信部と、該送信部から出力された信号を赤外線信号に変換して照明装置1に投光するための赤外線投光部とを含む。
【0042】
なお、この例においては、照明装置1に対して制御信号を出力する機構が携帯型のリモコン50であるものとしているが、他の例として、壁面に設けられた固定式のリモコンであってもよい。また、当該リモコンを照明装置1のインタフェース部40の一部として設けるようにしてもよい。その場合、赤外線信号により操作SWの信号を送信するのではなく、直接、信号線を用いて操作SWからの指示信号を送信する構成とすることも可能である。また、信号の送受信は、赤外線に限られず、無線等を用いるようにしてもよい。
【0043】
<発光出力制御の概要>
照明装置1は、ある発光出力(初期出力)から設定された発光出力(目標出力)まで減光させる際に、ユーザに不快感を与えることなく、かつ消費エネルギーを抑えながら減光する。ここでの発光出力の変化は、照度の変化と色温度の変化とを含む。
【0044】
かかる減光のさせ方として発光出力を時間に対して線形に減少させる第1の方法では、人の視感が目標出力に近づくほど(低照度になるほど)照度変化に対して敏感になる性質があるため、不快感を軽減しつつ減光するには減光の傾きを小さくする、すなわち減光時間を長くする。したがって、第1の減光の方法は、ユーザへもたらす不快感は抑えられるものの、減光時間が長くなるためにエネルギー消費量が増大し、省エネ効果が薄いと言える。
【0045】
一方、他の減光のさせ方として、縦軸を発光出力、横軸を時間として両軸が対数である両対数グラフにおいて、発光出力を時間に対して線形に減少させる第2の方法が挙げられる。図4は、第2の方法での調光率の変化を両軸が線形である線形グラフで表わしたときの具体例を示す図である。図4において、上記第2の方法で減光させたときの調光率の変化が太線で示され、比較として、片対数グラフにおいて線形に減少させるときの調光率の変化が点線、および線形(リニア)グラフにおいて線形に減少させるときの調光率の変化が細線でさらに示されている。図4に示されるように、第2の方法では減光開始直後の調光率の変化が大きい。すなわち減光開始直後に急激に発光出力が減少する。そのため、第2の減光の方法でもユーザへ不快感をもたらす可能性が高い。さらに、この初期出力付近の傾きを小さくするために減光時間を長くすると、減光時間が長くなるためにエネルギー消費が増大し、省エネ効果が薄くなる。
【0046】
そこで、照明装置1では、縦軸を発光出力、横軸を時間として、縦軸が対数で横軸が線形である片対数グラフにおいて、発光出力を時間に対して線形に減少させる第3の方法で減光させる。
【0047】
図5は、減光のさせ方ごとの調光率の変化を線形グラフで表わしたときの具体例を示す図である。図5において、上記第3の方法で減光させたときの調光率の変化が点線で示され、比較として、両対数グラフにおいて線形に減少させるときの調光率の変化が太線、および線形(リニア)グラフにおいて線形に減少させるときの調光率の変化が細線でさらに示されている。
【0048】
図5を参照して、第3の方法での発光出力の制御は、第1の方法と比較して目標出力に達するまでの消費エネルギーを抑えることができ、省エネ機能に優れていた方法と言える。また、第2の方法よりも減光開始直後の発光出力の変化が小さい。すなわち、減光開始直後に第2の方法ほど急激には発光出力が減少しない。そのため、第2の方法よりもユーザへもたらす不快感を抑えることができる。さらに、対数で発光出力を変化させる第3の方法は、ヒトが一定の割合で減光していると感じる減光方法であり、ヒトの知覚のメカニズムに合致した発光出力の変化である。そのため、ユーザへもたらす不快感を抑えることができる。
【0049】
上述の第3の方法に示された発光出力の制御を行なうため、照明装置1の信号受信部25またはSW入力部26は、初期出力E1と目標出力E2との指定を受付ける。目標出力E2は、予め設定されている値であってもよいし、初期出力E1に予め設定されている比率を乗じて得られる値であってもよい。
【0050】
メモリ29には、初期出力E1と、目標出力E2と、初期出力E1から目標出力E2まで発光出力を減少させるのに要する時間tとの対応関係が記憶されており、CPU22はこの対応関係から時間tを読み出すことで、減光に要する時間tを特定する。そして、CPU22は、縦軸を発光出力、横軸を時間として、縦軸が対数軸で横軸が線形軸である片対数グラフにおいて、初期出力E1から目標出力E2まで時間tで発光出力が線形に変化するような変化率で発光出力を制御する。
【0051】
これにより、照明装置1では、初期出力E1および目標出力E2に応じて、出力値E1から出力値E2までの減光に要する時間tが変化する。また、その変化率、すなわち上記線形の傾きも変化する。
【0052】
メモリ29に記憶される、初期出力E1および目標出力E2と、初期出力E1から目標出力E2まで発光出力を減光させるのに要する時間tとの対応関係の一例は、本願発明者らの実験によって得られたものである。そこで、上記対応関係を得るために発明者らの行なった第1の実験について説明する。
【0053】
<第1の実験の説明>
発明者らは、一般的に色や明るさに対する感度が最も高いといわれている若年女子である18歳から22歳の女性30名を被験者として、次の実験手順に沿って実験を行なった、
STEP1:全被験者を実験室に入室させ、室内の照明装置1の発光出力を初期出力とした初期状態を10分継続させ(順応期間)、その間に実験内容を説明する、
STEP2:STEP1の後、実験開始を被験者に告知した上で照明装置1の発光出力を初期出力から目標出力まで、設定された変化率にしたがって変化させる。
【0054】
STEP2での変化率は、時間経過に比例して指数関数で発光出力が減少する変化率、つまり、横軸を時間を表わす線形軸、縦軸を発光出力を表わす線形軸とした片対数グラフで時間に対して線形関係で発光出力が減少する変化率である。
【0055】
なお、この変化率を表わす値Saとして、上記片対数グラフにおける直線の傾きの絶対値を定義する。上述のように、上記片対数グラフは縦軸が発光出力(照度または色温度)で対数軸、横軸が経過時間で線形軸であるので、変化率を表わす値Saである該グラフ上の直線の傾きは、初期出力E1と目標出力E2との対数の差をその変化の所要時間tで割ったものとなる。すなわち、以下の式(1)
Sa[lx/min]=|(logE1−logE2)/t| …式(1)
で表わされる。
【0056】
発明者らは、上記STEP1,STEP2を一連の実験として上記被験者に対して施し、かかる実験の後に各被験者に質問事項を記載した評価シートを記入させた。さらに、発光出力の変化率を変えて上記実験を繰り返した。一連の実験と発光出力の変化率を変えた後の実験との間には初期状態として1分〜5分の順応期間を設けた。なお、発光出力の変化として、照度の変化と色温度の変化とのそれぞれについて実験を行なった。
【0057】
上記評価シートでの質問事項には、発光出力の変化を気付いた程度、快不快度、許容度、変化後の室内の印象評価、および、その照明環境で行なうには適さないと思われる行為、の項目が含まれている。特に、以降に説明する統計処理に用いた項目として「許容度」についての質問は、「(発光出力の変化を)許容できない」、「やや許容できない」、「かろうじて許容できる」、「やや許容できる」、の4項目からの選択形式とした。なお、他の質問事項として、たとえば、室内の印象評価についての質問は、「暗い」―「明るい」、「色みのある」―「色みのない」、および「嫌いな」―「好きな」、の各項目の選択形式とし、照明環境で行なうには適さないと思われる行為についての質問は、「勉強・読書をする」、「雑誌・新聞を読む」、「テレビをみる」、「食事をする」、「くつろぐ」、「だんらんする」、「軽い運動をする」、「音楽を聴く」、「睡眠する」の9事象の中からの選択形式とした。
【0058】
照度を変化させる実験については、色温度を2700[K]に固定し、初期出力を750[lx(ルクス)]、300[lx]、150[lx]の3種類とし、目標出力を初期出力の80%(すなわち減光率が20%)、64%(同36%)、50%(同50%)の3種類とし、20%の減光にかかる時間を20秒、1分、3分の3種類とした。なお、目標出力を初期出力から36%の減光率とした実験のみ、色温度が5600[K]についても行なった。
【0059】
色温度を変化させる実験については、照度の初期出力を300[lx]として、色温度の初期出力を5600[K]、目標出力を400[K]、3000[K]、2700[K]の3種類とし、5600[K]から2700[K]まで減少させる時間を5分、10分、20分の3種類とした。
【0060】
図6〜図14は、この実験で得られた被験者からの回答について統計処理を行なった結果を表わす図である。統計処理として、初期出力E1に対する変化後の照度である目標出力E2の比率ごとに、上記許容度の質問事項における各回答選択肢の回答数の被験者全体(30人)に対する割合(%)を算出した。図6〜図14に示された「許容できない」、「やや許容できない」、「かろうじて許容できる」、「やや許容できる」の各値は、この順に値を累積した積算(累積)値である。つまり、「やや許容できない」の値は、「許容できない」の割合に「やや許容できない」の割合を加えた値であり、「かろうじて許容できる」の値は、「許容できない」の割合に「やや許容できない」の割合と「かろうじて許容できる」の割合とを加えた値である。「やや許容できる」についても同様の積算値を用いている。また、図6〜図14において横軸として用いた初期出力E1に対する変化後の照度である目標出力E2の比率は、log(E2/E1)としている。
【0061】
なお、以降の説明において、横軸で表わされた照度の比率を「変化割合」、縦軸で表わされた回答数の比率を「累積申告率」とも称する。変化割合が0%、つまり「初期出力E1に対する目標出力E2の比率」が100%でlog(E2/E1)=0であるときには、初期出力E1から変化させていない状態を指す。一方、変化割合が大きくなるほど、初期出力E1と目標出力E2との差が大きい、つまり、より大きく減光した状態を指し、「初期出力E1に対する目標出力E2の比率」が小さくなりlog(E2/E1)の値が−2に近づく状態を指す。
【0062】
図6〜図14において、太直線は「やや許容できない」との回答についての回帰直線を表わし、破線は「かろうじて許容できる」との回答についての回帰直線を表わし、一点鎖線は「やや許容できる」との回答についての回帰直線を表わし、二点鎖線は「許容できない」との回答についての回帰直線を表わしている。図6〜図14に用いたデータにおいて「E1に対するE2の比率」が100%(log(E2/E1)=0)、つまり変化割合が0%のときの累積申告率を0%として回帰直線を算出した。
【0063】
なお、「やや許容できない」の回帰直線は、以下の1)、2)の条件を回帰の制約として用いて算出している:
1)発光出力の変化率を表わす値Saが大きくなるほど回帰直線の勾配(傾き)が大きくなる。つまりE1/E2(限界変化割合)が小さくなり(横軸の0の方へ近づく)、初期出力E1から目標出力E2へは大きく変化できない、
2)初期出力E1が大きくなるほど勾配は小さくなる。つまりE1/E2(限界変化割合)が大きくなり(横軸の−2の方へ近づく)、初期出力E1から目標出力E2へ大きく変化できる。
【0064】
なお、回帰直線の算出方法はこの方法に限定されず、上記の制限を加えた上で最小二乗法等の一般的な算出方法で算出されてもよい。
【0065】
図6〜図8は、発光出力の変化率を表わす値Saが0.029として照度を変化したときの累積申告率と変化割合との関係を表わすものであり、図6は初期出力が750[lx]、図7は初期出力が300[lx]、図8は初期出力が150[lx]であるときの累積申告率と変化割合との関係を表わしている。
【0066】
図9〜図11は、発光出力の変化率を表わす値Saが0.10として照度を変化したときの累積申告率と変化割合との関係を表わすものであり、図9は初期出力が750[lx]、図10は初期出力が300[lx]、図11は初期出力が150[lx]であるときの累積申告率と変化割合との関係を表わしている。
【0067】
図12〜図14は、発光出力の変化率を表わす値Saが0.29として照度を変化したときの累積申告率と変化割合との関係を表わすものであり、図12は初期出力が750[lx]、図13は初期出力が300[lx]、図14は初期出力が150[lx]であるときの累積申告率と変化割合との関係を表わしている。この場合、「許容できない」および「やや許容できない」以外の回答をした被験者80%は、「許容できる」の回答をした被験者に分類される。
【0068】
発明者らは、この統計結果から、「許容できない」および「やや許容できない」との回答数の被験者全体(30人)に対する割合(累積申告率)が20%であるときの変化割合を、「限界変化割合」として読み取った。具体的には、発明者らは、図6〜図14の統計結果での太直線が縦軸20%を表わす横軸に平行の直線と交差する点の横軸の値を限界変化割合として読み取った。言い換えると、ここでの「限界変化割合」とは、減光の速度をある変化率として減光したときに、全被験者の内の80%の被験者が許容できる場合のとした変化割合と言える。
【0069】
なお、発明者らは、実験結果の統計処理において累積申告率が20%であるときの変化割合を限界変化割合として読み取ったが、限界変化割合として読み取る累積申告率は20%には限定されない。たとえばユーザや照明装置1の使用環境や使用目的などによって適宜選択し得るものである。
【0070】
図15は、初期出力および発光出力の変化率を表わす値Saごとの読み取られた限界変化割合を示す図である。図16は、図15に示された関係より、初期出力E1ごとの、発光出力の変化率を表わす値Saに対する限界変化割合の推移を表わした図である。
【0071】
図16を参照して、概ね、初期出力E1がどの値であっても、発光出力の変化率を表わす値Saが小さいときには限界変化割合が小さく、値Saが大きいときには限界変化割合が大きいことがわかる。言い換えると、減光する発光出力の差を大きくするほど発光出力の変化率を小さく、すなわち徐々に減光することで、その減光の制御を約20%の被験者が許容できるとわかる。
【0072】
さらに、図16より、初期出力E1の値が大きくなるほど限界変化割合が小さくなることがわかる。つまり、初期出力E1が大きいほど目標出力E2の値を小さくして大きく変化させても許容できることがわかる。
【0073】
ただし、同じ変化割合であっても、つまり同じ比率の目標出力まで減光しても、初期出力E1によって約20%の被験者が許容できるとした発光出力の変化率が異なることも読み取られる。そこで、発明者らは、より詳しくこれらの関係を得るため、変化割合の定義および上記式(1)を用いて、図15に示された値Saごとの読み取られた限界変化割合から、初期出力E1ごとに、当該限界変化割合となった目標出力E2とその際の発光出力の変化率を表わす値Saとを算出した。その結果が図17に示されるものである。
【0074】
発明者らは、図17に示された関係から分布図を作成することで、初期出力E1および目標出力E2ごとの、適した発光出力の変化率の関係として図18に示される関係を得た。
【0075】
図18は、横軸を初期出力E1[lx]、縦軸を目標出力E2[lx]とした両対数グラフであって、該グラフ上に限界変化割合の位置を特定した上で、その位置に、そのときの発光出力の変化に要した時間t[min]を割り当てることで得られた3次元の分布の、回帰面を表わした図である。グラフ中の発光出力の変化に要した時間tの等高線の間隔は対数軸である。図18の3次元分布図において、限界変化割合とその発光出力の変化に要した時間tとの関係が回帰面上で示されている。
【0076】
上述のように、限界変化割合として読み取る累積申告率は適宜選択し得るものであるため、これらの関係は図18に示されたものには限定されない。すなわち、図18に示された初期出力E1および目標出力E2ごとの適した減光時間tの関係は、あくまでも一例であって、本願発明者らの行なった実験によって得られた結果である。
【0077】
<発光出力制御1>
図19は、照明装置1における減光時の発光出力制御の流れの具体例を示すフローチャートである。図19のフローチャートに示される制御は、CPU22がメモリ29に記憶されるプログラムを読み出して実行することによって実現される。
【0078】
この減光制御は、たとえば、照明装置1が減光制御に対して減光モードでの動作を行なうことが設定されている場合には、初期出力E1を指定する入力を受付けることで、自動的に実行されるものとすることができる。またたとえば、初期出力E1と目標出力E2とを指定する入力を受付けることで、自動的に実行されるものとすることもできる。図19では、後者の例における発光出力制御の流れが示されている。
【0079】
詳しくは図19を参照して、信号受信部25またはSW入力部26が初期出力E1および目標出力E2を指定する入力を受付けると(ステップS1でYES)、ステップS3でCPU22は、指定された初期出力E1と指定された目標出力E2とから、出力E1から出力E2までの減光に要する時間tを特定する。なお、減光制御が上述の前者の例である場合、ステップ3でCPU22は、指定された初期出力E1から目標出力E2を算出した上で、時間tを特定する。
【0080】
本実施の形態にかかる照明装置1は、上述の発光出力制御を行なうために、メモリ29にたとえば図18に表わされた対応関係を記憶している。そこで、ステップS3でCPU22は、メモリ29に記憶された対応関係より初期出力E1および目標出力E2に対応した時間tを読み出すことで時間tを特定する。
【0081】
なお、上述の発光出力制御は、連続的に線形になるように出力する制御のみならず、一定の短い時間が経過するごとに片対数で減光する曲線上を通る点の出力に発光し、段階的に切替える出力制御も含む。つまり、きわめて短い時間ごとに段差のある調光を行なうような制御も含む。そのため、「線形関係」には、上述の、きわめて短い時間間隔での段階的な出力制御も含むものとする。なお、目標照度E2に近づくほどヒトの視感が敏感になるため、好ましくは、上記時間間隔は目標照度E2に近づくほど短くなる、すなわち、目標照度E2に近づくほど上記曲線上を通る点を厳密にとるものとする。
【0082】
ステップS5でCPU22は、縦軸を発光出力とした対数軸、横軸を時間とした線形軸である片対数グラフにおいて、初期出力E1から目標出力E2まで時間tで発光出力が時間経過に対して線形関係となる変化率で発光出力を減少させるような制御信号を、PWM制御回路23に対して出力する。
【0083】
または、他の例として、メモリ29には、たとえば図17のような、予め初期出力E1と目標出力E2との組み合わせごとにその減光に要する時間tを規定した対応関係が記憶されていてもよい。この場合も、照明装置1の信号受信部25またはSW入力部26が初期出力E1および目標出力E2を指定する入力、あるいは初期出力E1を指定する入力を受付けることで、上記ステップS3でCPU22は、指定された初期出力E1と、指定された(あるいは指定された初期出力E1から算出された)目標出力E2とから、図17のような対応関係を参照して出力E1から出力E2までの減光に要する時間tを読み出して特定する。そして、ステップS5でCPU22は、縦軸を発光出力とした対数軸、横軸を時間とした線形軸である片対数グラフにおいて、初期出力E1から目標出力E2まで時間tで発光出力が時間経過に対して線形関係となる変化率で発光出力を減少させる。
【0084】
なお、上述の実験結果の統計処理の説明は、発光出力の制御として照度を制御した場合の実験結果の統計処理のものであり、以上はその説明に基づいた発光出力として照度の制御の例を示しているが、色温度についても同様の実験を行なっているため、その実験結果を照度と同様に統計処理して得られる図17や図18に相当する対応関係に基づいて、同様の制御をすることができる。
【0085】
<他の例>
上の例では、メモリ29に上記実験によって得られた図17や図18に相当する対応関係を記憶しておいて用いるものとしているが、記憶されている対応関係は図17のような対応を表わしたテーブルや、図18のような対応を表わしたグラフに限定されず、上記実験によって得られた結果より導出されたグラフ中の発光出力の変化に要した時間Tを初期出力E1および目標出力E2で表した近似式(関数)であってもよい。これは、発光出力が照度であっても色温度であっても同様である。この場合、ステップS5でCPU22はメモリ29に記憶されている関数に初期出力E1と目標出力E2とを代入することで発光出力の変化に要する時間Tを算出する。
【0086】
ここで、上記近似式の算出方法の一例について説明する。
まず、図17の関係から、縦軸を時間、横軸を照度としたグラフに、目標出力E2と発光出力の変化に要した時間tとの関係を初期出力E1ごとに表わす。図20は、目標出力E2と発光出力の変化に要した時間tとの関係を初期出力E1ごとに表わしたグラフであって、図20上の点が、これら関係を示している。図20の近似式y=17478x^(−20.379)、y=23500x^(−2.2244)、およびy=25365x^(−2.4052)は、それぞれ、図20の点の初期出力E1ごとの目標出力E2と発光出力の変化に要した時間Tとをべき関数で近似したものである。すなわち、これらの関係を、T=AE2^Bの形で表わした近似式である。
【0087】
なお、初期出力E1ごとの変数Aと変数(−B)との組み合わせは、図21に示される。さらに、図22は、初期出力E1と変数Aとの関係を表わす図である。図22より、これらの関係として、変数Aを初期出力E1で表わした近似式としてy=28089e^(−0.0006x)が得られる。
【0088】
また、図20に表わされた各点を、初期出力E1を変数としネイピア数eを底とする指数関数の式で近似すると、変数Aは初期出力E1を変数とする式で表される。図23および図24は、いずれも初期出力E1と変数(−B)との関係を表わす図である。図23は、これらの関係を近似式B=q・lnE1+nで近似した場合の関係を示すグラフであって、図23より、これらの関係として近似式y=−0.2267ln(x)+3.5324が得られる。図24は、これらの関係を近似式B=q’・E1^n’で近似した場合の関係を示すグラフであって、図24より、これらの関係として近似式y=4.0087x^(−0.1025)得られる。
【0089】
以上の演算より、T=AE2^Bの形で表わされた上記近似式に図22で得られた関係と、図23で得られた関係、または図24で得られた関係を代入すれば、発光出力の変化に要する時間Tを初期出力E1と目標出力E2とで表わした近似式が得られる。
【0090】
上記各係数k、m、q、n、q’、n’は、許容できる人数の割合によって定められる値である。具体的には、本例では20%の人が許容できない、すなわち80%の人が許容できる場合における実験で得られた統計値から導いたE1、E2およびTの値を用いて近似式を算出することで算出される値である。したがって、上記係数は全て、どの程度の割合の人が許容できるか(あるいは、許容できないか)という条件を決定することによって規定される値であると言える。本例の場合、上記各係数k、m、q、n、q’、n’として、たとえば、それぞれ、28089、−0.00062、0.227、−3.5324、−4.0087、および−0.102が算出される。なお、図25は、上記式より描いた等高線を表わした図である。
【0091】
なお、本例では、80%の人が許容できるとした場合を許容できる人数の割合として実験を行ない、近似式を算出したが、もちろん、許容できる人数の割合は80%に限定されるものではなく、70%や90%など、他の割合として近似式を算出してもよい。
【0092】
なお、上述の算出方法によると、発光出力の変化に要する時間Tは、図23で得られた関係を代入して得られるT1=k・exp(mE1)・E2^(q・lnE1+n)と、図24で得られた関係を代入して得られるT2=k・exp(mE1)・E2^(q’E1n’)との2通り得られることになる。発光出力の変化に要する時間Tとしてはいずれを採用することも可能であるが、図17に示された発光出力の変化に要した時間Tとの差異を考慮すると、好ましくは、上記T1を用いる。なぜなら、発明者らの、図17に示された発光出力の変化に要した時間TとT1,T2それぞれとの差分の実測に基づくと、T−T1の方が誤差がほぼないことが確認されたためである。なお、上記T1を用いた近似式の変数Aはexpの関数で表わされるものであるため、好ましくは、変数(−B)も自然対数lnで表わして用いる。
【0093】
なお、上記他の例ではCPU22がメモリ29に記憶されている上記関数に初期出力E1と目標出力E2とを代入してTを算出する例について説明したが、初期出力E1と目標出力E2とを指定する入力を受付て、入力されたE1およびE2を上記関数に代入してTを算出してもよいし、予め上記関数により算出したE1、E2およびTの関係を表すテーブルをメモリ29に記憶しておいてもよい。
【0094】
<第2の実験の説明>
発明者らは、メモリ29に記憶される、初期発光量および目標発光量と、初期発光量から目標発光量まで発光量を変化させるのに要する時間との対応関係を得るため、第2の実験を行なった。そこで、第2の実験について説明する。第2の実験では色温度の変化に着目し、被験者に対して色温度を様々な変化速度で変化させて許容度合いの評価を得た。そして、その実験結果より、発明者は、所定の許容率が得られる初期色温度Tc1および目標色温度Tc2と、初期色温度Tc1から目標色温度Tc2まで色温度を変化させるのに要する時間tとの対応関係を求めた。
【0095】
図26は、第2の実験における照明条件を表わした図である。すなわち、図26を参照して、第2の実験においては、初期照度E1を30[lx]、140[lx]、280[lx]、680[lx]、および1100[lx]付近の5段階とし、初期色温度Tc1を3000[K]、4100[K]、および5700[K]付近の3段階とした。これら照度は、第2の実験での代表値とする。色温度Tc1を目標色温度Tc2まで時間tで変化させる速度(調光速度)STc(=|log(Tc1)−log(Tc2)|/t)を0.015[K/min]〜∞[K/min]のうちの6段階とし、初期色温度から目標色温度の変化率(Tc2/Tc1)を0.48〜1.9のうちの19段階とした。
【0096】
なお、調光速度STc=∞[K/min]の実験は瞬時(t≒0)に初期色温度Tc1から目標色温度Tc2に変化させる瞬時変化実験を表わし、この実験については、「瞬時変化実験」として、大学生に相当する若齢女性14名に対して、初期照度E1が140[lx]、280[lx]、および1100[lx]の条件について行なった。詳しくは、図27は「瞬時変化実験」についての照明条件を表わす図である。
【0097】
図27を参照して、「瞬時変化実験」として、初期照度E1が140[lx]、初期色温度Tc1が3000[K]の状態、初期照度E1が280[lx]、初期色温度Tc1が4100[K]の状態、および初期照度E1が1100[lx]、初期色温度Tc1が5700[K]の状態を、それぞれ、照度を初期照度E1に固定したまま、色温度の変化率0.8、0.88、0.931、0.959、0.986、1.027、1.045、1.073、1.12、および1.20となる目標色温度Tc2まで瞬時に変化させ、その色温度の変化させる実験を行なった。それぞれの実験の後、被験者からその変化の許容度についての「(色温度の変化を)許容できない」、「やや許容できない」、「かろうじて許容できる」、「やや許容できる」、および「許容できる」の5段階の評価を得た。
【0098】
調光速度STc≠∞[K/min]の実験は、瞬時変化ではない、つまり、ある程度の時間tをかけて色温度を変化させる継時変化実験を表わし、この実験については、「継時変化実験1」として大学生に相当する若齢女性30名に対して、「継時変化実験2」として大学生に相当する若齢女性8名に対して行なった。すなわち、発明者は、「継時変化実験1」を少ない照明条件にて多数の被験者に対して行なってある程度の結果を見極めた上で、「継時変化実験2」として、「継時変化実験1」よりも人数の少ない被験者に対して多くの照明条件にて行なった。図28は、「継時変化実験」についての照明条件を表わす図であり、図28(A)は「継時変化実験1」についての照明条件を表わし、図28(B)は「継時変化実験2」についての照明条件を表わしている。
【0099】
すなわち、図28(A)を参照して、「継時変化実験1」として、初期色温度Tc1が5700[K]の状態から目標色温度Tc2である4000[K]まで調光速度STcを0.063[K/min]で照度を初期照度E1である300[lx]に固定して変化させる実験を3回、初期色温度Tc1が5700[K]の状態から目標色温度Tc2である3000[K]まで調光速度STcを0.063[K/min]、0.032[K/min]、および0.015[K/min]の3段階で照度を初期照度E1である300[lx]に固定して変化させる実験、および初期色温度Tc1が5700[K]の状態から目標色温度Tc2である2700[K]まで調光速度STcを0.063[K/min]、0.032[K/min]、および0.015[K/min]の3段階で照度を初期照度E1である300[lx]に固定して変化させる実験を行なった。それぞれの実験の後、光色の時間的変動に対する評価として、被験者からその変化の許容度についての上記5段階の評価を得た。
【0100】
「継時変化実験2」についても、図28(B)に同様に表わされる実験を行ない、それぞれの実験の後、光色の時間的変動に対する評価として、被験者からその変化の許容度についての上記5段階の評価を得た。
【0101】
図29〜図31は、これら「瞬時変化実験」、「継時変化実験1」、および「継時変化実験2」の実験結果をまとめて、全被験者数のうちの「許容できない」または「やや許容できない」と回答した被験者数の割合(累積申告率%)を、照明条件ごとに表わした図である。
【0102】
詳しくは、図29は、初期色温度Tc1=3000[K]で目標色温度Tc2まで変化させたときの実験結果であって、図29(A)は初期照度E1=30[lx]一定で変化させたときの調光速度STcごとの上記回答した累積申告率、図29(B)は初期照度E1=300[lx]一定で変化させたときの調光速度STcごとの上記回答した累積申告率、および図29(C)は初期照度E1=1100[lx]一定で変化させたときの調光速度STcごとの上記回答した累積申告率を表わしている。
【0103】
同様に、図30は、初期色温度Tc1=4100[K]で目標色温度Tc2まで変化させたときの実験結果であって、図30(A)は初期照度E1=300[lx]一定で変化させたときの調光速度STcごとの上記回答した累積申告率、および図30(B)は初期照度E1=1100[lx]一定で変化させたときの調光速度STcごとの上記回答した累積申告率を表わしている。
【0104】
また、図31は、初期色温度Tc1=5700[K]で目標色温度Tc2まで変化させたときの実験結果であって、図31(A)は初期照度E1=30[lx]一定で変化させたときの調光速度STcごとの上記回答した累積申告率、図31(B)は初期照度E1=300[lx]一定で変化させたときの調光速度STcごとの上記回答した累積申告率、および図31(C)は初期照度E1=1100[lx]一定で変化させたときの調光速度STcごとの上記回答した累積申告率を表わしている。
【0105】
発明者は、この実験結果に基づいて、上記回答した累積申告率が20%、つまり、被験者のうちの80%が許容できると回答した(許容率80%である)実験条件を変化の推奨値として検討した。すなわち、図29〜図31に示された実験結果より、色温度を上昇させる実験においては初期照度E1が高い方が変化を許容できないとの累積申告率が高い傾向にあることがわかる。一方、瞬時変化実験での、初期色温度Tc1=4100[K]から色温度を下降させる照明条件の場合、調光速度STc=0.28[K/min]付近を境界として逆傾向が見られる。そのため、概ね初期照度E1が高い方が変化を許容できないとの累積申告率が高い傾向ではあるが、その傾向は顕著ではないと言える。そこで、発明者は、今回の実験の結果について、初期照度E1の差異を考慮せずに全照度に関して結果を統合して解析を行ない、許容率80%となる初期色温度Tc1および目標色温度Tc2と、初期色温度Tc1から目標色温度Tc2まで色温度を変化させるのに要する時間tとの対応関係を求めた。
【0106】
図32〜図37は、調光速度STcごとの、各色温度変化における「許容できない」または「やや許容できない」との回答の累積申告率%を表わした図である。縦軸は累積申告率を表わし、横軸は色温度の対数変化率の絶対値(|log(Tc2/Tc1)|)を表わしている。図32は調光速度STc=∞[K/min]の瞬時変化実験の結果を表わし、図33は調光速度STc=0.279[K/min]、図34は調光速度STc=0.093[K/min]、図35は調光速度STc=0.063[K/min]、図36は調光速度STc=0.032[K/min]、図37は調光速度STc=0.014[K/min]の継時変化実験の結果を表わしている。各グラフにおいて、「4100K上昇」は初期色温度Tc1=4100[K]から目標色温度Tc2に向けて色温度を上昇させる照明条件、「4100K下降」は初期色温度Tc1=4100[K]から目標色温度Tc2に向けて色温度を下降させる照明条件を表わしている。他の表記も同様である。
【0107】
発明者は、図32〜図37に表わされたように上記縦軸および横軸からなるグラフに、調光速度STcごとの実験結果を、初期色温度Tc1および初期色温度Tc1と目標色温度Tc2との関係(上昇か、下降か)に応じてプロットした。
【0108】
この結果を比較すると、どの調光速度においても、初期色温度Tc1からの色温度の変化方向が上昇側(白みがかる変化)の方が、下降側(赤みがかる)よりも色温度を許容できると回答した被験者の比率が少ない傾向にあることが分かる。すなわち、色温度の変化率(Tc2/Tc1)が1.0未満の方が1.0以上よりも許容率が高いといえる。
【0109】
さらに、色温度が初期色温度Tc1から上昇する変化の場合、初期色温度Tc1が高い方が許容できると回答した被験者の比率が少ない傾向にあることが分かる。たとえば、初期色温度Tc1=3000[K]での許容できないとの累積申告率よりも、初期色温度Tc1=4100[K]での許容できないとの累積申告率の方が大きい。
【0110】
一方、色温度が初期色温度Tc1から下降する変化の場合、調光速度STcが速い場合(たとえばSTc=∞,0.28[K/min])、初期色温度Tc1が低い方が許容できると回答した被験者の比率が少ない傾向にあることが分かる。たとえば、いずれの調光速度STcの場合も、初期色温度Tc1=5700[K]での許容できないとの累積申告率よりも、初期色温度Tc1=4100[K]での許容できないとの累積申告率の方が大きい。
【0111】
この実験結果の考察より、発明者は、この実験結果について、初期色温度Tc1と当該初期色温度Tc1からの変化方向とを影響変数として組み込んで解析するものとした。また、実験結果全体の回帰線が低い調光速度STcでの許容できないとの累積申告率に大きく影響を受けるため、初期色温度Tc1からの変化方向が下降方向については、調光速度STcが0.093[K/min]以下(STc≦0.093)において差異の明瞭でない初期色温度Tc1が5700[K]での実験結果を4100[K]での実験結果に適用した。
【0112】
発明者は、上の解析方針に基づいて照明条件ごとに実験結果のプロットから回帰直線を求めた。図32〜図37には、実験結果に併せて算出された回帰直線が記載されている。そして、算出された回帰直線の式から、被験者のうちの80%が許容できると回答した(許容率80%である)色温度の変化率、つまり、回帰直線の式に累積申告率20%を代入して得られた色温度の変化率を算出した。なお、この色温度の変化率を「限界色温度変化率」とも称する。
【0113】
図38は、図32〜図37の実験結果から得られた、80%許容率となる、調光速度STcごとの限界色温度変化率を示す図である。また、図39は、図38の結果を、横軸を調光速度STc、縦軸を色温度の変化率としたグラフにプロットしたものであって、初期色温度Tc1および当該初期色温度Tc1からの変化方向ごとの、調光速度STcに対する限界色温度変化率の推移を表わした図である。ただし、図39のグラフにおける調光速度STc=1[K/min]は調光速度STc=∞[K/min]を表わしている。
【0114】
図39を参照して、概ね、初期色温度Tc1がどの値であっても、色温度を下降側に変化させる場合には調光速度STcの増加に伴って限界色温度変化率が上昇することがわかる。一方、色温度を上昇させる場合には調光速度STcの増加に伴って限界色温度変化率が下降し、さらに、初期色温度Tc1が低い方がその下降率が大きいことがわかる。また、同じ調光速度STcで変化させる場合には、変化方向が上昇側の方が下降側よりも限界色温度変化率の1からの差分が小さいことがわかる。
【0115】
言い換えると、色温度の変化率を大きくするほど調光速度STcを小さく、すなわち徐々に変化させることでその変化を約20%の被験者が許容できるとわかる。
【0116】
さらに、図39より、初期色温度Tc1から白みがかる方向にさせる場合には、赤みがかる方向に変化させるよりもより徐々に変化させることでその変化を約20%の被験者が許容できるとわかる。
【0117】
そこで、発明者らは、より詳しくこれらの関係を得るため、図38に示された調光速度STcごとの限界色温度変化率から、初期色温度Tc1ごとに、上昇側と下降側とのそれぞれについて、限界色温度変化率となった目標色温度T2とその変化に要する時間tとを算出した。図40は、80%許容率となる、初期色温度Tc1ごとの、上昇側と下降側とのそれぞれについての、目標色温度Tc2とその変化に要する時間tとの関係を表わした図である。
【0118】
発明者らは、図40に示された関係から分布図を作成することで、初期色温度Tc1および目標色温度Tc2ごとの、上昇側と下降側とのそれぞれについて、適した変化時間tの関係として図41に示される関係を得た。
【0119】
図41は、横軸を初期色温度Tc1[K]、縦軸を目標色温度Tc2[K]としたグラフであって、該グラフ上に限界色温度変化率の位置を特定した上で、その位置に、そのときの色温度の変化に要した時間t[min]を割り当てることで得られた3次元の分布の、回帰面を表わした図である。図41の3次元分布図において、限界色温度変化率合とその色温度の変化に適した時間tとの関係が回帰面上で示されている。
【0120】
なお、限界色温度変化率として読み取る累積申告率は適宜選択し得るものであるため、これらの関係は図41に示されたものには限定されない。すなわち、図41に示された初期色温度Tc1および目標色温度Tc2ごとの適した変化時間tの関係は、あくまでも一例であって、発明者の行なった実験によって得られた結果である。
【0121】
<発光出力制御2>
上の説明では、図19を挙げて照明装置1における減光時の発光出力制御の流れを説明し、具体的に、第1の実験の結果を利用した制御を行なうものとした説明を行なっている。照明装置1における発光出力制御として、上述した第2の実験の結果を利用した制御を行なう場合、図19と同様にして行なうことができる。この場合、照明装置1のメモリ29には、たとえば図41に表わされた対応関係が記憶されている。
【0122】
照明装置1のCPU22は、信号受信部25またはSW入力部26が変化のパラメータとして初期色温度Tc1および目標色温度Tc2との入力を受付けることで、メモリ29に記憶された対応関係より初期色温度Tc1および目標色温度Tc2、ならびにその変化方向(上昇側または下降側)に対応した時間tを読み出すことで、色温度の変化に要する時間tを特定する。そして、CPU22は、初期色温度Tc1から目標色温度Tc2まで時間tで発光出力が時間経過に対して線形関係となる変化率で発光出力を変化させるような制御信号をPWM制御回路23に対して出力する。
【0123】
<他の例>
他の例として、上記実験によって得られた結果より導出されたグラフ中の色温度の変化に要した時間tを初期色温度Tc1および目標色温度Tc2で表した近似式(関数)を用いて制御を行なってもよい。この場合、CPU22はメモリ29に記憶されている関数に初期色温度Tc1および目標色温度Tc2を代入することで色温度の変化に要する時間tを算出する。
【0124】
上記近似式の算出方法の一例について説明する。
図42は、図40に示された、初期色温度Tc1ごとの、上昇側と下降側とのそれぞれについての、80%許容率となる色温度の対数変化率およびその変化の調光速度を、縦軸を色温度の対数変化率、横軸を調光速度としたグラフに表わした図である。
【0125】
図42の回帰線を算出することで、色温度の対数変化率(log(Tc2/Tc1))を、色温度を上昇させる側を+、下降させる側を−として、近似式log(Tc2/Tc1)=±A・STcvで近似することができる。ただし、定数vはたとえば−0.6が該当することが実験的に得られている。
【0126】
上記係数Aは、初期色温度Tc1と目標色温度Tc2とを決定することで規定される。すなわち、目標色温度Tc2が初期色温度Tc1を下降させる関係である初期色温度Tc1と目標色温度Tc2とである場合、および目標色温度Tc2が初期色温度Tc1を上昇させる初期色温度Tc1と目標色温度Tc2とである場合、のそれぞれについて、係数Aは下のように算出される、
下降側:A=a×Tc1+b (A<0) …式(2)、
上昇側:A=c×Tc1+d (A>0) …式(3)。
【0127】
なお、上記定数aはたとえばa=6.88×10-0.6、上記定数bはたとえばb=0.012、上記定数cはたとえばc=−4.55×10-0.6、上記定数dはたとえばd=0.039が実験的に得られている。
【0128】
これより、初期色温度Tc1[K]と目標色温度Tc2[K]と、色温度の変化が下降側または上昇側によって上記式(2),(3)で規定される係数Aとで調光速度STcが算出され、調光速度STc=|log(Tc1)−log(Tc2)|/tにさらに初期色温度Tc1[K]と目標色温度Tc2[K]と代入することで、変化時間tが算出される。
【0129】
図43は、上記近似式log(Tc2/Tc1)で近似した場合の、初期色温度および目標色温度ごとの、その色温度の変化に適した時間tの関係を表わした図である。
【0130】
なお、発明者は、図41に表わされた関係と、図43に表された関係との相関について検証した。
【0131】
図44は、調光速度ごとに、図41から読み取られた色温度の変化率と図43から読み取られた色温度の変化率との関係を表わす図である。図45は、調光速度ごとに、図41から読み取られた目標色温度Tc2と図43から読み取られた目標色温度Tc2との関係を表わす図である。図46は、調光速度ごとに、図41から読み取られた色温度の変化に要する時間tと図43から読み取られた色温度の変化に要する時間tとの関係を表わす図である。
【0132】
図44〜図46のように、図41から読み取られた値と図43から読み取られた値とをグラフにプロットすると、ほぼ同じ値となることがわかった。そのため、これらの相関はあるものと検証された。よって、上述のように、図41の関係を用いたPWM制御と、図43の関係を用いたPWM制御とが、ほぼ同様の制御となることがわかった。
【0133】
<実施例の効果>
本実施の形態にかかる照明装置1が、たとえば図17や図18に示されたような、ユーザがその変化を許容できる、初期出力E1と目標出力E2とその変化に要する時間tとの関係を記憶しておくことで、照明装置1では、初期出力E1と目標出力E2とから、減光時にユーザが許容可能な発光出力の変化率となる減光のための時間tを特定することができる。
【0134】
また、図41や図43に示されたような、ユーザがその変化を許容できる、初期色温度Tc1と目標色温度Tc2とその変化に要する時間tとの関係を記憶しておくことで、照明装置1では、初期色温度Tc1と目標色温度Tc2とから、色温度の変化時にユーザが許容可能な変化率となる変化のための時間tを特定することができる。
【0135】
また、照明装置1が図5の太線で表わされたような、横軸を時間とした線形軸、縦軸を発光出力とした対数軸である片対数グラフにおいて、発光出力を時間に対して線形関係とした発光出力の変化率で発光出力を減少させる制御を行なうことで、減光時にユーザに与える不快感を抑えて、かつ、省エネ機能にも優れて減光することができる。
【0136】
<他の例>
なお、コンピュータを機能させて、上述のフローで説明したような制御を実行させるプログラムを提供することもできる。このようなプログラムは、コンピュータに付属するフレキシブルディスク、CD−ROM(Compact Disk-Read Only Memory)、ROM(Read Only Memory)、RAM(Random Access Memory)およびメモリカードなどの一時的でないコンピュータ読み取り可能な記録媒体にて記録させて、プログラム製品として提供することもできる。あるいは、コンピュータに内蔵するハードディスクなどの記録媒体にて記録させて、プログラムを提供することもできる。また、ネットワークを介したダウンロードによって、プログラムを提供することもできる。
【0137】
なお、プログラムは、コンピュータのオペレーティングシステム(OS)の一部として提供されるプログラムモジュールのうち、必要なモジュールを所定の配列で所定のタイミングで呼出して処理を実行させるものであってもよい。その場合、プログラム自体には上記モジュールが含まれずOSと協働して処理が実行される。このようなモジュールを含まないプログラムも、本発明にかかるプログラムに含まれ得る。
【0138】
また、本発明にかかるプログラムは他のプログラムの一部に組込まれて提供されるものであってもよい。その場合にも、プログラム自体には上記他のプログラムに含まれるモジュールが含まれず、他のプログラムと協働して処理が実行される。このような他のプログラムに組込まれたプログラムも、本発明にかかるプログラムに含まれ得る。
【0139】
提供されるプログラム製品は、ハードディスクなどのプログラム格納部にインストールされて実行される。なお、プログラム製品は、プログラム自体と、プログラムが記録された記録媒体とを含む。
【0140】
本発明にかかる照明装置は、図1に例示したいわゆるシーリングライトのみならず、ダウンライト、ペンダントライト等、調光制御を行なう全ての形態の照明装置に適用可能である。
【0141】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0142】
1 照明装置、2 シャーシ、8,9 カバー、10 電源回路、20 照明制御部、21 制御電源供給回路、22 CPU、23 PWM制御回路、25 信号受信部、26 SW入力部、29 メモリ、30 照明部、31 モジュール、33 FETスイッチ、40 インタフェース部、41 赤外線受光部、50 リモコン。

【特許請求の範囲】
【請求項1】
発光部と、
前記発光部の出力制御を実行するための制御回路とを備え、
前記制御回路は発光出力変化時の前記発光部の発光出力を、前記出力変化の開始から所定時間で、第1の発光出力から第2の発光出力まで、横軸を時間とした線形軸および縦軸を発光出力とした対数軸の片対数グラフ上で時間経過に従って線形関係となるように徐々に変化させる、照明装置。
【請求項2】
前記所定時間は、前記第1の発光出力と前記第2の発光出力とを決定することによって規定されることを特徴とする、請求項1に記載の照明装置。
【請求項3】
前記第1の発光出力E1から前記第2の発光出力E2まで変化させる際の前記所定時間Tは、前記第1の発光出力E1と前記第2の発光出力E2とを用いて、
T=k・exp(mE1)・E2^(q・lnE1+n),
または
T=k・exp(mE1)・E2^(q’E1n’)
(定数:k,m,q(q’),n(n’))で規定されることを特徴とする、請求項2に記載の照明装置。
【請求項4】
前記第1の発光出力として初期色温度Tc1から前記第2の発光出力として目標色温度Tc2まで色温度を変化させる際の前記所定時間Tは、定数Aを初期色温度Tc1と目標色温度Tc2とを決定することで規定される定数とすると、
初期色温度Tc1<目標色温度Tc2のときには、
log(R)=+A・STcv
初期色温度Tc1>目標色温度Tc2のときには、
log(R)=−A・STcv
(ただし、色温度変化率R=Tc2/Tc1
調光速度STc=|log(Tc1)−log(Tc2)|/T
=|log(R)|/T,
定数:v)
で規定されることを特徴とする、請求項2に記載の照明装置。
【請求項5】
前記定数Aは、
A=a・Tc1+b(初期色温度Tc1<目標色温度Tc2)、
A=c・Tc1+d(初期色温度Tc1>目標色温度Tc2)、
(ただし、定数:a,b,c,d)
で表わされる、請求項4に記載の照明装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図44】
image rotate

【図45】
image rotate

【図46】
image rotate


【公開番号】特開2012−146625(P2012−146625A)
【公開日】平成24年8月2日(2012.8.2)
【国際特許分類】
【出願番号】特願2011−134110(P2011−134110)
【出願日】平成23年6月16日(2011.6.16)
【出願人】(000005049)シャープ株式会社 (33,933)
【出願人】(505195384)国立大学法人奈良女子大学 (15)
【Fターム(参考)】