説明

燃料電池システム

【課題】 高い運転効率が得られ、且つ、コンパクトな燃料電池システムを提供すること。
【解決手段】 金属水素錯化合物例えば水素化ホウ素ナトリウムのアルカリ水溶液が負極室に供給されるボロハイドライド燃料電池と、水素ガスが燃料として負極室に供給されるアルカリ型燃料電池との直列接続構造であり、ボロハイドライド燃料電池の負極室にて生成された水素ガスがボロハイドライド燃料電池の負極室とアルカリ型燃料電池の負極室との間に設けられた気液分離膜を介してアルカリ型燃料電池の負極室に直接供給される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えばテトラヒドロホウ酸塩などの金属水素錯化合物のアルカリ水溶液からなる燃料液が供給される燃料電池を用いたシステムに関する。
【背景技術】
【0002】
燃料電池は、負極及び正極に夫々燃料及び酸化剤を連続的に供給しそのときに起こる化学反応により得られるエネルギーを電気的エネルギーに変換する装置であり、例えば水素ガスを燃料として用いる燃料電池(例えば、アルカリ型燃料電池)は従来から良く知られている。また、最近において水素化ホウ素ナトリウム(NaBH4)などの水素化ホウ素錯化合物の液体燃料を用いた燃料電池(ボロハイドライド燃料電池)が検討されており、例えば特許文献1及び特許文献2に記載されている。このボロンハイドライド燃料電池では、例えば水素化ホウ素ナトリウムはアルカリ溶液中において安定しており、BH4をBO2に変換するときの電気化学的電位がより卑になることから理論電圧が高く、また水素発生器が不要であるなどの利点がある。
【0003】
これらの燃料電池は、燃料電池を運転するのに必要なエネルギーをできるだけ小さく抑えながら大きな電気エネルギーを取り出し、高い運転効率を図ることが必要である。しかしながら水素ガスを燃料とするアルカリ型燃料電池にあっては、水素ガスを得るために例えばメタノールを改質するためのエネルギーが必要であると共に当該水素ガスを加湿するためのエネルギーが必要である。またボロハイドライド燃料電池にあっては、負極にて生成した水素ガスを処理するためのエネルギーが必要である。このように燃料電池を運転するためのエネルギーが小さいとは言い難いことから、運転効率の向上が困難になっており、燃料電池の普及を阻む要因の一つになっている。
【0004】
このようなことから本発明者らは、ボロハイドライド燃料電池と水素型燃料電池とを組み合わせ、ボロハイドライド燃料電池の負極にて生成された水素ガスを水素型燃料電池の負極の燃料として利用することで、運転効率の向上を図っている(特許文献3参照)。この燃料電池システムは、ボロハイドライド燃料電池の負極室側から排出される使用済みの燃料液から気液分離部によって水素ガスを取り出し、続いて水素ガスに混入しているNa等のアルカリ金属イオン(ミスト)をミスト除去手段で除去して、この水素ガスを加湿器で加湿した後、水素型燃料電池の負極室側に供給している。なお、ミスト除去手段によって水素ガスに混入しているミストを除去する理由は、ミストが混入した水素ガスを水素型燃料電池の負極室側に供給した場合、アルカリ金属の結晶が水素型燃料電池の負極及び電解質膜中に析出して負極及び電解質膜が劣化してしまうということから、これを防ぐためである。また水素ガスを加湿する理由は、水素型燃料電池の電解質膜の乾燥(膜抵抗の増大)による出力密度の低下を防ぐためである。
【0005】
このため上記燃料電池システムでは、気液分離部、ミスト除去手段及び加湿器が必要であり、これらは二つの燃料電池の外部に配置されるため、燃料電池システムのコンパクト化が阻まれている。また上記燃料電池システムでは、水素ガスを加湿するための加湿エネルギーが必要である。
【0006】
【特許文献1】特表2000−502842:図1
【特許文献2】特開2002−50325:図2
【特許文献3】特開2004−349029:図1
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明はかかる事情に鑑みてなされたものであって、その目的は、高い運転効率が得られ、且つ、コンパクトな燃料電池システムを提供することにある。
【課題を解決するための手段】
【0008】
本発明の燃料電池システムは、電解質層により、負極を備えた負極室と正極を備えた正極室とに区画され、金属水素錯化合物のアルカリ水溶液からなる燃料液が負極室に供給されると共に酸素ガスが正極室に供給される第1の燃料電池と、
陰イオンを透過させる電解質層により負極を備えた負極室と正極を備えた正極室とに区画され、水素ガスが燃料として負極室に供給されると共に水分を含む酸素ガスが負極室に供給される第2の燃料電池と、
前記第1の燃料電池の負極室と前記第2の燃料電池の負極室とを区画し、気体は通過するが、液体は通過しない気液分離層と、
前記第1の燃料電池の負極室にて生成された水素ガスが前記気液分離層を介して前記第2の燃料電池の負極室に供給されることを特徴とする。
【0009】
本発明の具体的な構造としては、前記第1の燃料電池及び第2の燃料電池は、互に対向する一方のプレート及び他方のプレートからなる一対のプレートの間に設けられ、
前記気液分離層は、前記一方のプレートの面を第1の領域と第2の領域とに分割するように設けられ、
前記第1の領域を対向するように第1の燃料電池の負極が設けられると共に、この負極における他方のプレート側には第1の燃料電池の電解質層を介して正極が設けられ、
前記第2の領域と対向するように第2の燃料電池の負極が設けられると共に、この負極における他方のプレート側には第2の燃料電池の電解質層を介して正極が設けられ、
第1の燃料電池の酸素ガスの通流空間及び第2の燃料電池の酸素ガスの通流空間は、他方のプレート側において共通化された構造を挙げることができる。
【0010】
また、上述した燃料電池においては、他方のプレートに対向するように正極が設けられ、この正極のうち、第1の領域に対向する部位が第1の燃料電池の正極として機能し、第2の領域に対向する部位が第2の燃料電池の正極として機能する構成にある。
【0011】
さらに上述の燃料電池システムにおいて、金属水素錯化合物のアルカリ水溶液を貯槽する燃料貯槽部と、前記第2の燃料電池の負極室から排出されるアルカリ水溶液と前記第2の燃料電池の正極室から排出されるアルカリ水溶液とを貯溜する貯溜部と、前記燃料貯槽部からの金属水素錯化合物のアルカリ水溶液と前記貯溜部からのアルカリ水溶液とを混合して前記第1の燃料電池の負極室に供給するための混合部と、前記燃料貯槽部からの金属水素錯化合物のアルカリ水溶液と前記貯溜部からのアルカリ水溶液との混合比を調整するための調整部と、を備えた構成としてもよい。
【0012】
また本発明の他の燃料電池システムは、電解質層により、負極を備えた負極室と正極を備えた正極室とに区画され、金属水素錯化合物のアルカリ水溶液からなる燃料液が負極室に供給されると共に酸素ガスが正極室に供給される第1の燃料電池と、
陰イオンを透過させる電解質層により負極を備えた負極室と正極を備えた正極室とに区画され、水素ガスが燃料として負極室に供給されると共に水分を含む酸素ガスが正極室に供給される第2の燃料電池と、
前記第2の燃料電池の負極は、第1の燃料電池の負極室の燃料液に対して空間を介して上方側に位置し、前記空間は第2の燃料電池の負極室を形成し、第1の燃料電池の負極室から発生した水素ガスが第2の燃料電池の負極室に供給されることを特徴とする。
【0013】
なお、第1の燃料電池の燃料として用いられる金属水素錯化合物としては例えば水素化ホウ素錯化合物が挙げられる。さらに本発明において「酸素ガスが正極室に供給される」とは、空気を正極室に供給する場合も含む。
【発明の効果】
【0014】
本発明によれば、第1の燃料電池(ボロハイドライド燃料電池)の負極室にて生成された水素ガスを、第2の燃料電池(アルカリ型燃料電池)にて利用しているので運転効率が高い。
【0015】
また第2の燃料電池において、正極室側からOHが移動して負極室にて水分(H2O)が生成され、燃料である水素ガスは必然的に加湿されるため、第1の燃料電池から第2の燃料電池に送られる水素ガスについては加湿する必要がない。さらに気液分離層を通過してきた水素ガスにはNa等のアルカリ金属イオンが混入しているが、当該アルカリ金属イオンは前記H2Oと反応して水酸化アルカリとなって排出されるため、アルカリ金属イオンが負極及び電解質層に付着するといったこともないのでアルカリ金属イオンを除去する必要がない。このため加湿器及びミスト除去手段が不要となることから第1の燃料電池と第2の燃料電池との直接接続構造、即ち第1の燃料電池の負極室と第2の燃料電池の負極室とを気液分離層を介して一体化させる構造を取ることができるので、燃料電池システムのコンパクト化を図ることができる。
【0016】
さらに加湿エネルギーが不要なことから燃料電池システムを運転するのに必要なエネルギーが小さくなるのでエネルギー効率も向上する。
【発明を実施するための最良の形態】
【0017】
(本発明の第1の実施の形態)
図1は本発明の実施の形態に係る燃料電池システム1の基本構成を示す図であり、この燃料電池システム1は、金属水素錯化合物例えば水素化ホウ素錯化合物である水酸化ホウ素ナトリウム(NaBH4)のアルカリ水溶液例えば水酸化ナトリウム(NaOH)水溶液を燃料とするボロハイドライド燃料電池と、水素(H2)ガスを燃料とするアルカリ型燃料電池とを直列に接続して構成されている。ボロハイドライド燃料電池は第1の燃料電池2に相当し、アルカリ型燃料電池は第2の燃料電池3に相当する。
【0018】
前記第1の燃料電池2及び前記第2の燃料電池3は、例えば絶縁材からなるケース体(図示していない)内に一体的に収納されている。
【0019】
先ず前記第1の燃料電池2の構成について説明すると、前記第1の燃料電池2は、負極21と正極22とを電解質層である電解質膜23を介して対向配置し、負極21における電解質膜23とは反対側の領域に燃料流路24を、また正極22における電解質膜23とは反対側の領域に酸化剤流路25を夫々形成して構成される。前記負極21及び燃料流路24は負極室20aを構成し、正極22及び酸化剤流路25は正極室20bを構成している。
【0020】
続いて前記第2の燃料電池3の構成について説明すると、前記第2の燃料電池3は、負極31と正極32とを陰イオンを透過させる電解質層である電解質膜33を介して対向配置し、負極31における電解質膜33とは反対側の領域に燃料流路34を、また正極32における電解質膜33とは反対側の領域に酸化剤流路35を夫々形成して構成される。前記負極31及び燃料流路34は負極室30aを構成し、酸化剤極32及び酸化剤流路35は正極室30bを構成している。
【0021】
そして前記第1の燃料電池2の負極室20aと前記第2の燃料電池3の負極室30aとの間には気体は通過するが、液体は通過しない気液分離層である気液分離膜4が介設されていて、この気液分離膜4により負極室20a、負極室30aが仕切られている。即ち、後述するように第1の燃料電池2の負極室20aで生成された水素ガスが前記気液分離膜4を通って第2の燃料電池3の負極室30aに供給されるようになっている。前記気液分離層4としては、例えば微孔性ポリテトラフルオロエチレン膜など多孔質フッ素系樹脂膜が好ましく、また多孔質フッ素系樹脂膜と他の気体透過性材料例えば織布、不織布、フェルトなどとの積層複合体、さらにこれらに撥水性処理を施して用いてもよい。なおフッ素系樹脂としては、テトラフルオロエチレンとエチレン、パーフルオロアルキルビニールエーテルなどとの共重合体を挙げることができる。
【0022】
前記燃料流路24には燃料供給路41及び燃料排出路42が接続されている。前記燃料供給路41には上流側から燃料貯槽部5、バルブV1、ポンプP1、混合部51、バルブV2がこの順に接続されている。また前記混合部51には戻り水供給管52を介して後述するように前記第2の燃料電池の負極室30a及び正極室30bから排出されるアルカリ水溶液を貯溜するための貯溜部53が接続されている。なお、正極室30bから排出されるアルカリ水溶液には余剰燃料である酸素ガスも含まれているため、前記貯留部53には当該貯留部53内の気相部に溜まる酸素ガスを排気するための排気口が形成されている。前記戻り水供給管52には、ポンプP2及びバルブV3が介設されている。なお、実施の形態においては、このアルカリ水溶液を戻り水と呼んで説明することにする。前記混合部51は、燃料貯槽部5からの燃料と貯溜部53からの戻り水とが十分混合されるように例えばコイル状の流路が形成され、両液が当該流路の出口側に達したときに十分混合される構成になっている。そして前記混合部51で濃度が調整された燃料液である金属水素錯化合物のアルカリ水溶液が燃料流路24を通って燃料排出路42から排出されるようになっている。
【0023】
ここで金属水素錯化合物のアルカリ水溶液とは、具体的には金属水素錯化合物である例えば水素化ホウ素ナトリウム(NaBH4)をアルカリ水溶液である水酸化ナトリウム水溶液に例えば5〜20重量%溶解させ、水酸化ナトリウムの濃度が例えば5〜20重量%に調整された水溶液である。また金属水素錯化合物は水素化ホウ素ナトリウムに限られず、水素化ホウ素カリウム(KBH4)、または水素化ホウ素リチウム(LiBH4)などを用いてもよい。またアルカリ水溶液は水酸化ナトリウムに限られず、水酸化カリウムなどのアルカリ金属水酸化物を用いてもよい。
【0024】
前記酸化剤流路25には酸化剤供給路44及び酸化剤排出路45が接続され、酸化剤供給源6からバルブV4、ポンプP3及び酸化剤供給路44を介して酸化剤流路25に酸化剤、例えば酸素ガスが供給されるようになっている。前記酸化剤排出路45の基端側は第2の燃料電池3に接続されており、この酸化剤排出路45は、第2の燃料電池3から見ると酸化剤供給路に相当するため、この「45」で示される酸化剤排出/供給路を便宜上、接続路と呼ぶことにする。なお、ここでいう酸素ガスは、例えば高純度の酸素ガスのみならず、空気も含む意味である。
【0025】
前記燃料流路34には燃料排出路50が接続され、後述するように負極31において水酸化物イオン(OH)と水素ガス(H2)との反応により生成された水(H2O)、具体的には後述するようにアルカリ水溶液が燃料流路34を通って燃料排出路50から排出されるようになっている。また前記排出路50は貯溜部53に接続されている。
【0026】
前記酸化剤流路35には上述した接続路45及び酸化剤排出路54が接続され、後述するように第1の燃料電池2の正極室20bから排出されたアルカリイオンを同伴した水分を含む酸素ガスが前記接続路45を介して酸化剤流路35に供給されるようになっている。また前記排出路54は貯溜部53に接続されている。
【0027】
前記第1の燃料電池2における電解質膜23としては陽イオン交換膜などからなる高分子電解質膜を用いることができ、また前記第2の燃料電池3において電解質膜33としては陰イオン交換膜などからなる高分子電解質膜を用いることができる。この陽イオン交換膜及び陰イオン交換膜としては例えば商品面「ナフィオン」(デュポン株式会社製)を用いることができる。また第2の燃料電池3において、陰イオン交換膜などの電解質膜の代わりに負極31と正極33との間を水酸化カリウム(KOH)又は水酸化ナトリウム(NaOH)水溶液などの電解質液を満たした構成であってもよい。
【0028】
また、負極21、31及び正極22、32としては、白金を分散した炭素または鉄、ニッケル、クロム、銅、白金、パラジウムなどの金属あるいはそれら金属の合金が用いられ、発電効率や耐久性がよく、低コストという点でニッケルまたはニッケル・クロム合金の多孔体例えば粒状焼結体や発泡材を基材とし、その表面に白金、パラジウムなどの貴金属からなる触媒をメッキして触媒層を形成したものなどが用いられる。この実施の形態では例えば両面に触媒層が形成された負極が用いられる。
【0029】
さらに負極21としては、上記の電極材料を用いてもよいが、特に好ましいのは水素吸蔵合金又はその水素化物である。この水素吸蔵合金又はその水素化物は、水素を可逆的に吸収、放出し得るものであれば特に制限はなく、例えばMg2Ni合金、Mg2NiとMgとの共晶合金のようなMg2Ni系合金のA2B型合金、ZrNi2系合金、TiNi2系合金などのラベス相系AB2型合金、TiFe系合金のようなAB型合金、LaNi5系合金のようなAB5型合金、TiV2系合金のようなBCC型合金の中から任意に選ぶことができる。
【0030】
この中で好ましいのは、LaNi4.7AL0.3合金、MmNi0.45Mn0.4Al0.3Co0.75合金(但しMmはミッシュメタル)、MmNi3.75Co0.75Mn0.20Al0.30合金(但しMmはミッシュメタル)、Ti0.5Zr0.5Mn0.8Cr0.8Ni0.4、Ti0.5Zr0.5V0.5Ni、Ti0.5Zr0.5V0.75Ni1.25、Ti0.5Zr0.5V0.5Ni1.5、Ti0.1Zr0.9V0.2Mn0.6Co0.1Ni1.1、MmNi3.87Co0.78Mn0.10Al0.38(但しMmはミッシュメタル)などである。
【0031】
またこの燃料電池システム1は、後述する作用説明中で述べるように第1の燃料電池2の燃料流路24に供給される金属水素錯化合物のアルカリ水溶液の濃度調整を行うためのプログラムを備えた制御部55を有している。
【0032】
次に上述の実施の形態の作用について図1及び図2を参照しながら説明する。前記酸化剤供給源6から酸化剤である例えば酸素ガスをポンプP3によって第1の燃料電池2の酸化剤流路25に供給する。
【0033】
一方燃料貯槽部5から混合部51に、水酸化ナトリウム水溶液に水素化ホウ素ナトリウムを溶解させて既述のように調整した燃料液を所定の量供給すると共に、貯溜部53から混合部51に戻り水を所定の量供給する。運転の立ち上げ時においては、貯溜部53内に例えば純水あるいはアルカリ濃度を調整したアルカリ水溶液を溜めておいてもよい。そして混合部51内を通流することで上記2つの溶液が混合され、当該水酸化ナトリウム水溶液に溶解している水素化ホウ素ナトリウムの濃度を設定濃度となるように燃料液を調整する。具体例を挙げると、燃料貯槽部5からの水素化ホウ素ナトリウムの濃度が10〜20重量%の燃料液と、貯溜部53からの戻り水とを混合して水素化ホウ素ナトリウムの濃度が5〜15重量%の燃料液を得、この燃料液を第1の燃料電池2の燃料流路24に供給する。この燃料は燃料流路24を通流し、多孔質体である負極21内に浸透していき、このとき下記の(1)式で示される8電子反応が主として起こり、また下記の(2)式で示される4電子反応も起っていると考えられる。
【0034】
NaBH4+8NaOH→NaBO2+6H2O+8Na+8e……(1)
NaBH4+4NaOH→NaBO2+2H2O+2H2+4Na+4e……(2)
このようにして負極21から電子が、負極21、正極22間に接続された図示しない負荷に取り出されると共に、燃料中のナトリウムイオン(Na)が陽イオン交換膜からなる電解質膜23を通って正極22側に移動する。その際ナトリウムイオンは3〜5個の水(H2O)分子を同伴する。前記正極22においては下記の(3)式に示すようにナトリウムイオンと水と酸化剤流路25に供給された酸素とが反応することで水酸化ナトリウムが生成される。
【0035】
2O2+4H2O+8Na+8e→8NaOH……(3)
このように酸化剤流路25内で生成された水酸化ナトリウム水溶液と、反応には使われなかった余剰燃料(O2)とは、即ちナトリウムイオンを同伴した水分を含む酸素ガスは、接続路45を介して第2燃料電池3の酸化剤流路35に供給される。
【0036】
また既述の(2)式に示すように上記燃料液と負極21との電極反応により生成した水素ガスは気液分離膜4を通って第2の燃料電池3の負極室30aに移動し、下記の(4)式に示すように水素ガスと第2の燃料電池3の正極32から移動してきた水酸化物イオン(OH)とが反応することで水(H2O)と電子(e)が生成される。
【0037】
2H2+4OH→4H2O+4e……(4)
この電子は外部に接続された図示しない負荷を通って正極32に受け渡される。また燃料流路34内で生成された水は気液分離膜4を通過してきた水素ガスに混入しているNa等のアルカリ金属イオンと反応し貯溜部53に送られる。
【0038】
なお、前記燃料流路24内で生成された生成物(NaBO2、H2O)及び反応には使われなかった余剰燃料(NaBH4、NaOH)は燃料排出路42から排出される。
【0039】
第2の燃料電池3の正極32では、下記の(5)式に示すように、負極31、正極32間に接続された負荷を通ってきた電子と、酸化剤流路35に供給されたナトリウムイオンを同伴した水分を含む酸素ガスとが反応することで水酸化物イオン(OH)が生成される。
【0040】
O2+2H2O+4e→4OH……(5)
この水酸化物イオンは上述したように陰イオン交換膜からなる電解質膜33を通過して負極31側に移動し、既述の(4)式の反応に寄与することになる。
【0041】
したがって、燃料電池3の全体の反応としては、下記の(6)式に示すように、水素が酸素と反応して、水が生成する反応が生じる。
【0042】
H2+(1/2)O2→H2O……(6)
また前記酸化剤流路35で反応に使われなかったナトリウムイオンを同伴する水分(アルカリ水溶液)は余剰燃料である酸素ガスと共に酸化剤排出路51を介して貯溜部53に送られる。
【0043】
上述の実施の形態によれば、第1の燃料電池(ボロハイドライド燃料電池)2の負極室20aにて生成された水素ガスを、第2の燃料電池(アルカリ型燃料電池)3にて利用しているので運転効率が高い。
【0044】
また第2の燃料電池3において、正極室30b側からOHが移動して負極室30aにてH2Oが生成されるため、第1の燃料電池2から第2の燃料電池3に送られる水素ガスについては前記H2Oによって必然的に加湿されることから、別途加湿する必要がない。さらに気液分離膜4を通過してきた水素ガスにはNa等のアルカリ金属イオンが混入しているが、当該アルカリ金属イオンは、負極室30aにて生成された前記H2Oと反応して水酸化アルカリとなるため、アルカリ金属イオンが負極31及び電解質膜33に付着析出して、これらを劣化させるおそれがなく、従ってアルカリ金属イオンを除去する必要がない。このため加湿器及びミスト除去手段が不要となり、この結果第1の燃料電池2と第2の燃料電池3との直接接続構造、即ち第1の燃料電池2の負極室20aと第2の燃料電池3の負極室30aとを気液分離膜4を介して一体化させる構造を取ることができるので、燃料電池システムのコンパクト化を図ることができる。
【0045】
さらに加湿エネルギーが不要なことから燃料電池システムを運転するのに必要なエネルギーが小さくなるのでエネルギー効率も向上する。
【0046】
また上述の実施の形態によれば、第2の燃料電池3の負極室30a及び正極室30bから排出されるアルカリ水溶液例えば水酸化ナトリウム水溶液をいわばフィードバックして、その戻り水と燃料貯槽部5に蓄えられている水素化ホウ素ナトリウムのアルカリ水溶液(燃料液)とを混合して燃料の濃度を調整して第1の燃料電池2の燃料流路24に供給するようにしているので、燃料電池から排出されるアルカリ水溶液を再利用することができる。このためアルカリ水溶液の使用量を抑えることができるので、低コスト化に寄与する。なお、ここでいう燃料の濃度とは、水素化ホウ素ナトリウムの濃度及びアルカリ濃度を指すが、例えばアルカリ濃度は概ねある許容範囲に入っているものとして、水素化ホウ素ナトリウムの濃度の調整のみを目的とする場合も本発明の範囲に含まれる。
(本発明の第2の実施の形態)
続いて図1の構成をより具現化した例について図3から図5を参照しながら説明する。図3は前記第1の燃料電池2と前記第2の燃料電池3とを、互いに対向する一対のプレートの間に設け、一つの燃料電池スタックとして構成した例を示している。以下の説明において、図1に相当する部分については便宜上同じ符号を付しておく。図3中6A及び6Bは、例えば導電性材料からなるセパレータである。前記セパレータ6Aの一方の面には、前記気液分離膜4によって第1の領域8aと第2の領域8bとに分割されており、図4に示すように第1の領域8aには、屈曲路をなす溝60が形成され、この溝60は金属水素錯化合物のアルカリ水溶液が通流するための流路であると共に、第2の領域8bには網目状の路をなす溝61が形成され、この溝61は水素ガス及びアルカリ水溶液が通流するための流路である。前記流路(溝)60は先の実施の形態において燃料流路24に相当し、前記流路(溝)61は先の実施の形態において燃料流路34に相当する。
【0047】
また図4に示すように前記セパレータ6Aにおける流路60の左下端には供給口60aが形成されており、前記流路60の右上端には排出口60bが形成されている。従って前記流路60の左下端の供給口60aに供給された金属水素錯化合物のアルカリ水溶液は当該流路60を流れて排出口60bから排出される。さらに前記セパレータ6Aにおける流路61の右下端には排出口61aが形成されており、先の実施の形態で述べたように気液分離膜4を透過した水素ガスが当該流路61内に拡散されると共に第2の燃料電池3の負極31の電極反応により生成した水(アルカリ水溶液)が当該流路61を流れて排出口61bから排出される。
【0048】
前記セパレータ6Bの一方の面には、屈曲路をなす溝62が形成されており、この溝62は酸素ガスが通流するための流路である。前記流路(溝)62はセパレータ6Aに形成された第1の領域8aと第2の領域8bとの投影領域に形成されており、第1の燃料電池2の正極22に酸素ガスを供給するための流路と第2の燃料電池の正極32に酸素ガスを供給するための流路とが共通化されている。また図3に示すように前記セパレータ6Bにおける流路62の左上端には供給口62aが形成されており、前記流路62の右下端には排出口62bが形成されている。従って前記流路62の左上端の供給口62aに供給された酸素ガスは当該流路62を流れ、そして先の実施の形態で述べたように第1の燃料電池2の正極22の電極反応により生成した水(アルカリ水溶液)が当該流路62の排出口62bから排出される。なお、前記流路62は先の実施の形態において酸化剤流路25及び酸化剤流路35に相当する。
【0049】
図3中7A及び7Bは、ガスケットであり、当該ガスケット7A及び7Bの面には、第1の領域8aと対向する部分に窓71a及び72aが夫々形成されていると共に第2の領域8bと対向する部分に窓71b及び72bが夫々形成されている。前記ガスケット7Aの窓部71aには第1の燃料電池2の負極21が密に嵌合されており、前記ガスケット7Aの窓部71bには第2の燃料電池3の負極31が密に嵌合されている。また前記ガスケット7Bの窓部72aには第1の燃料電池2の正極22が密に嵌合されており、前記ガスケット7Bの窓部72bには第2の燃料電池3の正極32が密に嵌合されている。さらに前記負極21と前記正極22との間には電解質膜23が配置されると共に前記負極31と前記正極32との間には電解質膜33が配置されている。こうして前記セパレータ6Aに形成された第1の領域8aと対向する部分には負極21、電解質膜23、正極22がこの順に積層されると共に前記セパレータ6Aに形成された第2の領域8bと対向する部分には負極31、電解質膜33、正極32がこの順に積層され、これらは例えば接着剤などで互いに固定されている。なお、図3においてバルブV1〜V4は便宜上省略してある。
【0050】
この燃料電池スタックでは、図5に示すように金属水素錯化合物のアルカリ水溶液が燃料供給路41から供給口60aを介して流路60に供給されると共に酸素ガスが酸化剤供給路44から供給口62aを介して流路62に供給されると、既述の(2)式に示すように第1の燃料電池2の負極21の電極反応により水素ガスが発生し、当該水素ガスは気液分離膜4を透過して流路61内に拡散され、第2の燃料電池3の正極32から移動してきた水酸化物イオン(OH)と反応することで既述の(4)式に示すように水(アルカリ水溶液)が生成される。この水は流路61を通流して流路61の排出口61aから排出される。また酸素ガスが流路62を通流するに当たって、第1の領域8aの投影領域を通流したときには第1の燃料電池2の負極21から移動してきたナトリウムイオン(Na)と反応することで既述の(3)式に示すように水酸化ナトリウム水溶液が生成し、第2の領域8bの投影領域を通流したときには既述の(5)式に示すように第2の燃料電池3の正極32の電極反応により水酸化物イオン(OH)が生成し、この水酸化物イオンは電解質膜33を通過して負極31側に移動する。そして水酸化ナトリウム水溶液は流路62を通流して流路62の排出口62aから排出される。このようにプレートを第1の領域8a及び第2の領域8bに分割して各領域を第1の燃料電池2の負極室及び第2の燃料電池3の負極室に割り当て、また正極室を共通化することにより、薄型の燃料電池システムを構成することができる。
【0051】
また図6に示すように、図3に示した燃料電池スタックを複数枚例えば5枚配列し、ポンプP1によって金属水素錯化合物のアルカリ水溶液を燃料供給路41を介してセパレータ6Aの一方の面に形成された流路60の各々に分配供給すると共にポンプP3によって酸素ガスを酸化剤供給路44を介してセパレータ6Bの一方の面に形成された流路62の各々に分配供給する構成であってもよい。なお、図6においてバルブV1〜V3は便宜上省略してある。このような構成にすれば、スタックの数を調整することで所望の電力量を負荷に供給することができる。
(本発明の第3の実施の形態)
本発明の他の実施の形態について、図7を用いて説明する。図7は本発明の他の実施の形態に係る燃料電池システムの基本構成を示す図である。なお、以下の説明において図1と同じ構成にある部分については便宜上同じ符号を付してある。図7中70は例えば絶縁材からなるケース体である。前記ケース体70内の下方側には電解質膜23が設置されており、当該電解質膜23により負極21を備えた負極室20aと正極22を備えた正極室20bとに区画され、ボロハイドライド燃料電池(第1の燃料電池2)として構成されていると共に前記ケース体70の上方側には電解質膜33が設置されており、当該電解質膜33により負極31を備えた負極室30aと正極32を備えた正極室30bとに区画され、アルカリ型燃料電池(第2の燃料電池3)として構成されている。
【0052】
先ず第1の燃料電池2の構成について説明すると、前記正極室20bには板状の正極22がその一面側を電解質膜23に接触するように設けられると共に、前記正極22と他面側のケース体70との間には、酸化剤である酸素ガスの流路部71をなす空間が形成されている。この流路部71の一端側及び他端側には酸化剤供給路44及び酸化剤排出路45が夫々接続されており、前記酸化剤供給路44には上流側から酸化剤供給源6、バルブV4及びポンプP3がこの順に設けられている。前記酸化剤排出路(接続路)45の基端側は後述する流路部72に接続されている。
【0053】
前記負極室20aには板状の負極21がその一面側を電解質膜23に接触するように設けらている。また前記負極室20aには金属水素錯化合物のアルカリ水溶液からなる燃料液Dが満たされている。
【0054】
続いて第2の燃料電池の構成について説明すると、前記正極室30bには板状の正極32がその一面側を電解質膜33に接触するように設けられると共に、前記正極32と他面側のケース体70との間には、水分を含む酸素ガスの流路部72をなす空間が形成されている。この流路部72の一端側及び他端側には接続路45及び酸化剤排出路54が夫々接続されている。
【0055】
前記負極室30aには板状の負極31がその一面側を電解質膜33に接触するように設けられると共に、前記負極31と前記負極室20aに満たされている燃料液Dの液面との間には、水素ガスの供給部73をなす空間が形成されている。
【0056】
続いて上述の実施の形態の作用について述べる。前記酸化剤供給源6から酸化剤である例えば酸素ガスをポンプP3によって第1の燃料電池2の流路部72に供給すると、第1の燃料電池2の負極室20aでは既述の(2)式に示すように燃料液Dと負極21との電極反応により水素ガスが生成される。当該水素ガスは燃料液D中から第2の燃料電池3の供給部73に向かって移動する。即ち燃料液Dの液面から水素ガスが放出され、第2の燃料電池2の供給部73に水素ガスが供給されることになる。
【0057】
そして燃料中のナトリウムイオンが電解質膜23を通って正極22側に移動し、既述の(3)式のように第1の燃料電池2の流路部71では水酸化ナトリウム水溶液が生成する。前記流路部71において水酸化ナトリウムと、反応には使われなかった余剰燃料(O2)とは、即ちナトリウムイオンを同伴した水分を含む酸素ガスは、接続路45を介して第2の燃料電池の流路部72に供給される。
【0058】
第2の燃料電池3の流路部72にナトリウムイオンを同伴した水分を含む酸素ガスが供給されると、既述の(5)式に示すように第2の燃料電池3の正極32の電極反応により水酸化物イオン(OH)が生成し、この水酸化物イオンは電解質膜33を通過して負極31側に移動する。
【0059】
そして第2の燃料電池3の供給部73に供給された水素ガスと正極32側から移動してきた水酸化物イオンとによって既述の(4)式に示すように水(アルカリ水溶液)が生成される。当該水は重力によって下方側の第1の燃料電池2の負極室20aに満たされている燃料液Dに落下することになる。
【0060】
このような構成にある燃料電池システムであっても第1の実施の形態と同様の効果を得ることができる。
【0061】
また図8に示すように、一方の第1の燃料電池2の流路部71の一端側及び第2の燃料電池3の流路部72の一端側に他方の第1の燃料電池2の流路部71の一端側及び第2の燃料電池3の流路部72の一端側を夫々並列に連結した構成であってもよい。このような構成の場合、一方の第1の燃料電池2の流路部71に供給された酸素ガスは他方の第1の燃料電池の流路部71にも供給されると共に、他方の第2の燃料電池3の流路部72に供給された水分を含む酸素ガスは一方の第2の燃料電池3の流路部72にも供給されることになる。このような構成にすれば、より多くの電気量を負荷に供給できる。
【図面の簡単な説明】
【0062】
【図1】本発明の実施の形態に係る燃料電池システムを示す概略構成図である。
【図2】上記の実施の形態の作用を示す説明図である。
【図3】本発明の燃料電池システムの適用例を示す概略構成図である。
【図4】上記燃料電池システムに用いられるセパレータを示す概略平面図である。
【図5】上記の実施の形態の作用を示す説明図である。
【図6】本発明の燃料電池システムの適用例を示す概略構成図である。
【図7】本発明の実施の形態に係る他の燃料電池システムを示す概略構成図である。
【図8】本発明の実施の形態に係る他の燃料電池システムを示す概略構成図である。
【符号の説明】
【0063】
2 第1の燃料電池(ボロハイドライド燃料電池)
21 燃料極
22 酸化剤極
23 電解質膜
24 燃料流路
25 酸化剤流路
3 第2の燃料電池(アルカリ型燃料電池)
31 燃料極
32 酸化剤極
33 電解質膜
34 燃料流路
35 酸化剤流路
4 気液分離膜
42 燃料排出路
6A、6B セパレータ
7A、7B ガスケット


【特許請求の範囲】
【請求項1】
電解質層により、負極を備えた負極室と正極を備えた正極室とに区画され、金属水素錯化合物のアルカリ水溶液からなる燃料液が負極室に供給されると共に酸素ガスが正極室に供給される第1の燃料電池と、
陰イオンを透過させる電解質層により負極を備えた負極室と正極を備えた正極室とに区画され、水素ガスが燃料として負極室に供給されると共に水分を含む酸素ガスが正極室に供給される第2の燃料電池と、
前記第1の燃料電池の負極室と前記第2の燃料電池の負極室とを仕切り、気体は通過するが、液体は通過しない気液分離層と、
前記第1の燃料電池の負極室にて生成された水素ガスが前記気液分離層を介して前記第2の燃料電池の負極室に供給されることを特徴とする燃料電池システム。
【請求項2】
前記第1の燃料電池及び第2の燃料電池は、互いに対向する一方のプレート及び他方のプレートからなる一対のプレートの間に設けられ、
前記気液分離層は、前記一方のプレートの面を第1の領域と第2の領域に分割するように設けられ、
前記第1の領域と対向するように第1の燃料電池の負極が設けられると共に、この負極における他方のプレート側には第1の燃料電池の電解質層を介して正極が設けられ、
前記第2の領域と対向するように第2の燃料電池の負極が設けられると共に、この負極における他方のプレート側には第2の燃料電池の電解質層を介して正極が設けられ、
第1の燃料電池の酸素ガスの通流空間及び第2の燃料電池の酸素ガスの通流空間は、他方のプレート側において共通化されていることを特徴とする請求項1記載の燃料電池システム。
【請求項3】
他方のプレートに対向するように正極が設けられ、この正極のうち、第1の領域に対向する部位が第1の燃料電池の正極として機能し、第2の領域に対向する部位が第2の燃料電池の正極として機能することを特徴とする請求項2記載の燃料電池システム。
【請求項4】
金属水素錯化合物のアルカリ水溶液を貯槽する燃料貯槽部と、
前記第2の燃料電池の負極室から排出されるアルカリ水溶液と前記第2の燃料電池の正極室から排出されるアルカリ水溶液とを貯溜する貯溜部と、
前記燃料貯槽部からの金属水素錯化合物のアルカリ水溶液と前記貯溜部からのアルカリ水溶液とを混合して前記第1の燃料電池の負極室に供給するための混合部と、
前記燃料貯槽部からの金属水素錯化合物のアルカリ水溶液と前記貯溜部からのアルカリ水溶液との混合比を調整するための調整部と、を備えたことを特徴とする請求項1ないし3のいずれか一に記載の燃料電池システム。
【請求項5】
電解質層により、負極を備えた負極室と正極を備えた正極室とに区画され、金属水素錯化合物のアルカリ水溶液からなる燃料液が負極室に供給されると共に酸素ガスが正極室に供給される第1の燃料電池と、
陰イオンを透過させる電解質層により負極を備えた負極室と正極を備えた正極室とに区画され、水素ガスが燃料として負極室に供給されると共に水分を含む酸素ガスが正極室に供給される第2の燃料電池と、
前記第2の燃料電池の負極は、第1の燃料電池の負極室の燃料液に対して空間を介して上方側に位置し、前記空間は第2の燃料電池の負極室を形成し、第1の燃料電池の負極室から発生した水素ガスが第2の燃料電池の負極室に供給されることを特徴とする燃料電池システム。
【請求項6】
金属水素錯化合物が水素化ホウ素錯化合物であることを特徴とする請求項1ないし5のいずれか一に記載の燃料電池システム。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate