説明

燃焼合成方法および連続式反応設備

【課題】
連続して燃焼合成反応を可能とする燃焼合成方法および該燃焼合成方法に用いる連続式反応設備を提供する。
【解決手段】
外部加熱を必要とすることなく連鎖的に物質が合成される燃焼合成を連続的に行なう燃焼合成方法であって、複数の原料を混合する混合工程と、得られた混合原料を連続で移動する搬送式反応器内に投入する投入工程と、上記搬送中の混合原料に所定のタイミングで着火して反応させる反応工程と、得られた反応生成物を冷却後に搬送式反応器から取り出す取出工程とを備えてなり、上記搬送式反応器を構成する材料は、上記反応工程の燃焼化学反応において自身の酸化反応が生ぜず、かつ低熱膨張物質である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は燃焼合成方法およびその燃焼合成方法に用いる連続式反応装置に関する。
【背景技術】
【0002】
従来のセラミックスの合成には、1000℃から 2000℃前後の炉を用いて外部加熱を行なわなくてはならない。このため、セラミックスの合成には、膨大なエネルギーと大型の加熱機構を必要とし、これが製造コストを高くする原因となっている。
外部加熱を行なわない製造方法として、燃焼合成によるセラミックス粉末の合成が知られている(特許文献1、特許文献2)。燃焼合成法は、外部加熱を必要とすることなく、化合時に放出される大量の化学熱反応を利用して連鎖的に物質を合成する方法である。
【0003】
上記特許文献1による製造方法では、1種類の金属酸化物と2種類の異なる金属元素の計3種類の原料を出発原料とし、金属間化合物あるいは非酸化物セラミックスと酸化物セラミックスの2種類を合成している。例えば、酸化ニッケル粉末とアルミニウム粉末とアルミナ粉末とを混合し金型プレスを用いて円形状の成形体とした後、カーボンプレートに乗せ、高圧反応容器内に収納し、アルゴン雰囲気下で該成形体の上端面を着火することによりアルミニウム粉末の酸化燃焼反応を誘導し、還元されたニッケルが過剰に添加したアルミニウムと反応してNiAlを合成しながら、燃焼反応が連鎖的に進行する。その結果、外部加熱なしに金属間化合物の1つであるNiTiのインゴットを製造することができる。
上記特許文献2による製造方法では、チタン粉末とカーボン粉末をモル比で1:1に混合し、得られた混合粉末を円柱状成形体とし、次いで、空気中、黒鉛板上に置いた上記成形体の上部一端を放電により着火させて燃焼合成反応させる方法が開示されている。この方法により、表面層が主として酸化チタンセラミックスからなり、内部が主として炭化チタンセラミックスからなる多孔質体が得られている。
【0004】
しかしながら、従来の製造方法は、酸化物系原料と酸素供給源となる原料とを所定割合で混合する工程と、所定の配合比で混合された無機材料を予め円形または円柱状に成形する工程と成形体を反応装置に収容する工程と、成形体に着火させて反応させる工程とを備えた燃焼合成方法であり、少なくとも上記原料を成形する工程と、成形体を反応させる工程とは分離する必要がある。また、空気中で燃焼合成を行なうと、燃焼時の酸化反応により黒鉛材が損傷するおそれがある。したがって、反応系をガス置換または脱気することが必須となり、装置の密閉化が必要である。さらに着火後の成形体の燃焼合成は発火・爆発の危険性もあることから、バッチ方式の反応装置を用いる製造方法を採用せざるを得なかった。このため、バッチ方式の反応装置を用いる製造方法では、バッチ毎の品質管理が必要で、製造工程数の増加や工程の安全管理を含めた設備コストの増大に加え、生産効率の向上にも制限を受ける等の問題があった。
【特許文献1】特開平5−9009号公報
【特許文献2】特開2003−55063号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明はこのような問題に対処するためになされたもので、連続して燃焼合成反応を可能とする燃焼合成方法および該燃焼合成方法に用いる連続式反応設備の提供を目的とする。
【課題を解決するための手段】
【0006】
本発明の燃焼合成方法は、原料が化合するときの燃焼化学反応により、外部加熱を必要とすることなく連鎖的に物質が合成される燃焼合成を連続的に行なう燃焼合成方法であって、該燃焼合成方法は、複数の原料を混合する混合工程と、得られた混合原料を連続で移動する搬送式反応器内に投入する投入工程と、上記搬送中の混合原料に所定のタイミングで着火して反応させる反応工程と、得られた反応生成物を冷却後に搬送式反応器から取り出す取出工程とを備えてなり、上記搬送式反応器を構成する材料は、上記反応工程の燃焼化学反応において自身の酸化反応が生ぜず、かつ低熱膨張物質であることを特徴とする。
本発明において、低熱膨張物質とは、熱膨張率が 3.0×10-6/℃以下の物質をいう。
【0007】
上記混合原料は、酸素供給源である過酸化物粉末と、発熱源である金属粉末とを少なくとも含み、上記投入工程は、予め上記過酸化物粉末および金属粉末のいずれか一方と、安定な原料粉末とを所定の比率で予備混合して中間原料を得た後、この予備混合に使用しなかった粉末を上記中間原料に、所定の比率で混合して混合原料とした後に投入する工程であることを特徴とする。
【0008】
上記搬送式反応器の搬送速度は、上記反応工程において燃焼合成が伝播する速度と同調した速度であり、その搬送方向は、上記反応工程における燃焼合成反応の主伝播方向と略反対方向であることを特徴とする。
【0009】
上記反応工程における着火は、上記混合原料の燃焼合成反応を途切れさせない時間間隔で行なうことを特徴とする。
【0010】
本発明の連続式反応設備は、上記の燃焼合成方法により燃焼合成を行なうための連続式反応設備であって、複数の原料を混合する混合装置と、上記混合原料を所定速度で連続で搬送する搬送式反応器と、上記混合装置により得られた混合原料を上記搬送式反応器内に投入する投入装置と、搬送中の上記混合原料に所定のタイミングで着火して反応させる反応装置と、得られた反応生成物を冷却後に搬送設備から取り出す取出装置とを備えてなり、上記搬送式反応器を構成する材料は、上記反応装置内での燃焼化学反応において自身の酸化反応が生ぜず、かつ低熱膨張物質であることを特徴とする。
【発明の効果】
【0011】
本発明の燃焼合成方法は、酸化物系原料と酸素供給源とが直接接触しない原料混合方法を採用し、燃焼化学反応において自身の酸化反応が生ぜず、かつ低熱膨張物質である材料で構成された搬送式反応器を用いるので、燃焼合成反応を空気中で行なうことができ、原料粉末の混合工程から反応生成物の取出工程までを連続して処理することが可能となる。その結果、品質管理の軽減、製造工程数の減少や工程の安全管理を含めた設備コストの低減に加え、生産効率の向上が可能となった。
【0012】
本発明の連続式反応設備は、セラミックスの燃焼合成反応において原料粉末の混合工程で酸化物系原料と酸素供給源とが直接接触しない方法によって安定化した混合原料を用い、装置材料に燃焼化学反応において自身の酸化反応が生ぜず、かつ低熱膨張物質である材料を用いるので、燃焼合成反応において原料の発火や爆発を防ぐとともに、燃焼時の酸化反応による反応器の損傷を防止することができる。その結果、この連続式反応設備を用いることによって、投入される混合原料毎に連続して空気中で燃焼合成反応を行なうことが可能になった。
【発明を実施するための最良の形態】
【0013】
本発明の燃焼合成方法を図1に基づいて説明する。図1は燃焼合成方法を示す工程図である。図1に示すように燃焼合成方法は、主生成物を構成する元素源となる複数の原料を混合する混合工程1と、混合原料Eを搬送式反応器内に投入する投入工程2と、上記搬送式反応器内の混合原料Eを所定速度で搬送する搬送工程3と、上記搬送中の混合原料Eに所定のタイミングで着火して反応させる反応工程4と、得られた反応生成物Fを冷却後に搬送式反応器から取り出す取出工程5とを備えてなる。
また、特に混合工程1において、過酸化物粉末および金属粉末のいずれか一方Aと、安定な原料粉末Bとを所定の割合で予備混合して中間原料Cとし、この中間原料Cと、予備混合に使用しなかった粉末Dとを所定の割合で混合して混合原料Eを得る。
【0014】
本発明における搬送式反応器は、コンベア等の移動式部材そのもの、または、これらの移動式部材上に載置した坩堝等の反応容器である。コンベア自体を反応器として用いる場合は、該コンベア上に混合原料を載せ、反応容器を用いる場合には、該反応容器内に混合原料を投入する。これらの搬送式反応器を構成する材料は、上記反応工程の燃焼化学反応において、該混合原料と接触する部分で自身の酸化反応が生ぜず、かつ低熱膨張物質である。
該材料は、熱膨張率が黒鉛(熱膨張率 5×10-6/℃)よりも小さいことが好ましく、特にチタン酸−アルミニウム系セラミックス(熱膨張率 1.2×10-6/℃)であることが好ましい。
本発明の燃焼合成方法は、上記材質の反応器を用いることにより従来は困難であった空気中における燃焼合成方法が可能になることに着目し、チャンバー等を用いずに空気中で連続的に燃焼合成を行なうものである。
【0015】
燃焼化学反応は、外部加熱を必要とすることなく、原料の化合時に放出される大量の燃焼熱を利用する反応であり、この反応により連鎖的に物質が合成される。本発明の燃焼合成方法としては、酸化物系原料と酸素供給源とを原料とする燃焼合成方法が挙げられる。該燃焼合成方法の反応系としては、(イ)4族元素を含む金属粉末、2族元素を含む元素の炭酸塩、および2族元素を含む元素の過酸化物とを少なくとも含む反応原料を用いる反応系、(ロ)4族元素を含む金属粉末と、2族元素を含む元素の炭酸塩と、過塩素酸ナトリウムとを少なくとも含む反応原料を用いる反応系が挙げられる。
【0016】
上記(イ)の反応系としては、4族金属粉末、2族炭酸塩、および2族過酸化物のみ、または、これに4族金属酸化物を加えたものであることが反応生成物が圧電性、誘電特性、コスト面などに優れるので好ましい。例えば、チタン酸バリウム(BaTiO3 )やチタン酸カルシウム(CaTiO3 )などの誘電体セラミックスを合成する場合、以下の化学反応式にしたがって生成する。反応原料である4族金属粉末と、2族炭酸塩と、2族過酸化物とは、下記化学反応式を満たすそれぞれのモル質量に相当する量で配合する。
また、4族金属酸化物を配合する場合は、断熱火炎温度を 1500℃以上に維持できる割合で配合する。該4族金属酸化物の割合を増加させることで断熱火炎温度を下げることができる。

Ti+2TiO2+BaCO3+2BaO2→3BaTiO3+CO2
Ti+2TiO2+CaCO3+2CaO2→3CaTiO3+CO2
Ti+2TiO2+BaCO3+2CaO2→3(Ba1/3,Ca2/3)TiO3+CO2
Ti+2TiO2+CaCO3+2BaO2→3(Ba2/3,Ca1/3)TiO3+CO2

【0017】
上記(ロ)の反応系としては、4族金属粉末、2族炭酸塩、およびNaClO4のみ、または、これに4族金属酸化物を加えたものであることが反応生成物が洗浄性に優れ、圧電性、誘電特性に優れるので好ましい。
例えばチタン酸ストロンチウム(SrTiO3)の場合、以下の化学反応式にしたがって生成する。各反応原料は、4族金属粉末と2族炭酸塩とは反応に必要なそれぞれのモル質量に相当する量を配合するが、酸素発生物質は反応に必要なモル質量以上を配合できる。

Ti+SrCO3+0.5NaClO4 → SrTiO3+CO2↑+0.5NaCl

【0018】
本発明の燃焼合成方法において、酸化物系原料と酸素供給源とを所定割合で混合する混合工程1は、上記(イ)または(ロ)の反応系において最終生成物が形成できる原子割合で混合した原料をボールミル、ヘンシェルミキサー、レーディゲミキサー、タンブラー等の公知の混合装置を用いて混合する工程である。
【0019】
また、混合工程1では、予備混合工程を設け反応性粉末である過酸化物粉末(反応性粉末X)と、同じく反応性粉末である金属粉末(反応性粉末Y)とが同時に接触しないように、反応性粉末Xと、これに反応することのない安定な原料粉末とを予備混合して安定な中間原料を得た後、反応性粉末Yを加えて混合することが好ましい。
反応性粉末は中間原料粉末の中で安定な原料粉末によって周囲を覆われているため、原料粉末中における該反応性粉末の濃度が低く反応因子が低減されるので、発火に至ることなく安全に乾式混合することができる。
【0020】
上記(イ)または(ロ)の反応系において、反応原料としての4族元素を含む金属の形状は、微粉末であることが好ましく、比表面積が 0.01〜2 m2/g である。燃焼波が伝播し、かつ取り扱いやすいので好ましい比表面積の範囲は 0.1〜0.6 m2/g である。比表面積が 0.01 m2/g 未満の場合、発熱源となる金属粉未と酸素供給源となる過酸化物の接触面積が少ないため、燃焼波が伝播せず、セラミックスが合成できない場合がある。また、比表面積が 2 m2/g をこえる金属粉未は極めて活性であり、取り扱いが困難となるため好ましくない。
なお本発明において、金属粉末の比表面積は、BET法により測定された値をいう。
【0021】
また、金属微粉末は、平均粒子径が同一であっても、比表面積が異なると反応性に差が認められる。すなわち、球状よりも比表面積が大きくなる形状の金属粉末を用いると燃焼合成反応がより速やかに進行した。比表面積が大きくなる形状としては、球状粒子表面に複数の凹凸が形成された粒子、粒子全体としていびつな形状の粒子、またはこれらの組み合わせがある。
本発明に使用できる平均粒子径としては 150μm 以下、好ましくは 0.1〜100μm である。150μm をこえると、他の原材料との混合が十分でなくなり、燃焼波が伝播しない場合が生じる。表面に凹凸が形成された粒子またはいびつな形状の平均粒子径の測定方法は、画像解析法が好ましい。
【0022】
所定割合で混合された混合物を投入する投入工程2は、混合粉末を搬送式反応器内に投入する工程である。コンベア自体を反応器として用いる場合は、該コンベア上に混合原料を連続して均一に敷き詰める。また、反応容器を用いる場合には、所定量の混合原料を反応容器毎に投入する。
混合原料Eは、必要に応じてペレット化した後に投入される。また、投入後において反応容器内でペレット状に押し固める等の処理を行なってもよい。ペレット状に押し固めるには、たとえばポリビニルアルコールなどの高分子材料を粘結剤として使用することができる。
【0023】
搬送工程3は、混合原料Eを所定速度で搬送する工程である。
コンベア上に直接混合原料を投入する場合では、該搬送工程における搬送速度を、燃焼合成が伝播する速度と同調した速度とし、搬送方向を、燃焼合成反応の主伝播方向と略反対方向とすることが好ましい。この場合、搬送されてきた混合原料の先端部に着火させることにより、断熱火炎温度が 1500 ℃以上である燃焼合成反応が開始し、燃焼合成波となって未反応の混合原料が搬送されて来る方向に主として伝播するので、連続して燃焼合成反応を起こすことができる。
なお、燃焼合成波が伝播する速度は、混合原料において反応希釈剤となる4族金属酸化物等の割合を増加させることで減速できる。
また、コンベア上に坩堝等の反応容器をおいて、該反応容器毎に燃焼合成反応を行なうセミバッチ式の場合では、搬送速度は適宜決定できる。
また、反応工程前に混合原料を、予備加熱することで、反応の進みにくい系でも燃焼伝播がしやすくなる。予備加熱は、例えば反応装置の前部に、加熱ヒータ、遠赤外線ヒータ等を設置することで行なう。
【0024】
反応工程4において上記混合原料に着火する方法は、混合原料が着火発熱可能となる方法であれば特に限定されない。本発明においては、燃焼化学反応において自身の酸化反応が生ぜず、かつ低熱膨張物質の材料を用いた搬送式反応器を用いているので、カーボンフィルムを着火発熱させて熱源とし、混合粉末に接触させて着火発熱させる方法が取り扱いに優れているので好ましい。
着火は、燃焼合成反応を途切れさせない時間間隔で行なう。なお、混合原料を反応容器内に投入する場合には、反応容器毎に1回行なう。
また反応工程4では、燃焼合成反応により得られた反応生成物を、自然放冷または強制冷却により冷却することが好ましい。
【0025】
取出工程5は、燃焼合成が終了した反応生成物または反応生成物の入っている反応容器を搬送設備から取り出す工程である。取り出された反応生成物は粉砕、異物除去等の別工程を経て製品となる。
【0026】
本発明の一実施例に係る連続式反応設備を図2に基づいて説明する。図2は、連続式反応設備のフローを示す図である。図2に示すように、連続式反応設備は、予め過酸化物粉末および金属粉末のいずれか一方と、安定な原料粉末とを予備混合して中間原料粉末を得る予備混合装置6と、上記予備混合に使用しなかった粉末を上記中間原料粉末に、所定の比率で混合する混合装置7と、混合された原料粉末を投入する投入装置8と、混合原料が投入された反応容器10aを所定速度で搬送するベルトコンベア9と、搬送中の前記混合原料に所定のタイミングで着火して反応させる反応装置10と、反応生成物を冷却後に搬送式反応器から取り出す取出装置11とから構成される。該実施例の場合、反応容器10aとベルトコンベア9とから搬送式反応器が構成されている。
【0027】
予備混合装置6は、原料となる過酸化物粉末および金属粉末のいずれか一方Aを計量する装置6aと、安定な原料粉末Bを計量する装置6bと、AおよびBを所定の割合で計量して予備混合した中間原料粉末Cを貯蔵する装置6cとを有し、混合装置7は予備混合に使用しなかった粉末Dを計量する装置7aと、中間原料粉末Cを計量して粉末Dと混合した混合原料Eを貯蔵する装置7bを有する。
これらの原料の混合にはボールミル、ニーダー、リボンブレンダー、ヘンシェルミキサー、レーディゲミキサー、タンブラー等の公知の混合装置を使用することができる。また、混合原料を所定の周期で連続的に作製するには、オートフィーダー等の自動計量機を混合装置に組み込むことが好ましい。混合装置としては、原料の混合、貯槽の機能を併せ持つことができ、自動計量機と組合せて、原料の計量、混合、貯蔵、投入の一連の操作を自動化しやすいリボンブレンダーやヘンシェルミキサーを用いることが好ましい。
【0028】
混合原料Eは所定速度で搬送するベルトコンベア9の上に並べられた複数の連続して隣り合う反応容器10aに投入装置8によって投入される。投入された混合原料Eは搬送設備9により反応装置10に搬送される。
反応装置10は、着火治具10bと、燃焼合成反応により反応容器10aから飛散した原料および反応生成物が反応装置10から外に漏洩しない気密構造10cと、緊急異常事態の発生時に不活性ガスを供給する不活性ガス供給治具10dとを有する。気密構造10cは反応装置10の入口から出口まで設置されている。反応装置10に搬送された混合原料Eは着火治具10bにより、着火され反応容器10a内で燃焼合成反応が開始する。着火は、反応容器毎に1回行なう。
【0029】
燃焼合成反応が終了して得られた反応生成物Fは不活性ガス気流中で自然放冷することができる。また、この不活性ガスは反応装置10の気密構造10cにより反応装置10内をシールして、混合原料Eの異常燃焼による発火・爆発を防止する役割も果たす。本発明では、原料混合方法、反応容器材質および燃焼合成波の速度管理等、種々の安全対策を講じているので、緊急異常事態の発生時以外は通常、使用することは不要である。
冷却の終わった反応生成物Fは、取出装置11に搬送され、反応生成物Fの入っている反応容器10aと、回収治具11aにより回収された飛散反応生成物Fとを取り出す移送治具11bにより取り出される。
図2は、混合原料投入装置8から取出装置11までを直線的に配置した例であるが、これらの設備は、円形のサーキット状に配置することもできる。
【0030】
反応容器10aの材料は、原料の燃焼合成反応に際して反応容器自身の酸化反応が生じない材料である。また、燃焼合成反応は比較的短時間で終了するため、熱膨張特性に優れていることが好ましい。
また、燃焼合成反応を開始させるための着火は、カーボンフィルムに通電させて着火させることが多く、その場合、カーボンフィルムの接触による反応容器の損傷を防止するため、反応容器の材料は絶縁材であることが好ましい。
【0031】
本発明の連続式反応設備の反応容器としては、チタン酸−アルミニウム系セラミックスが、熱膨張が少なく、燃焼合成反応時に酸化反応が生じないので好ましい材料である。チタン酸−アルミニウム系セラミックスとしては、Al2TiO5等が挙げられる。
上記材料を用いた反応容器としては、坩堝、坩堝類似の反応容器、角型浅皿、バット、セッター等を挙げることができる。また、本発明の上記材料は、反応装置内に設置され、円柱状などに成形された材料を載置するための基板等にも使用できる。なお、ベルトコンベア上に直接混合原料を投入し、該ベルトコンベア上で燃焼合成反応を起こす場合には、ベルトコンベアを上記材料で形成する。
【実施例】
【0032】
実施例1
チタン酸−アルミニウム系セラミックス製反応容器(オーセラ(株)社製 レコジット)を反応容器として用い、ベルトコンベア上に並べ空気中で燃焼合成反応を行なった。用いた反応容器の熱膨張率は 1.2×10-6/℃であった。
配合原料は、Ti金属(比表面積 0.3 m2/g )を 100 モル、SrCO3を 100 モル、NaClO4を 50 モル用いた。これらの原材料をヘンシェルミキサーを用いて 3 分間混合し、壁面に付着した粉末をかき落とした後、再度3分間混合した。これを計 3 回繰り返した後、原料投入装置に貯蔵した。
原料投入装置から混合粉末を 1 kg を、ベルトコンベア上に並べられた反応容器1に、1 kg 投入し、反応容器内で成形治具を用いて形状調整した。この操作を 5 回繰り返し、最初の反応容器を着火位置まで搬送した。着火用のカーボンフィルムを搬送されてきた混合原料の先端部と接触させて着火した。着火により反応容器内の混合原料に燃焼波が伝播し、最初の反応容器内での燃焼合成反応が約 10 秒間で終了した。2 番目の反応容器を着火位置まで搬送し、最初の反応容器と同様に着火し、燃焼合成反応を起こさせた。この操作を 5 番目の反応容器まで行ない、冷却されて搬送されて来る反応生成物と副生成物(NaCl)を取出装置から順次取り出した。なお、燃焼合成時に反応容器の酸化反応による損傷は生じなかった。アルミナ製乳鉢を用いて反応生成物を粉砕し、平均粒子径が1μmの未洗浄セラミックス粉末を得た。
得られた未洗浄セラミックス粉末を十分水洗し、この粉末に付着したNaClを除去してセラミックスを得た。得られたセラミックス粉末の結晶相の同定をX線回折装置(XRD)を用いて行なったところ、SrTiO3であった。
【0033】
実施例2
チタン酸−アルミニウム系セラミックス製反応容器(オーセラ(株)社製 レコジット)を反応容器として用い、ベルトコンベア上に並べ空気中で燃焼合成反応を行なった。用いた反応容器の熱膨張率は 1.2×10-6/℃であった。
配合原料は、Ti金属(比表面積 0.3 m2/g )を 100 モル、TiO2を 200 モル、BaCO3を 100 モル、BaO2を 200 モル用いた。これらの原材料をヘンシェルミキサーを用いて 3 分間混合し、壁面に付着した粉末をかき落とした後、再度3分間混合した。これを計 3 回繰り返した後、原料投入装置に貯蔵した。
この原料を用いて実施例1と同様の操作を行ない、冷却されて搬送されて来る反応生成物を取出装置から順次取り出した。なお、燃焼合成時に反応容器の酸化反応による損傷は生じなかった。
アルミナ製乳鉢を用いて合成粉末を粉砕し、平均粒子径が1μmのセラミックス粉末を得た。得られたセラミックス粉末の結晶相の同定をX線回折装置(XRD)を用いて行なったところ、BaTiO3であった。
【0034】
比較例1
黒鉛製反応容器(東洋炭素社製 IG−11)を反応容器として用いる以外は実施例1と同一の原料、方法で空気中で燃焼合成を行なった。得られたセラミックス粉末は、X線回折の結果、SrTiO3以外に、黒鉛反応容器との反応物であるTiCが検出された。
【0035】
比較例2
アルミナ製反応容器(ニッカトー社製 SSA−S)を反応容器として用いる以外は実施例1と同一の原料、方法で空気中で燃焼合成を行なった。アルミナの熱膨張率は、7×10-6/℃であり、反応時の急激な温度変化に反応容器の変形が追従できず、反応容器が破損し、合成粉末が飛散していた。
【0036】
比較例3
ジルコニア製反応容器(ニッカトー社製 YSZ−8)を反応容器として用いる以外は実施例1と同一の原料、方法で空気中で燃焼合成を行なった。ジルコニアの熱膨張率は、9.5×10-6/℃であり、反応時の急激な温度変化に反応容器の変形が追従できず、反応容器が破損し、合成粉末が飛散していた。
【産業上の利用可能性】
【0037】
本発明の燃焼合成方法および連続式反応設備は、燃焼合成反応によるセラミックスの量産製造に好適に利用できる。
【図面の簡単な説明】
【0038】
【図1】本発明の連続式の燃焼合成方法を示す工程図である。
【図2】本発明の一実施例に係る連続式反応設備のフローを示す図である。
【符号の説明】
【0039】
1 混合工程
2 投入工程
3 搬送工程
4 反応工程
5 取出工程
6 予備混合装置
7 混合装置
8 投入装置
9 コンベア
10 反応装置
10a 反応容器
10b 着火治具
10c 気密構造
10d 不活性ガス供給治具
11 取出装置
11a 回収治具
11b 移送治具
A 過酸化物粉末および金属粉末のいずれか一方
B 安定な原料粉末
C 中間原料
D Aに使用しなかった原料粉末
E 混合原料
F 反応生成物

【特許請求の範囲】
【請求項1】
原料が化合するときの燃焼化学反応により、外部加熱を必要とすることなく連鎖的に物質が合成される燃焼合成を連続的に行なう燃焼合成方法であって、
該燃焼合成方法は、複数の原料を混合する混合工程と、得られた混合原料を連続で移動する搬送式反応器内に投入する投入工程と、前記搬送中の混合原料に所定のタイミングで着火して反応させる反応工程と、得られた反応生成物を冷却後に前記搬送式反応器から取り出す取出工程とを備えてなり、
前記搬送式反応器を構成する材料は、前記反応工程の燃焼化学反応において自身の酸化反応が生ぜず、かつ低熱膨張物質であることを特徴とする燃焼合成方法。
【請求項2】
前記混合原料は、酸素供給源である過酸化物粉末と、発熱源である金属粉末とを少なくとも含み、前記投入工程は、予め前記過酸化物粉末および金属粉末のいずれか一方と、安定な原料粉末とを所定の比率で予備混合して中間原料を得た後、この予備混合に使用しなかった粉末を前記中間原料に、所定の比率で混合して混合原料とした後に投入する工程であることを特徴とする請求項1記載の燃焼合成方法。
【請求項3】
前記搬送式反応器の搬送速度は、前記反応工程において燃焼合成が伝播する速度と同調した速度であり、その搬送方向は、前記反応工程における燃焼合成反応の主伝播方向と略反対方向であることを特徴とする請求項1または請求項2記載の燃焼合成方法。
【請求項4】
前記反応工程における着火は、前記混合原料の燃焼合成反応を途切れさせない時間間隔で行なうことを特徴とする請求項1、請求項2または請求項3記載の燃焼合成方法。
【請求項5】
請求項1ないし請求項4のいずれか一項記載の燃焼合成方法により燃焼合成を行なうための連続式反応設備であって、
複数の原料を混合する混合装置と、前記混合原料を所定速度で連続で搬送する搬送式反応器と、前記混合装置により得られた混合原料を前記搬送式反応器内に投入する投入装置と、搬送中の前記混合原料に所定のタイミングで着火して反応させる反応装置と、得られた反応生成物を冷却後に前記搬送式反応器から取り出す取出装置とを備えてなり、
前記搬送式反応器を構成する材料は、前記反応装置内での燃焼化学反応において自身の酸化反応が生ぜず、かつ低熱膨張物質であることを特徴とする連続式反応設備。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2007−39254(P2007−39254A)
【公開日】平成19年2月15日(2007.2.15)
【国際特許分類】
【出願番号】特願2005−221920(P2005−221920)
【出願日】平成17年7月29日(2005.7.29)
【出願人】(000102692)NTN株式会社 (9,006)
【Fターム(参考)】