説明

生体試料反応装置

【課題】操作が極めて簡易で、小型の生体試料反応装置を得る。
【解決手段】反応基板20と、反応基板20を一定方向に沿って移動しながら押圧するローラー11とを備え、反応基板20は、第1の基板201上に設けられた複数のチャンバー203と、生体試料反応を行うための反応室205と、一端が1つのチャンバー203に繋がり、他端が反応室205に繋がる複数の流路204とを備え、ローラー11が基板上のチャンバー203を押しつぶすことにより、チャンバー203内の試薬液が流路204を通じて反応室205に供給され、各々のチャンバー203が第1の基板201上で配置されている位置と容積は、生体試料反応のプロセスにおける試薬液の投入時期と投入量に対応している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、生体試料反応装置に関するものである。
【背景技術】
【0002】
近年、鳥インフルエンザ等の検疫や輸入食品の安全確認等、迅速な検査が空港や港湾施設で求められるようになった。このような要望に応えるため、遺伝子検査や有害物質の判定の全工程をバイオチップ内で行う分析装置が開発されている。
【0003】
特許文献1には、シリコン基板の表面に形成された複数の独立した反応チャンバを有し、各反応チャンバで複数の生化学反応を同時に並列的に行うことができる生化学反応用マイクロリアクタが記載されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平10−337173号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、特許文献1に記載された生化学反応用マイクロリアクタでは、数種類の試薬や洗浄液を適時、検体に加える必要があり、複数のマイクロシリンジポンプや複雑な切替えバルブを制御して試薬を定量していた。このため、装置が複雑で大型になっていた。また、数種類の試薬や洗浄液の分注などを行わなければならないため、操作をより簡易にすることが望まれていた。
【0006】
そこで、本発明の目的は、操作が極めて簡易で、小型の生体試料反応装置を得ることである。
【課題を解決するための手段】
【0007】
本発明に係る生体試料反応装置は、反応基板と、反応基板を一定方向に沿って移動しながら押圧する押圧手段とを備え、反応基板は、基板と、基板上に設けられた複数の試薬室と、生体試料反応を行うための反応室と、一端が1つの試薬室に繋がり、他端が反応室に繋がる複数の流路とを備え、押圧手段が基板上の試薬室を押しつぶすことにより、試薬室内の試薬液が流路を通じて反応室に供給され、各々の試薬室が基板上で配置されている位置は、生体試料反応のプロセスにおける試薬液の投入時期に対応し、各々の試薬室の容積は、生体試料反応のプロセスにおける試薬液の投入量に対応している。
これにより、押圧手段によって各々の試薬室を押しつぶすタイミングを制御するだけで、反応室への複数の試薬の投入タイミングを簡単に制御することができる。また、必要量の試薬が各々の試薬室に予め封入されているため、試薬の種類や定量を間違える心配が無い。このように、複数の試薬を用いる複雑なプロセスでも、極めて簡易な操作で行うことができる。このため、作業者の熟練度等に関係なく信頼性の高い検査結果が得られる。また、押圧手段の制御のみを行えばよいことから、装置の小型化、低価格化を実現できる。
【0008】
また、押圧手段の移動開始及び停止のタイミングと移動速度を制御する制御手段を備えることが望ましい。
これにより、1つの装置で様々な生体試料反応のプロセスに対応することができる。
【0009】
なお、押圧手段は、例えばローラーとすることができる。
ローラーの回転速度を制御することにより、任意のタイミングで基板上の試薬室を押しつぶすことができる。
【0010】
また、試薬室は、同一の形状と容積を有する複数の微小チャンバーを備えるようにしてもよい。
これにより、試薬室の大きさや形状の違いによる試薬室の剛性の違いから、試薬室を押しつぶした際の試薬液の排出量に差が生じることを防ぐことができる。
【図面の簡単な説明】
【0011】
【図1】本発明の実施の形態1による、生体試料反応装置の構成を示す模式図。
【図2】実施の形態1による反応基板の上面図。
【図3】図2のIII−III線断面図。
【図4】流路に設けられたバルブの構成を示す断面図。
【図5】ローラーによって反応基板のチャンバーを押しつぶす様子を示した斜視図。
【図6】チャンバーのスナップの構成を示す断面図。
【図7】図7(A)は、本発明の実施の形態2による反応基板の上面図、図7(B)は、チャンバーの一部を拡大して示した図である。
【図8】本発明の実施例による反応基板の上面図である。
【発明を実施するための形態】
【0012】
以下、本発明の実施の形態について図面を参照して説明する。
実施の形態1.
図1は、本発明の実施の形態1による、生体試料反応装置10の構成を示す模式図である。生体試料反応装置10は、反応基板20、ローラー(押圧手段)11、同期用歯車12、減速歯車13、ステップモーター14、モーターコントローラー15、メインコントローラー(制御手段)16、バーコードリーダー17を備えている。
【0013】
反応基板20は、生体試料反応を行う際に、生体試料反応装置10の所定位置に固定する。作業者は、所望の生体試料反応プロセスに対応した反応基板20を選択して生体試料反応装置10にセットする。反応プロセス終了後は、使用済みの反応基板20を生体試料反応装置10から取り外し、他の反応基板20と交換することができる。
【0014】
図2は、反応基板20の上面図である。また、図3は、図2のIII−III線断面図である。
反応基板20は、第1の基板201、第2の基板202、複数のチャンバー(試薬室)203、複数の流路204、反応室205、検体導入口206、バルブ207、ラック208、バーコード209を備えている。また、各々のチャンバー203にはスナップ2031が設けられている。
【0015】
第1の基板201及び第2の基板202は、プラスチック製の基板である。チャンバー203は、第1の基板201の表面に貼り付けられ、所定の形状に成型されたPET等のフィルムと第1の基板201で囲まれて形成されている。初期の状態では、各チャンバー203には生体試料反応で用いられる試薬が充填されており、それぞれのチャンバー203が配置されている位置と容積は、生体試料反応のプロセスにおける試薬投入時期と投入量に対応して決められている。例えば、反応室205への投入時期が早い試薬の入ったチャンバーほど早くつぶされるような位置に配置される。
【0016】
流路204は、第1の基板201と第2の基板202の間に設けられている。各々の流路204は、一端が1つのチャンバー203の接続口2032に繋がり、他端が反応室205に繋がっている。
【0017】
反応室205は、生体試料反応を行うための容器である。反応室205には、検体を反応室205内へ導入するための検体導入口206が設けられている。反応室205内では、各々のチャンバー203から流路204を通じて供給される試薬と、検体導入口206から導入される検体による生体試料反応が行われる。
【0018】
バルブ207は各々の流路204内での試薬液の流れを制御する。バルブ207により、生体試料反応のプロセスにおける試薬投入時期以外に、チャンバー203内の試薬が流路204を通じて、反応室205へ混入するのを避けることができる。
【0019】
図4は、バルブ207の構成を示す断面図である。図に示すように、第2の基板202は、流路204を設けるための凹部2021を有している。バルブ207は、第2の基板202の凹部2021に嵌った底板部2071と、上方に伸びる2つの突起部2072を有している。また、底板部2071の流路204と重なる部分には、上方に向けて突出した凸部2073が形成されている。第1の基板201には、バルブ207の突起部2072が挿入される貫通孔が形成されており、貫通孔内を突起部2072が摺動してバルブ207が第1の基板201に対して上下に移動可能である。但し、突起部2072は貫通孔に締まり嵌めされており、かなり大きな外力が加えられない限り、バルブ207は第1の基板201に対して移動しない。このため、図4(A)に示すように、初期の状態では、バルブ207は重力に逆らって第2の基板202の凹部2021の底面から離れている。
【0020】
流路204は、第1の基板201の裏面に貼り付けられたPET等のフィルム210と第1の基板201で囲まれて形成されている。図4(A)に示すように、初期の状態では、バルブ207の凸部2073は、フィルム210を第1の基板201の裏面に向けて押圧している。フィルム210の少なくとも一部と第1の基板201の裏面の間には、接着強度の低い接着剤211が配置されており、バルブ207の凸部2073から伝達された押圧力で押圧されたフィルム210は、接着剤211により第1の基板201の裏面に接着されている。この状態では、バルブ207は流路204を塞いでいる。また、この時、突起部2072は第1の基板201を貫通し第1の基板201よりもさらに上方に突き出している。
【0021】
図4(B)は、ローラー11によって第1の基板201の上方に突き出した突起部2072が押し下げられた状態を示している。図4(B)に示すように、この状態では、バルブ207の底板部2071の底面が第2の基板202の凹部2021の底面に接している。このため、バルブ207の凸部2073による、フィルム210を第1の基板201の裏面に向けて押圧する押圧力は働かない。また、接着剤211の接着強度が弱いため、この状態で流路204内に試薬液が浸入すると、第1の基板201の裏面に接着されていたフィルム210は剥離する。すなわち、この状態では、バルブ207は流路204を開放している。
【0022】
ラック208は、ローラー11の空転や滑りを防ぐため、ローラー11の移動路に沿って第1の基板201と第2の基板202に設けられた孔を有する。図5は、ローラー11によって反応基板20のチャンバー203を押しつぶす様子を示した斜視図である。図に示すように、ローラー11に設けられたピニオン111と反応基板20に設けられたラック208を噛み合わせることにより、ローラー11を確実に駆動することができる。
【0023】
バーコード209は、第1の基板201の表面に印刷されており、生体試料反応装置10のバーコードリーダー17でこのバーコード209を読み取ることにより、反応基板20に対応したローラー11の駆動プログラムがメインコントローラー16によって実行されるようになっている。なお、反応基板20の識別手段として、バーコード209以外にも磁気ラベル等を用いることができ、上記識別手段の読み取り手段についてもバーコードリーダーに限られず、識別手段に対応した読み取り手段を用いることができる。
【0024】
生体試料反応装置10のバーコードリーダー17によって反応基板20のバーコード209が読み取られると、その反応基板20に対応したプログラムがメインコントローラー16に読み込まれる。メインコントローラー16は、このプログラムに従って、ローラー11の駆動開始、停止等のタイミングや送り速度等の命令をモーターコントローラー15に供給する。モーターコントローラー15は、これらの命令に基づいてステップモーター14を回転させる駆動パルスを送出する。ステップモーター14は、モーターコントローラー15から送出された駆動パルスの周期に従って、ステップ毎に一定の角度だけ回転する。さらに、チャンバー203を押しつぶすのに必要なトルクを得るため、減速歯車13によってステップモーター14の回転速度を減じる。ローラー11は、反応基板20を挟むように反応基板20の上下に配置されている。上下のローラー11の回転を同期させる為、上下のローラー11は同期用歯車12で連結されている。ステップモーター14の回転が減速歯車13を介して同期用歯車12に伝達されると、図5に示すように、ローラー11は反応基板20の端から矢印Xの向きに移動し、順にチャンバー203を押しつぶしていく。
【0025】
ローラー11によってチャンバー203が押しつぶされると、チャンバー203内の試薬液が接続口2032から流路204に押し出される。押し出された試薬液は、流路204を通って反応室205内に供給される。ここで、接続口2032は、各チャンバー203の最後に押しつぶされる側の端部に設けられているため、チャンバー203内の試薬液を確実に全て流路204内へ送出することができる。
【0026】
また、各チャンバー203に繋がる流路204を塞いでいるバルブ207は、各チャンバー203の最初に押しつぶされる側の端部よりもX方向に沿って手前に設けられている。すなわち、各チャンバー203が押しつぶされる直前にバルブ207の突起部2072が押し下げられるようになっているため、チャンバー203が押しつぶされる直前に流路204を解放することができる。なお、流路204は第1の基板201と第2の基板202の間に設けられているので、流路204がローラー11で押しつぶされて、試薬液が流れなくなる心配はない。
【0027】
また、図6に示すように、チャンバー203にはスナップ2031が設けられている。スナップ2031は、チャンバー203を構成するフィルム部分に設けられた凸部2031aと、第1の基板201の表面に設けられた凹部2031bで構成されている。凸部2031aと凹部2031bとは互いに嵌合するように対応する形状となっており、図6に示される断面における凸部2031aの幅は、凹部2031bの幅と同じかやや大きくなっている。図6(A)に示すように、チャンバー203が押しつぶされる前の状態では、凸部2031aと凹部2031bは試薬液を間に挟んで離れている。図6(B)に示すように、ローラー11によってチャンバー203が押しつぶされると、凸部2031aと凹部2031bが嵌合し、かなり大きな外力を加えない限り凸部2031aと凹部2031bは離れない。これにより、ローラー11が通り過ぎた後も、一度押しつぶされたチャンバー203のフィルム部分が膨らんで試薬液が逆流するのを防ぐことができる。
【0028】
反応基板20は所定の生体試料反応のプロセスに対応しており、それぞれのチャンバー203が配置されている位置はその生体試料反応のプロセスにおける試薬投入時期に対応している。また、それぞれのチャンバー203の容積は、試薬投入量に対応して決められている。このため、ローラー11の駆動制御によって、各々のチャンバー203を押しつぶすタイミングを制御するだけで、反応室205への複数の試薬の投入タイミングを簡単に制御することができる。また、必要量の試薬が各々のチャンバー203に予め封入されているため、試薬の種類や定量を間違える心配が無い。
【0029】
さらに、反応プロセスにおいて危険な試薬を用いる場合でも、分注作業などで試薬を直接取り扱う必要が無いため、不慣れな作業者でも安心して作業を行うことができる。なお、チャンバー203には、試薬に限らず洗浄液等、生体試料反応のプロセスで用いる様々な溶液を封入しておくことができる。
【0030】
以上のように、本実施形態によれば、ローラー11の駆動制御のみで、生体試料反応のプロセスを制御することができるので、複数の試薬を用いる複雑なプロセスでも、極めて簡易な操作で行うことができる。このため、作業者の熟練度等に関係なく信頼性の高い検査結果が得られる。
【0031】
また、ローラー11の制御のみを行えばよいことから、制御装置を簡略化することが可能となり、装置の小型化や低価格化を実現できる。
また、反応基板20にバーコード209を設けることにより、生体試料反応装置10が自動的にローラー11の制御プログラムを選択することができるので、間違った制御プログラムで生体試料反応を行う心配がない。
【0032】
また、流路204にバルブ207を設け、初期状態では流路204を閉じ、チャンバー203が押しつぶされる直前に流路204が開放されるようにしたので、生体試料反応のプロセスにおける試薬投入時期以外に、チャンバー203内の試薬が流路204を通じて、反応室205へ混入するのを避けることができる。
【0033】
また、チャンバー203にスナップ2031を設け、一度押しつぶされたチャンバー203のフィルム部分が膨らむのを防ぐようにしたので、チャンバー203から送出された試薬液が逆流するのを防ぐことができる。
【0034】
なお、反応基板20に、ローラー11の位置を確認するための光学的あるいは磁気的なエンコーダーを設けるようにしてもよい。これにより、ローラー11の位置から反応のプロセスがどの段階まで進んでいるかを確認することができる。
【0035】
また、メインコントローラー16は、ローラー11の制御だけでなく、反応室205内の温度制御や、検体導入口206から導入される検体に関する情報の管理なども行うようにしてもよい。
【0036】
また、本実施形態では、チャンバー203及び流路204は、第1の基板201に貼り付けられたフィルムと第1の基板201によって形成されているが、チャンバー203や流路204は基板と一体に成型してもよい。この場合、チャンバー203はローラー11によって押しつぶせるものでなければならない。
【0037】
本発明は、生体試料反応以外の化学反応プロセスにも利用することができる。例えば、分解速度が速い薬品など、貯蔵が困難な化学薬品の合成反応プロセスに利用すれば、当該化学薬品を、必要なときに必要量だけ簡易な操作で得ることができる。
【0038】
実施の形態2.
図7(A)は、本発明の実施の形態2による、反応基板30の上面図である。実施の形態2では、チャンバー303の形状が実施の形態1のチャンバー203と異なっている。図7(A)に示すように、チャンバー303は同一の形状と容積を有する微小チャンバー304を複数備えている。図7(B)は、チャンバー303の一部を拡大して示した図である。図7(B)に示すように、個々の微小チャンバー304は接続流路3041で繋がっている。また、1つのチャンバー303を構成する複数の微小チャンバー304のうちの一つが接続口3032で流路204に繋がっている。また、流路204の接続口3032と繋がる端部と反対側の端部は、反応室205に繋がっている。従って、ローラー11で各微小チャンバー304が押しつぶされることにより、試薬液が接続口3032から流路204を通って反応室205へ送出される。それぞれのチャンバー303が配置されている位置と含まれる微小チャンバー304の数は、生体試料反応のプロセスにおける試薬投入時期と投入量に対応して決められている。
【0039】
個々のチャンバーの剛性は、チャンバーの大きさや形状の違いによって変化する可能性がある。この場合、ローラー11でチャンバーを押しつぶした時に、試薬液の排出量に違いが出る可能性がある。しかし、実施の形態2によれば、チャンバー303を同一の形状と容積を有する微小チャンバー304の集合体で形成しているので、剛性の違いによる試薬液の排出量の差が生じるのを防いでいる。
【実施例】
【0040】
図8は、本発明の実施例による反応基板40の上面図である。反応基板40は、酵素法により、血清、血漿、又は尿中のグルコース濃度を測定する生体反応のプロセスに対応した基板である。チャンバー403aには酵素液Aが260μL、チャンバー403bには酵素液Bが130μL充填されている。実験には第一化学薬品株式会社のグルコースキットを用いた。酵素液AとBの組成を以下に示す。
酵素液A:グルコース−6−リン酸脱水素酵素:3.3U/mL、アデノシン三リン酸二ナトリウム、酢酸マグネシュウム、グッド緩衝液(pH8.0):50mmol/L
酵素液B:ヘキソナーゼ:5.7U/mL、ニコチンアミドアデニンジヌクレオチド:11mmol/L、クエン酸緩衝液(pH6.5):25mmol/L
【0041】
反応室205には、血清(血漿)13μL(尿の場合は4μL)を検体導入口206から導入した。
【0042】
反応基板40を生体試料反応装置10にセットすると、バーコードリーダー17がバーコード209を読み取り、グルコース濃度測定用基板であることが自動的に識別される。メインコントローラー16にグルコース濃度測定用のプログラムがロードされ、ローラー11の駆動が開始する。ローラー11は矢印X方向に移動していく。
【0043】
まず初めに、チャンバー403aに繋がる流路204のバルブ207の突起部2072がローラー11によって押し下げられ、流路204が開放される。さらにローラー11が進むとチャンバー403aが押しつぶされ、チャンバー403a内の酵素液A(260μL)が流路204へ送出され、反応室205へ導入される。
【0044】
メインコントローラー16は、チャンバー403aを押しつぶした後、一旦ローラー11の回転を停止する。ローラー11の回転を停止したら、メインコントローラー16は、反応室205内の温度をヒーター(図示せず)によって37℃にして、その状態を5分間保持する。
【0045】
その後、メインコントローラー16はローラー11の回転を再開し、チャンバー403bに繋がる流路204のバルブ207の突起部2072をローラー11によって押し下げ、流路204を開放する。さらに、ローラー11によってチャンバー403bが押しつぶされ、チャンバー403b内の酵素液B(130μL)が流路204へ送出され、反応室205へ導入される。
【0046】
メインコントローラー16は、チャンバー403bを押しつぶした後、ローラー11の回転を再び停止する。ローラー11の回転を停止したら、メインコントローラー16は、反応室205内の温度を37℃にして、その状態を96〜252秒間保持する。その後、反応室205内の液体の波長450nmと340nmの光の吸光度差を測定することにより、検体のグルコース濃度を算出する。
【符号の説明】
【0047】
10 生体試料反応装置、11 ローラー、111 ピニオン、12 同期用歯車、13 減速歯車、14 ステップモーター、15 モーターコントローラー、16 メインコントローラー、17 バーコードリーダー、20,30,40 反応基板、201 第1の基板、202 第2の基板、2021 凹部、203,303,403a,403b チャンバー、2031 スナップ、2031a 凸部、2031b 凹部、2032,3032 接続口、204 流路、205 反応室、206 検体導入口、207 バルブ、2071 底板部、2072 突起部、2073 凸部、208 ラック、209 バーコード、210 フィルム、211 接着剤、304 微小チャンバー、3041 接続流路

【特許請求の範囲】
【請求項1】
反応基板と、
前記反応基板を一定方向に沿って移動しながら押圧する押圧手段と、を備え、
前記反応基板は、
基板と、
前記基板上に設けられた複数の試薬室と、
生体試料反応を行うための反応室と、
一端が1つの前記試薬室に繋がり、他端が前記反応室に繋がる複数の流路と、を備え、
前記押圧手段が前記基板上の前記試薬室を押しつぶすことにより、前記試薬室内の試薬液が前記流路を通じて前記反応室に供給され、
各々の前記試薬室が前記基板上で配置されている位置は、前記生体試料反応のプロセスにおける前記試薬液の投入時期に対応し、各々の前記試薬室の容積は、前記生体試料反応のプロセスにおける前記試薬液の投入量に対応していることを特徴とする生体試料反応装置。
【請求項2】
前記押圧手段の移動開始及び停止のタイミングと移動速度を制御する制御手段を備えたことを特徴とする請求項1に記載の生体試料反応装置。
【請求項3】
前記押圧手段がローラーであることを特徴とする請求項1または請求項2に記載の生体試料反応装置。
【請求項4】
前記試薬室は、同一の形状と容積を有する複数の微小チャンバーを備えていることを特徴とする請求項1から請求項3のいずれかに記載の生体試料反応装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate