説明

磁気テープカートリッジ

【課題】芳香族ポリアミドを支持体とするテープの長さがカートリッジ1巻あたり1000m以上になっても、リール芯側でのテープ幅変化を抑制し、寸度安定性に優れ且つ走行耐久性に優れた磁気テープカートリッジを提供する。
【解決手段】芳香族ポリアミドを支持体とし、テープ厚みが3.5〜5.5μmであり1000m以上の長さの磁気テープが巻かれた磁気テープカートリッジであって、60℃dry環境2週間保存後のカートリッジリールの最外周部と最内周部のテープ厚みの差が60nm以下である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気テープカートリッジに関し、詳細には、数TB級の高記録容量を必要とされる寸度安定性に優れ高い耐久性を備えた磁気テープカートリッジに関する。
【背景技術】
【0002】
近年、テラバイト級の情報を高速に伝達するための手段が著しく発達し、莫大な情報をもつ画像およびデータ転送が可能となる一方、それらを記録、再生および保存するための高度な技術が要求されるようになってきた。記録、再生媒体には、フレキシブルディスク、磁気ドラム、ハードディスクおよび磁気テープが挙げられるが、特に、磁気テープは1巻あたりの記録容量が大きく、データバックアップ用をはじめとしてその役割を担うところが大きい。
また磁気テープの使用環境の広がりによる幅広い環境条件下(特に、変動の激しい温湿度条件下など)での使用、データ保存に対する信頼性、更に高速での繰り返し使用による多数回走行におけるデータの安定した記録、読み出し等の性能に対する信頼性なども従来に増して要求される。
【0003】
従来からデジタルデータ記録方式に用いられているコンピュータ用磁気テープは、記録再生システム毎に決められており、所謂D8型、DLT型、あるいはDDS型対応の磁気テープが知られている。そしてこれらの磁気テープは、非磁性支持体上に強磁性粉末、及び結合剤を含む磁性層が少なくとも設けられており、また他方の側には、巻き乱れの防止や良好な走行耐久性を保つためにバックコート層が設けられている。
また、磁性層の厚み損失による再生出力の低下を改良するために、非磁性支持体上に無機質粉末を結合剤に分散してなる下層非磁性層と、該非磁性層が湿潤状態にあるうちに強磁性粉末を結合剤に分散してなる厚みが1.0μm以下と薄い上層磁性層を設けた磁気記録媒体が開示されている。
【0004】
ところで、磁気テープは、一般に各層の塗布液を調製する工程、得られた塗布液を非磁性支持体上に塗布する工程、乾燥工程、カレンダー処理(平滑化処理)工程、所定の寸法に裁断する加工工程、そして得られたテープをカートリッジに巻き込む包装工程を経て製造される。そして塗布工程、乾燥工程、あるいはカレンダー処理工程においては、原反ロールから引き出されたフィルム(長尺状支持体)の処理がその処理工程に応じて一定の張力(例えば、塗布工程や乾燥工程では、10kg/m前後の張力)下で実施されるため、フィルムが長さ方向に伸ばされ易く、また製造後時間の経過と共に、カートリッジに巻き込まれた磁気テープが徐々に収縮して巻き締まりが生じ、テープが変形し易いとの問題がある。
【0005】
このような問題を解決する為に、特許文献1及び2では、非磁性支持体として芳香族ポリアミドを用いることが記載されている。
芳香族ポリアミドの支持体は、PET、PENと比較し高強度ゆえに薄手化が可能であり、磁気テープカートリッジ1巻中のテープ長を長くし記録面積を増やせるため、DDSやDAT72等の小型データストレージ用媒体の支持体として用いられてきた。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開平10−69628号公報
【特許文献2】特開平10−134337号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかし、更なるデータストレージシステムの高容量化(数TB級)のニーズに対して、支持体に芳香族ポリアミドを使用してテープを薄手化しカートリッジ1巻中のテープ長さを更に長く巻いた場合、さらなる課題が顕在化した。1巻のテープ長さが1000mを越えるカートリッジにおいては、高温環境での保存により、カートリッジリール巻き芯側でテープ幅の変化が大きくなるため寸度安定性が劣り、サーボ特性等が著しく劣る問題が顕在化した。原因解析の結果、芳香族ポリアミドは巻いた状態で厚み方向に圧力が加わった時に、PET、PENと比べると変形しやすい(つぶされやすい)性質を有することを見出した。即ち、芳香族ポリアミドを支持体とする磁気テープは、従来よりも長く巻かれてカートリッジリール芯側に掛かる面圧が高くなった場合、厚み方向につぶされる変形量が大きくなり、その結果テープ幅が広がりサーボ特性が劣る課題を生じた。
即ち、本発明の目的は、上記の課題を克服し、芳香族ポリアミドを支持体とするテープの長さがカートリッジ1巻あたり1000m以上になっても、リール芯側でのテープ幅変化を抑制し、寸度安定性に優れ且つ走行耐久性に優れた磁気テープカートリッジを提供することにある。
【課題を解決するための手段】
【0008】
上記目的は、芳香族ポリアミドを支持体としテープ厚みが3.5〜5.5μmであり1000m以上の長さの磁気テープが巻かれた磁気テープカートリッジであって、60℃dry環境2週間保存後のカートリッジリールの最外周部と最内周部のテープ厚みの差が60nm以下であることにより、達成された。
【発明の効果】
【0009】
本発明の磁気テープカートリッジは、芳香族ポリアミドを支持体とするテープの長さがカートリッジ1巻あたり1000m以上になっても、リール芯側でのテープ幅変化を抑制し、寸度安定性に優れ且つ走行耐久性に優れたものとなった。
【発明を実施するための形態】
【0010】
以下、本発明の磁気テープカートリッジについて詳細に説明する。
本発明の磁気テープカートリッジは、芳香族ポリアミドを支持体としテープ厚みが3.5〜5.5μmであり1000m以上の長さの磁気テープが巻かれ、60℃dry環境2週間保存後のカートリッジリールの最外周部と最内周部のテープ厚みの差が60nm以下のものである。
【0011】
本発明の磁気テープカートリッジは、60℃dry環境2週間保存後のカートリッジリールの最外周部と最内周部のテープ厚みの差が60nm以下であれば構わないが、好ましくは50nm以下、更には30nm以下であることが好ましい。
本発明の磁気テープカートリッジは、テープ全厚が3.5〜5.5μmであることを特徴とするが、好ましくはテープ厚みが4.0〜5.5μm、更には4.5〜5.5μmであることが好ましい。テープ厚みが3.5μmより小さいと、機械的強度が十分取れず走行耐久性に劣り、5.5μmより大きいとリール状に巻かれて保存した時のテープ厚み方向の変形量が大きくなり、テープ幅の変化が大きくなる。
本発明の磁気テープカートリッジの磁気テープ(以下、本発明の磁気テープまたは磁気記録媒体とも称する)は、上層磁性層、下層非磁性層、下塗り層、バックコート層及び支持体から構成されることが好ましく、これによりテープ全厚は各々の厚みを調整することで制御することが出来る。
支持体には薄くても高強度で高い剛性を保てる芳香族ポリアミドフィルムを用いることを特徴とする。
【0012】
また、本発明の磁気テープは1巻1000m以上の長さでカートリッジリールに巻かれ60℃dry環境で2週間保存した後に、リールの最外周部と最内周部のテープ厚みの差が60nm以下であることを特徴とする。特にリール最内周部は保存による巻き締まりにより高い面圧が掛かり、厚み方向に変形しやすい芳香族ポリアミドを支持体とする磁気テープでは、テープ厚みが薄くなり結果としてテープ幅が広くなってしまう。リール外側では掛かる面圧も小さいため、保存によるテープ厚み変化及び幅変化は小さい。このリール芯外での保存によるテープ厚み変化を制御するためには、テープの熱収縮率を低減することが有効である。先の先行技術(特許文献1、特開平10−69628)においては、70℃5%RHで24時間保存した時のテープ長手方向の熱収縮率は最も小さいもので0.05%が開示されているが、本願発明においては更に熱収縮率を小さくする(70℃48時間保存で0.1%以下、好ましくは0.09%以下、特に好ましくは0.08%以下)ことでテープ厚みの変化を抑制出来る。熱収縮率を更に小さくする手段としては、従来の製造工程での熱処理工程において、従来の方法を更に改善することが適用出来る。好ましい熱処理方法としては、塗布乾燥工程の後に、塗布済み原反を張力が1〜3kg/mで温度130〜160℃の範囲で1〜30秒間連続走行させることが好ましい。本発明の様に支持体に芳香族ポリアミドを使用した場合、支持体のガラス転移温度が高いため、従来よりも高温で熱処理することが可能である。また、カレンダー処理後の原反を張力が2〜5kg/mで40〜70℃の範囲で8〜40時間加熱処理することが好ましい。更には、1/2インチ幅に裁断後のパンケーキを張力40〜80g/本で40〜60℃の範囲で5〜30時間加熱処理する工程を組合せることが好ましい。以上の熱処理工程を導入することで、従来よりも更に熱収縮率が小さい磁気テープを得ることが出来、本磁気テープを1000m以上巻いたカートリッジにおいては、リール芯外での保存による厚み変化を抑制出来るため、全長に渡ってテープ幅変化の少ない寸度安定性に優れた磁気テープカートリッジを供給することが出来る。
【0013】
(支持体)
本発明の磁気テープに用いられる非磁性支持体としては、芳香族ポリアミドフィルムである。
高容量の磁気テープを作製するためには、非磁性支持体の膜厚は薄いほど好ましい。本発明で用いられる支持体の膜厚は、4.2μm以下であることが好ましく、より好ましくは2.4〜4.0μm、更に好ましくは2.8〜3.8μmである。支持体の膜厚が2.4μm以上であれば、使用時に磁気記録媒体が切断することを回避することができる。支持体の膜厚が4.2μm以下であれば、磁気記録媒体の高容量化を実現することができる。
【0014】
磁気記録媒体の作製に用いられる非磁性支持体は、通常、非磁性支持体に、カオリン、タルク、二酸化チタン、二酸化珪素(シリカ)、リン酸カルシウム、酸化アルミニウム、ゼオライト、フッ化リチウム、フッ化カルシウム、硫酸バリウム、カーボンブラックあるいは特公昭59−5216号公報に記載されているような耐熱性高分子微粉体などの不活性微粒子を含有させることで表面の粗さが調整されている。また、不活性微粒子は、粒度分布が狭い方が好ましい。
【0015】
本発明で用いられる非磁性支持体の表面(磁性層、及び、バックコート層が塗設される面)の中心線平均表面粗さ(Ra)は、1nm以上50nm以下であることが好ましく、より好ましくは1nm以上25nm以下であり、更に好ましくは2nm以上15nm以下であり、特に好ましくは3nm以上10nm以下である。支持体の表面の中心線平均表面粗さ(Ra)が1nm以上であれば、磁気記録媒体の製造工程におけるハンドリング性が良くなり好ましい。また、支持体の表面の中心線平均表面粗さ(Ra)が50nm以下であれば、磁性層表面に支持体の表面性が影響することなく好ましい。
支持体の中心線平均表面粗さは、例えば、Zygo社(Zygo Corporation)製の汎用3次元表面構造解析装置NewViewシリーズなどを用いることによって測定可能である。
なお、非磁性支持体に対し、コロナ放電処理、プラズマ処理、熱処理、或いは除塵処理などの各種処理を施してもよい。
【0016】
(磁性層)
磁性層に含まれる強磁性粉末としては、六方晶フェライト粉末および強磁性金属粉末を挙げることができる。
用いられる六方晶フェライトとしては、バリウムフェライト、ストロンチウムフェライト、鉛フェライト、カルシウムフェライトの各置換体、Co置換体等が挙げられる。具体的には、マグネトプランバイト型のバリウムフェライトおよびストロンチウムフェライト、スピネルで粒子表面を被覆したマグネトプランバイト型フェライト、更に一部スピネル相を含有したマグネトプランバイト型のバリウムフェライトおよびストロンチウムフェライト等が挙げられる。その他、これらに含まれる所定の原子以外に、Al、Si、S、Sc、Ti、V、Cr、Cu、Y、Mo,Rh、Pd、Ag、Sn、Sb、Te、Ba、Ta、W、Re、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、P、Co、Mn、Zn、Ni、Sr、B、Ge、Nbなどの原子を含んでいてもかまわない。一般には、Co−Zn、Co−Ti,Co−Ti−Zr、Co−Ti−Zn、Ni−Ti−Zn,Nb−Zn−Co、Sb−Zn−Co、Nb−Zn等の元素を添加した化合物を使用することができる。また、原料や製法に応じて特有の不純物を含有していてもよい。
【0017】
粒子サイズは、六角板の径が5〜100nmであることが好ましく、より好ましくは10〜60nmであり、特に好ましくは10〜50nmである。特にトラック密度を上げるためMRヘッドで再生させる磁気記録媒体の場合、低ノイズにする必要があるため、板径は40nm以下であることが好ましい。板径が5nm以上であれば熱揺らぎがなく安定な磁化が望め好ましい。板径が100nm以下であれば、ノイズが高くならず高密度磁気記録には向き好ましい。板状比(板径/板厚)は、1〜15であることが好ましく、より好ましくは1〜7である。板状比が1以上であれば、磁性層中の充填性は高くなり、また十分な配向性を得ることでき好ましい。板状比が15以下であれば、粒子間のスタッキングによりノイズが大きくなることがなく好ましい。この粒子サイズ範囲に関し、BET法による比表面積は10〜100m/gを示す。この比表面積は、概ね粒子板径および板厚に基づく算術計算値と符号する。粒子板径や板厚の分布は、通常狭いほど好ましい。これらの分布は、数値化が困難であるが、粒子TEM写真より500粒子を無作為に測定する事で比較できる。これらの分布は正規分布ではない場合が多いが、計算して平均サイズに対する標準偏差σで分布を表すと、σ/平均サイズ=0.1〜2.0である。粒子サイズ分布をシャープにするには、粒子生成反応系をできるだけ均一にすると共に、生成した粒子に分布改良処理を施すことを行うこともできる。例えば、酸溶液中で超微細粒子を選別的に溶解する方法等も知られている。
【0018】
一般に、抗磁力Hcが500〜5000エルステッド(40〜398kA/m)程度の六方晶フェライト粉末は作製可能である。抗磁力Hcは、高い方が高密度記録に有利であるが、記録ヘッドの能力で制限される。本発明で使用される六方晶フェライトの抗磁力Hcは、2000〜4000Oe(160〜320kA/m)程度であることが好ましく、より好ましくは2200〜3500Oe(176〜280kA/m)である。ヘッドの飽和磁化が1.4テスラを越える場合は、抗磁力Hcを2200Oe(176kA/m)以上にすることが好ましい。抗磁力Hcは、粒子サイズ(板径・板厚)、含有元素の種類と量、元素の置換サイト、粒子生成反応条件等により制御できる。飽和磁化σsは40〜80A・m/kgであることが好ましい。飽和磁化σsは、高い方が好ましいが微粒子になるほど小さくなる傾向がある。飽和磁化σsの改良のために、マグネトプランバイトフェライトにスピネルフェライトを複合することや、含有元素の種類や添加量を適宜選択すること等が良く知られている。また、W型六方晶フェライトを用いることも可能である。六方晶フェライトを分散する際に、六方晶フェライト粉末表面を分散媒やポリマーに合った物質で処理することも行われている。この時に用いられる表面処理剤としては、無機化合物や有機化合物を使用することができ、主な化合物としてはSi、Al、P、等の酸化物または水酸化物、各種シランカップリング剤、各種チタンカップリング剤が代表例である。添加量は六方晶フェライト粉末に対して0.1〜10質量%とすることができる。六方晶フェライト粉末のpHも分散に重要であり、通常4〜12程度のpHに調整され、分散媒やポリマーに応じた最適値があるが、媒体の化学的安定性や保存性の観点から6〜11程度のpHが選択される。六方晶フェライト粉末に含まれる水分も分散に影響し、分散媒やポリマーに応じた最適値があるが、通常0.01〜2.0質量%の水分量が選ばれる。六方晶フェライトの製法としては、(1)酸化バリウム・酸化鉄・鉄を置換する金属酸化物と酸化ホウ素等のガラス形成物質とを所望のフェライト組成になるように混合した後、その混合物を溶融し、急冷して非晶質体とし、次いでその非晶質体の混合物を再加熱処理した後、洗浄・粉砕することによってバリウムフェライト結晶粉末を得るガラス結晶化法、(2)バリウムフェライト組成金属塩溶液をアルカリで中和し、副生成物を除去した後、100℃以上で液相加熱し、その後、洗浄・乾燥・粉砕を行うことによってバリウムフェライト結晶粉末を得る水熱反応法、(3)バリウムフェライト組成金属塩溶液をアルカリで中和し、副生成物を除去した後乾燥し、その後、1100℃以下で処理して粉砕することによってバリウムフェライト結晶粉末を得る共沈法、等が挙げられるが、本発明では特に製法は限定されない。
【0019】
磁性層において使用される強磁性金属粉末は、特に制限されるものではないが、α−Feを主成分とする強磁性金属粉末を用いることが好ましい。これらの強磁性金属粉末には、所定の原子以外にAl、Si、S、Sc、Ca、Ti、V、Cr、Cu、Y、Mo、Rh、Pd、Ag、Sn、Sb、Te、Ba、Ta、W、Re、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、P、Co、Mn、Zn、Ni、Sr、Bなどの原子を含んでいても構わない。特に、Al、Si、Ca、Y、Ba、La、Nd、Co、Ni、Bのうちの少なくとも1つをα−Fe以外に含むことが好ましく、Co、Y、Alのうちの少なくとも一つを含むことがさらに好ましい。Coの含有量は、Feに対して0原子%以上50原子%以下であることが好ましく、さらに好ましくは15原子%以上35原子%以下であり、より好ましくは20原子%以上35原子%以下である。Yの含有量は、1.5原子%以上12原子%以下であることが好ましく、さらに好ましくは3原子%以上10原子%以下であり、特に好ましくは4原子%以上9原子%以下である。Alの含有量は、1.5原子%以上12原子%以下であることが好ましく、さらに好ましくは3原子%以上10原子%以下であり、より好ましくは4原子%以上9原子%以下である。
【0020】
これらの強磁性金属粉末には、後述する分散剤、潤滑剤、界面活性剤、帯電防止剤などで分散前に予め処理が施されていてもかまわない。具体的な処理例は、特公昭44−14090号公報、特公昭45−18372号公報、特公昭47−22062号公報、特公昭47−22513号公報、特公昭46−28466号公報、特公昭46−38755号公報、特公昭47−4286号公報、特公昭47−12422号公報、特公昭47−17284号公報、特公昭47−18509号公報、特公昭47−18573号公報、特公昭39−10307号公報、特公昭46−39639号公報、米国特許第3026215号、同3031341号、同3100194号、同3242005号、同3389014号などに記載されている。
【0021】
強磁性金属粉末には少量の水酸化物または酸化物が含まれていてもよい。強磁性金属粉末としては、公知の製造方法により得られたものを用いることができ、下記の方法を挙げることができる。すなわち、複合有機酸塩(主としてシュウ酸塩)と水素などの還元性気体とで還元を行う方法、酸化鉄を水素などの還元性気体で還元してFeまたはFe−Co粒子などを得る方法、金属カルボニル化合物を熱分解する方法、強磁性金属の水溶液に水素化ホウ素ナトリウム、次亜リン酸塩あるいはヒドラジンなどの還元剤を添加して還元を行う方法、金属を低圧の不活性気体中で蒸発させて微粉末を得る方法などが挙げられる。このようにして得られた強磁性金属粉末に対して、公知の徐酸化処理、例えば有機溶剤に浸漬した後に乾燥させる方法、有機溶剤に浸漬した後に酸素含有ガスを送り込んで表面に酸化膜を形成し、その後乾燥させる方法、有機溶剤を用いずに酸素ガスおよび不活性ガスの分圧を調整して表面に酸化皮膜を形成する方法のいずれかによる徐酸化処理を施すこともできる。
【0022】
磁性層に使用される強磁性金属粉末のBET法による比表面積は、45〜100m/gであることが好ましく、より好ましくは50〜80m/gである。比表面積が45m/g以上であれば低ノイズであり、100m/g以下であれば良好な表面性を得ることができる。強磁性金属粉末の結晶子サイズは80〜180Åであることが好ましく、より好ましくは100〜180Å、更に好ましくは110〜175Åである。強磁性金属粉末の長軸長は、0.01μm以上0.15μm以下であることが好ましく、より好ましくは0.02μm以上0.10μm以下であり、さらに好ましくは0.03μm以上0.08μm以下である。強磁性金属粉末の針状比は、3以上15以下であることが好ましく、5以上12以下であることが更に好ましい。強磁性金属粉末のσsは、90〜180A・m/kgであることが好ましく、より好ましくは100〜150A・m/kgであり、更に好ましくは105〜140A・m/kgである。強磁性金属粉末の抗磁力は、2000〜3500Oe(160〜280kA/m)であることが好ましく、更に好ましくは2200〜3000Oe(176〜240kA/m)である。
【0023】
強磁性金属粉末の含水率は0.01〜2%とすることが好ましい。結合剤の種類に応じて強磁性金属粉末の含水率を最適化することが好ましい。強磁性金属粉末のpHは、用いる結合剤との組合せにより最適化することが好ましく、そのpH範囲は4〜12とすることができ、好ましくは6〜10である。強磁性金属粉末に対して、必要に応じ、Al、Si、Pまたはこれらの酸化物などで表面処理を施してもかまわない。その表面処理量は強磁性金属粉末に対し0.1〜10%とすることができ、表面処理を施した強磁性金属粉末は、脂肪酸などの潤滑剤の吸着量が100mg/m以下になり好ましい。強磁性金属粉末は可溶性のNa、Ca、Fe、Ni、Srなどの無機イオンを含む場合がある。これらの無機イオンは、本質的に強磁性金属粉末に含まれていない方が好ましいが、200ppm以下であれば特性への影響が少ない。また、本発明に用いられる強磁性金属粉末は、空孔が少ないほうが好ましく、その空孔値は20容量%以下であることが好ましく、さらに好ましくは5容量%以下である。また形状については、先に示した粒子サイズについての特性を満足すれば針状、米粒状、紡錘状のいずれでもかまわない。強磁性金属粉末自体のSFDは小さい方が好ましく、0.8以下であることが好ましい。また、強磁性金属粉末の抗磁力Hcの分布を小さくすることが好ましい。尚、強磁性金属粉末のSFDが0.8以下であると、電磁変換特性が良好となり、出力が高く、また、磁化反転がシャープでピークシフトも少なくなるため、高密度デジタル磁気記録に好適である。強磁性金属粉末の抗磁力Hcの分布を小さくするためには、強磁性金属粉末においてはゲ−タイトの粒度分布を良好にしたり、焼結を防止したりするなどの方法がある。
【0024】
磁性層の結合剤としては、強磁性粉末粒子の微細分散適性や耐久適性(温湿度環境適性)等の点から、ポリウレタン系樹脂、ポリエステル系樹脂、セルロースアセテートであることが好ましく、特に、ポリウレタン系樹脂、ポリエステル系樹脂であることが更に好ましく、ポリウレタン系樹脂であることが最も好ましい。ポリウレタン系樹脂の構造は、特に限定されず、ポリエステルポリウレタン、ポリエーテルポリウレタン、ポリエーテルポリエステルポリウレタン、ポリカーボネートポリウレタン、ポリエステルポリカーボネートポリウレタン、ポリカプロラクトンポリウレタンなど公知のものが使用できる。
【0025】
結合剤の質量平均分子量(Mw)としては12万以上の樹脂を構成成分として含むことが好ましい。本実施形態において好ましい逐次重層方式によって磁気記録媒体を作製する場合、磁性層塗布液の塗布後に磁場配向処理を施すと、強磁性粉末粒子同士の凝集(配向凝集)が生じる場合がある。この配向凝集は、膜厚が薄い磁性層を形成するために低濃度の磁性層塗布液を使用する場合に特に顕著に生じる。これは、濃度が薄くなるほど配向処理時の磁力によって強磁性粉末粒子が動き易くなるため、配向凝集し易くなるからである。
【0026】
磁性層結合剤として、磁気記録媒体において結合剤として従来から使用されている樹脂と比べて分子量の大きな樹脂であって、質量平均分子量(Mw)が12万以上の樹脂を構成成分として含む結合剤成分を使用することで、配向凝集を低減ないしは防止することができる。
【0027】
このような分子量を有する樹脂は、強磁性粉末粒子に対する吸着性が高いため、磁性層塗布液成分としてそのような樹脂を使用することにより、磁性層塗布液中において強磁性粉末粒子に対する結合剤の吸着量を増大させることができる。こうして結合剤の吸着量が増大することにより、磁性層塗布液中での強磁性粉末粒子同士の立体反発力が増大するため、配向処理時の強磁性粉末粒子同士の配向凝集を抑制することができると考えられる。なお、質量平均分子量が12万以上の樹脂を複数種組み合わせて結合剤に用いることも可能である。
なお、結合剤の質量平均分子量は、例えば、ゲル浸透クロマトグラフィー(GPC)分析することにより確認することができる。
一方、樹脂の質量平均分子量は、溶解性や合成の容易性等を考慮すると、50万以下であることが好ましく、より好ましくは12万〜30万であり、特に好ましくは15万〜25万である。
【0028】
また、磁性層は、質量平均分子量(Mw)が12万以上の上述の樹脂を強磁性粉末に対して2.5質量%以上含むことが好ましい。つまり、本発明の磁気記録媒体は、強磁性粉末に対して2.5質量%以上の上述の樹脂を含む磁性層塗布液を用いて形成されたものであることが好ましい。強磁性粉末に対して2.5質量%以上の上記の樹脂を含む磁性層塗布液は、強磁性粉末に対する結合剤の吸着量が多く、配向凝集を効果的に抑制することができる。磁性層中における上記樹脂量は、強磁性粉末に対して4〜40質量%であることが好ましく、5〜30質量%であることがより好ましく、5〜25質量%であることが特に好ましい。
このような樹脂は、ガラス転移温度が−50〜150℃であることが好ましく、より好ましくは0℃〜100℃であり、更に好ましくは30℃〜90℃である。またそのような樹脂において、破断伸びは100〜2000%、破断応力は0.05〜10kg/mm(0.49〜98MPa)、降伏点は0.05〜10kg/mm(0.49〜98MPa)であることが好ましい。前記樹脂は、公知の方法で合成することができ、また市販品として入手可能なものもある。
【0029】
前記結合剤成分は、前記樹脂からなることができる。つまり、前記結合剤成分は、前記樹脂そのものであってもよい。また、前記結合剤成分は、前記樹脂と熱硬化性官能基を有する化合物との反応生成物であってもよい。本発明の磁気記録媒体は、非磁性支持体上に形成された非磁性層上に、磁性層塗布液を塗布および乾燥することにより形成されることが好ましい。前記磁性層塗布液に熱硬化性官能基を有する化合物を添加せずに前記樹脂を加え、そのような磁性層塗布液によって磁性層を形成すれば、前記樹脂そのものを前記結合剤成分として含む磁気記録媒体が得られる。一方、磁性層塗布液に前記樹脂とともに熱硬化性官能基を有する化合物を添加すれば、塗布後の加熱(カレンダー処理、加熱処理等)により硬化反応(架橋反応)が進むため、前記樹脂と熱硬化性官能基を有する化合物との反応生成物を前記結合剤成分として含む磁気記録媒体が得られる。なお、後述するように、磁性層塗布液に対して前記樹脂および硬化性官能基を有する化合物以外の樹脂成分を添加する場合には、前記反応生成物には、前記樹脂、熱硬化性官能基を有する化合物および他の樹脂成分の共重合体が含まれ得る。
【0030】
前記熱硬化性官能基を有する化合物としては、熱硬化性官能基としてイソシアネート基を含有する化合物を用いることが好ましい。中でも、当該化合物として、ポリイソシアネート類が好ましく、トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、ナフチレン−1,5−ジイソシアネート、o−トルイジンジイソシアネート、イソホロンジイソシアネート、トリフェニルメタントリイソシアネート等のイソシアネート類、また、これらのイソシアネート類とポリアルコールとの生成物、また、イソシアネート類の縮合によって生成したポリイソシアネート等を使用することができる。
これらのイソシアネート類の市販されている商品名としては、日本ポリウレタン社製コロネートL、コロネートHL、コロネート2030、コロネート2031、ミリオネートMR、ミリオネートMTL、武田薬品社製タケネートD−102、タケネートD−110N、タケネートD−200、タケネートD−202、住友バイエル社製デスモジュールL、デスモジュールIL、デスモジュールN、デスモジュールHL等が挙げられ、これらを単独または硬化反応性の差を利用して二つまたはそれ以上を組み合せて用いることもできる。
【0031】
前記結合剤は、前記結合剤成分以外に他の結合剤成分を含むこともできる。前記結合剤成分と併用可能な他の結合剤成分としては、従来公知の熱可塑性樹脂、熱硬化性樹脂、反応型樹脂、およびこれらの混合物を挙げることができる。例えば、併用される熱可塑性樹脂のガラス転移温度は、−100〜200℃であることが好ましく、より好ましくは−50〜150℃である。
【0032】
併用可能な熱可塑性樹脂の具体例としては、塩化ビニル、酢酸ビニル、ビニルアルコール、マレイン酸、アクリル酸、アクリル酸エステル、塩化ビニリデン、アクリロニトリル、メタクリル酸、メタクリル酸エステル、スチレン、ブタジエン、エチレン、ビニルブチラール、ビニルアセタール、ビニルエーテル等を構成単位として含む重合体または共重合体、ポリウレタン系樹脂、各種ゴム系樹脂、セルロースエステルなどがある。
また、併用可能な熱硬化性樹脂または反応型樹脂としては、フェノール樹脂、エポキシ樹脂、ポリウレタン硬化型樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、アクリル系反応樹脂、ホルムアルデヒド樹脂、シリコーン樹脂、エポキシ−ポリアミド樹脂、ポリエステル樹脂とイソシアネートプレポリマーの混合物、ポリエステルポリオールとポリイソシアネートの混合物、ポリウレタンとポリイソシアネートの混合物等が挙げられる。これらの樹脂については、朝倉書店発行の「プラスチックハンドブック」に詳細に記載されている。また、公知の電子線硬化型樹脂を使用することも可能である。これらの例およびその製造方法については特開昭62−256219号公報に詳細に記載されている。
【0033】
以上の樹脂は単独または組み合せて使用可能であるが、好ましいものとして塩化ビニル系樹脂、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−ビニルアルコール共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体から選ばれる少なくとも1種とポリウレタン系樹脂との組合せ、またはこれらにポリイソシアネートを組み合わせたものが挙げられ、特に好ましくは塩化ビニル系樹脂である。塩化ビニル系樹脂を併用することで、強磁性粉末の分散性を更に高めることができ、電磁変換特性の向上およびヘッド汚れの改良に有効である。
【0034】
磁性層に使用可能なすべての結合剤成分について、より優れた分散性と耐久性を得るためには必要に応じ、−COOM、−SOM、−OSOM、−P=O(OM)、−O−P=O(OM)(以上につき「M」は水素原子またはアルカリ金属塩基を示す)、OH、NR、N(「R」は炭化水素基を示す)、エポキシ基、SH、CNなどから選ばれる少なくともひとつ以上の極性基を共重合または付加反応で導入したものを用いることができる。このような極性基の量は、例えば10−1〜10−8モル/gであり、好ましくは10−2〜10−6モル/gである。
【0035】
前記結合剤成分の具体的な例としては、ユニオンカーバイト社製VAGH、VYHH、VMCH、VAGF、VAGD、VROH、VYES、VYNC、VMCC、XYHL、XYSG、PKHH、PKHJ、PKHC、PKFE、日信化学工業社製MPR−TA、MPR−TA5、MPR−TAL、MPR−TSN、MPR−TMF、MPR−TS、MPR−TM、MPR−TAO、電気化学社製1000W、DX80、DX81、DX82、DX83、100FD、日本ゼオン社製MR−104、MR−105、MR110、MR100、MR555、400X−110A、日本ポリウレタン社製ニッポランN2301、N2302、N2304、大日本インキ社製パンデックスT−5105、T−R3080、T−5201、バーノックD−400、D−210−80、クリスボン6109、7209、東洋紡社製バイロンUR8200、UR8300、UR−8700、RV530、RV280、大日精化社製、ダイフェラミン4020、5020、5100、5300、9020、9022、7020、三菱化成社製MX5004、三洋化成社製サンプレンSP−150、旭化成社製サランF310、F210などが挙げられる。
【0036】
前記熱硬化性官能基を有する化合物を含む磁性層は、磁性層の加熱により前記樹脂と前記化合物との架橋反応が進み、結果的に前記樹脂と熱硬化性官能基を有する化合物との反応生成物を含む磁性層が得られる。この磁性層は、前記樹脂そのものを含む磁性層と比べて塗膜強度が高いため、より耐久性の高い磁気記録媒体を得ることができる。前記磁性層が熱硬化性官能基を有する化合物を含む場合、その含有量は、磁性層に含有されるすべての結合剤に対して5〜40質量%とすることが好ましく、10〜30質量%とすることが更に好ましく、15〜25質量%とすることが特に好ましい。
【0037】
前述のように、前記磁性層は、前記樹脂とともに他の結合剤成分(熱硬化性官能基含有化合物、樹脂成分等)を含むことができる。その詳細は先に記載した通りである。質量平均分子量(Mw)が12万以上の上記の樹脂の添加による配向凝集防止と良好な電磁変換特性の確保とを両立する上では、質量平均分子量(Mw)が12万以上の上記の樹脂の量は、全結合剤成分に対して10〜80質量%であることが好ましく、20〜60質量%であることが更に好ましく、20〜40質量%であることが最も好ましい。また、磁性層の前記樹脂以外の結合剤成分の含有量は、その結合剤成分の添加効果を得る上では、強磁性粉末に対して2.5質量%以上とすることが好ましく、4〜40質量%とすることがより好ましく、5〜30質量%とすることが更に好ましく、5〜25質量%とすることが特に好ましい。
【0038】
本発明の磁気記録媒体における磁性層の厚さは、例えば0.01〜0.2μmであることが好ましい。質量平均分子量(Mw)が12万以上の樹脂を磁性層に使用することにより、上記範囲の厚さを有する比較的薄い磁性層を逐次重層により形成する際に、配向凝集を抑制することができる。これにより、高い電磁変換特性を有する磁気記録媒体を得ることができる。磁性層の厚さは、好ましくは0.02〜0.15μmであり、より好ましくは0.03〜0.12μmである。
【0039】
磁性層の表面は、中心線平均表面粗さ(Ra)が低いほど好ましい。磁性層の表面粗さは原子間力顕微鏡(AFM)を用いて評価できる。磁性層の中心線平均表面粗さ(Ra)は、10.0nm以下であることが好ましく、より好ましくは1.0〜8.0nmであり、更に好ましくは2.0〜6.0nmであり、特に好ましくは2.5〜5.0nmである。また、磁性層の表面では、高さが10〜20nmの表面微小突起数が1〜500個/100μmであることが好ましく、より好ましくは3〜250個/100μmであり、更に好ましくは5〜150個/100μmであり、特に好ましくは5〜100個/100μm である。
磁性層の中心線平均表面粗さ(Ra)は、前記非磁性支持体の表面性が磁性層の表面に及ぼす影響、磁性層中の強磁性粉末の分散性、磁性層に添加する研磨剤やカーボンブラックの粒子サイズや添加量、等に影響される。
磁性層(磁気記録媒体)の中心線平均表面粗さ(Ra)および表面微小突起数は、例えば、非磁性層により非磁性支持体の表面性が磁性層の表面に及ぼす影響を低減することによって、強磁性粉末の微細分散性を良好にすることによって、研磨剤やカーボンブラックの粒子サイズを減少することによって、或いは研磨剤やカーボンブラックの添加量を減らすことによって、低減可能である。
【0040】
また、カレンダー処理工程においても磁性層(磁気記録媒体)の中心線平均表面粗さ(Ra)および表面微小突起数を低減することができ、例えば線圧力を上げることによって、圧力負荷時間を長くすることによって、或いは処理温度を上げることによって、磁性層(磁気記録媒体)の中心線平均表面粗さ(Ra)および表面微小突起数を低減することができる。
【0041】
磁性層の表面電気抵抗値は、1×10〜1×10Ω/□になるように調整することが好ましい。より好ましくは1×10〜1×10Ω/□、さらに好ましくは1×10〜5×10Ω/□、特に好ましくは1×10〜1×10Ω/□である。磁性層の表面電気抵抗値は、特開2008−77698号公報の図1に示す電極を用いて測定することができる。
磁性層の表面電気抵抗値を適切に設定することで、磁気記録媒体の帯電を防止して、帯電により付着した埃やゴミが原因で発生するドロップアウトエラーの発生を防止することができる。特に、磁気記録媒体は、低温・低湿度環境条件のように含水量が少ない雰囲気中で帯電しやすいので、磁性層の表面電気抵抗値を上記のように調整することが好ましい。
【0042】
磁性層の表面電気抵抗値は、磁性層、非磁性層の少なくとも1層に導電性材料を適切な添加量で含有させることで調整可能であるが、磁性層の表面電気抵抗値を制御する上では、磁性層、又は、磁性層になるべく近い層に導電性材料を添加することが好ましい。
【0043】
(非磁性層)
非磁性層は、少なくとも非磁性粉末と結合剤とを含む層である。以下に、そのような非磁性層の詳細について説明する。
非磁性層は、実質的に非磁性であれば、特に制限されるものではなく、実質的に非磁性である範囲で磁性粉末を含むこともできる。「実質的に非磁性である」とは、磁性層の電磁変換特性を実質的に低下させない範囲で非磁性層が磁性を有することを許容するということであり、例えば残留磁束密度が0.01T以下または抗磁力が7.96kA/m以下(100Oe以下)であることを示し、好ましくは残留磁束密度と抗磁力とをもたないことを示す。
【0044】
非磁性層に用いられる非磁性粉末は、例えば、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等の無機化合物から選択することができる。無機化合物としては、例えばα化率90%以上のα−アルミナ、β−アルミナ、γ−アルミナ、θ−アルミナ、炭化ケイ素、酸化クロム、酸化セリウム、α−酸化鉄、ヘマタイト、ゲータイト、コランダム、窒化珪素、チタンカーバイト、酸化チタン、二酸化珪素、酸化スズ、酸化マグネシウム、酸化タングステン、酸化ジルコニウム、窒化ホウ素、酸化亜鉛、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、二硫化モリブデンなどを単独または組合せで使用することができる。特に好ましいものは、粒度分布が小さく、機能付与の手段が多いこと等から、二酸化チタン、酸化亜鉛、酸化鉄、硫酸バリウムであり、更に好ましいものは二酸化チタン、α−酸化鉄である。これらの非磁性粉末の粒子サイズは0.005〜2μmであることが好ましいが、必要に応じて粒子サイズの異なる非磁性粉末を組み合わせたり、単独の非磁性粉末でも粒度分布を広くして同様の効果をもたせることもできる。非磁性粉末の粒子サイズは0.01μm〜0.2μmであることが特に好ましい。特に、非磁性粉末が粒状金属酸化物である場合は、非磁性粉末の平均一次粒子径が0.08μm以下であることが好ましく、針状金属酸化物である場合は、非磁性粉末の長軸長が0.3μm以下であることが好ましく、0.2μm以下であることがさらに好ましい。非磁性粉末のタップ密度は、0.05〜2g/mlであることが好ましく、より好ましくは0.2〜1.5g/mlである。非磁性粉末の含水率は、0.1〜5質量%であることが好ましく、より好ましくは0.2〜3質量%であり、更に好ましくは0.3〜1.5質量%である。非磁性粉末のpHは、2〜11であることが好ましく、5.5〜10の間が特に好ましい。
【0045】
非磁性粉末の比表面積は、1〜100m/gであることが好ましく、より好ましくは5〜80m/gであり、更に好ましくは10〜70m/gである。非磁性粉末の結晶子サイズは、0.004μm〜1μmであることが好ましく、0.04μm〜0.1μmであることが更に好ましい。DBP(ジブチルフタレート)を用いた吸油量は、5〜100ml/100gであることが好ましく、より好ましくは10〜80ml/100gであり、更に好ましくは20〜60ml/100gである。非磁性粉末の比重は、1〜12であることが好ましく、より好ましくは3〜6である。非磁性粉末の形状は、針状、球状、多面体状、板状のいずれでも良い。非磁性粉末のモース硬度は4以上10以下のものが好ましい。非磁性粉末のSA(ステアリン酸)吸着量は、1〜20μmol/mであることが好ましく、より好ましくは2〜15μmol/mであり、更に好ましくは3〜8μmol/mである。非磁性粉末のpHは3〜6の間が好ましい。これらの非磁性粉末の表面には、表面処理を施すことによりAl、SiO、TiO、ZrO、SnO、Sb、ZnO、Yを存在させることが好ましい。特に分散性に好ましいものはAl、SiO、TiO、ZrOであり、更に好ましいのはAl、SiO、ZrOである。これらは組み合わせて使用しても良いし、単独で用いることもできる。また、目的に応じて共沈させた表面処理層を用いても良いし、先ずアルミナを存在させた後にその表層をシリカで処理する方法、またはその逆の方法を用いることもできる。また、表面処理層は、目的に応じて多孔質層にしても構わないが、均質で密である方が一般には好ましい。
【0046】
非磁性粉末の具体的な例としては、昭和電工製ナノタイト、住友化学製HIT−100、ZA−G1、戸田工業社製αヘマタイトDPN−250、DPN−250BX、DPN−245、DPN−270BX、DPN−500BX、DBN−SA1、DBN−SA3、石原産業製酸化チタンTTO−51B、TTO−55A、TTO−55B、TTO−55C、TTO−55S、TTO−55D、SN−100、αヘマタイトE270、E271、E300、E303、チタン工業製酸化チタンSTT−4D、STT−30D、STT−30、STT−65C、αヘマタイトα−40、テイカ製MT−100S、MT−100T、MT−150W、MT−500B、MT−600B、MT−100F、MT−500HD、堺化学製FINEX−25、BF−1、BF−10、BF−20、ST−M、同和鉱業製DEFIC−Y、DEFIC−R、日本アエロジル製AS2BM、TiO P25、宇部興産製100A、500A、およびそれを焼成したものが挙げられる。特に好ましい非磁性粉末は二酸化チタンとα−酸化鉄である。
また、非磁性層には目的に応じて有機粉末を添加することもできる。例えば、アクリルスチレン系樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン系樹脂粉末、フタロシアニン系顔料が挙げられるが、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、ポリフッ化エチレン樹脂も使用することができる。その製法として、特開昭62−18564号公報や特開昭60−255827号公報に記載されているような方法を使用できる。
【0047】
非磁性層に使用される結合剤としては、磁性層に使用可能な結合剤成分として記載された熱可塑性樹脂、熱硬化性樹脂、反応型樹脂やこれらの混合物を用いることができる。非磁性層中の結合剤の含有量は、非磁性粉末に対し、5〜50質量%の範囲とすることが好ましく、より好ましくは10〜30質量%の範囲とすることである。塩化ビニル系樹脂を用いる場合は5〜30質量%、ポリウレタン樹脂を用いる場合は2〜20質量%、ポリイソシアネートを用いる場合は2〜20質量%の範囲で、これらを組み合わせて用いることが好ましい。例えば、微量の脱塩素によりヘッド腐食が起こる場合は、ポリウレタンのみまたはポリウレタンとイソシアネートのみを結合剤として使用することも可能である。非磁性層にポリウレタンを用いる場合には、ガラス転移温度が−50〜150℃、好ましくは0℃〜100℃、更に好ましくは30℃〜90℃、破断伸びが100〜2000%、破断応力は0.05〜10kg/mm(0.49〜98MPa)、降伏点は0.05〜10kg/mm(0.49〜98MPa)のものを用いることが好ましい。
【0048】
非磁性層に添加する結合剤量、結合剤中に占める塩化ビニル系樹脂、ポリウレタン系樹脂、ポリイソシアネート、またはそれ以外の樹脂の量、各樹脂の分子量、極性基量、または先に述べた樹脂の物理特性などを必要に応じて変えることはもちろん可能であり、公知技術を適用できる。例えば、磁気ヘッドに対する接触を良好にするためには、非磁性層の結合剤量を多くして、非磁性層に柔軟性を持たせることができる。
非磁性層に使用可能なポリイソシアネートとしては、先に磁性層成分として記載したものを挙げることができる。
【0049】
非磁性層の膜厚は0.1〜2.0μmであることが好ましい。非磁性層の膜厚が厚すぎると、磁気記録媒体の総厚が厚くなり高容量化が難しくなる。一方、薄すぎると非磁性支持体の表面粗さの影響が磁性層表面に現れたり、磁性層表面の研磨剤、カーボンブラックを沈み込ませる効果が損なわれたりする。より好ましい非磁性層の膜厚は0.2〜1.5μmであり、特に好ましい膜厚は0.3〜1.0μmである。
【0050】
(カーボンブラック)
本発明の磁気記録媒体は、磁性層および非磁性層の少なくともいずれかにカーボンブラックを含有させることができる。使用可能なカーボンブラックとしては、ゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック等を挙げることができる。比表面積は5〜500m/g、DBP吸油量は10〜400ml/100g、平均粒子径は5〜300nm、好ましくは10〜250nm、更に好ましくは20〜200nmであることがそれぞれ好ましい。pHは2〜10、含水率は0.1〜10%、タップ密度は0.1〜1g/ccであることがそれぞれ好ましい。本実施形態に用いられるカーボンブラックの具体的な例としては、キャボット社製BLACKPEARLS 2000、1300、1000、900、905、800、700、VULCAN XC−72、旭カーボン社製#80、#60、#55、#50、#35、三菱化成工業社製#2400B、#2300、#900、#1000、#30、#40、#10B、コロンビアンカーボン社製CONDUCTEX SC、RAVEN 150、50、40、15、RAVEN−MT−P、日本EC社製ケッチェンブラックEC等が挙げられる。カーボンブラックに対して分散剤などで表面処理を施してもよい。また、樹脂でカーボンブラックをグラフト化して使用してもよいし、カーボンブラックの表面の一部をグラファイト化して使用してもかまわない。また、カーボンブラックを、塗布液に添加する前に予め結合剤で分散してもかまわない。
【0051】
これらのカーボンブラックは、単独または組合せで使用することができる。カーボンブラックを使用する場合は、強磁性粉末または非磁性粉末に対して0.1〜30質量%のカーボンブラックを用いることが好ましい。カーボンブラックは、磁性層の帯電防止、摩擦係数低減(易滑性付与)、遮光性付与、或いは膜強度向上などの働きがあり、これらの効果の程度は用いられるカーボンブラックによって異なる。また、非磁性層にカーボンブラックを混合することによって、公知の効果である表面電気抵抗の低減、光透過率の低減、および所望のマイクロビッカース硬度の獲得、等も実現することができる。また、非磁性層にカーボンブラックを含ませることで、潤滑剤貯蔵の効果を実現することも可能である。
従って、磁性層および非磁性層の要求特性に応じて、本発明に使用されるカーボンブラックの種類、量、粒子サイズ、或いは、吸油量、導電性、pHなどの諸特性を考慮して使い分けることはもちろん可能であり、各層毎に最適化されることが望ましい。本発明において、磁性層および非磁性層の少なくともいずれかにおいて使用可能なカーボンブラックについては、例えば、「カーボンブラック便覧」(カーボンブラック協会編)を参考にすることができる。
【0052】
(バックコート層)
一般に、コンピュータデータ記録用の磁気テープは、ビデオテープ、オーディオテープに比較して、繰り返し走行性が強く要求される。このような高い走行耐久性を維持させるために、バックコート層には、カーボンブラックと無機粉末が含有されていることが好ましい。
【0053】
カーボンブラックとしては、平均粒子径の異なる2種類のものを組み合わせて使用することが好ましい。この場合、平均粒子サイズが10〜50nmの微粒子状カーボンブラックと平均粒子サイズが70〜300nmの粗粒子状カーボンブラックを組み合わせて使用することが好ましい。一般に、上記のような微粒子状のカーボンブラックの添加により、バックコート層の表面電気抵抗を低く設定でき、また光透過率も低く設定できる。磁気記録装置によっては、テープの光透過率を利用し、動作の信号に使用しているものが多くあるため、このような場合には特に微粒子状のカーボンブラックの添加は有効になる。また微粒子状カーボンブラックは一般に液体潤滑剤の保持力に優れ、潤滑剤併用時、摩擦係数の低減化に寄与する。
【0054】
バックコート層において、平均粒子サイズの異なる2種類のものを使用する場合、平均粒子サイズ10〜50nmの微粒子状カーボンブラックと平均粒子サイズ70〜300nmの粗粒子状カーボンブラックの含有比率(質量比)は、前者/後者=100/0.5〜100/100の範囲にあることが好ましく、更に好ましくは、100/1〜100/50の範囲である。
バックコート層中のカーボンブラック(2種類のものを使用する場合には、その全量)の含有量は、結合剤100質量部に対して、通常30〜100質量部の範囲であり、好ましくは、45〜95質量部の範囲である。
【0055】
無機粉末は、硬さの異なる2種類のものを併用することが好ましい。具体的には、モース硬度3〜4.5の軟質無機粉末とモース硬度5〜9の硬質無機粉末とを使用することが好ましい。モース硬度が3〜4.5の軟質無機粉末を添加することで、繰り返し走行による摩擦係数の安定化を図ることができる。しかもこの範囲の硬さでは、摺動ガイドポールが削られることもない。またこの無機粉末の平均粒子径は、30〜50nmの範囲にあることが好ましい。
【0056】
モース硬度が3〜4.5の軟質無機粉末としては、例えば、硫酸カルシウム、炭酸カルシウム、珪酸カルシウム、硫酸バリウム、炭酸マグネシウム、炭酸亜鉛、および酸化亜鉛を挙げることができる。これらは、単独で、または二種以上を組み合わせて使用することができる。
【0057】
バックコート層内の軟質無機粉末の含有量は、カーボンブラック100質量部に対して10〜140質量部の範囲にあることが好ましく、更に好ましくは、35〜100質量部である。
【0058】
モース硬度が5〜9の硬質無機粉末を添加することにより、バックコート層の強度が強化され、走行耐久性が向上する。これらの無機粉末をカーボンブラックや前記軟質無機粉末と共に使用すると、繰り返し摺動に対しても劣化が少なく、強いバックコート層となる。またこの無機粉末の添加により、適度の研磨力が付与され、テープガイドポール等への削り屑の付着が低減する。特に軟質無機粉末と併用すると、表面の粗いガイドポールに対しての摺動特性が向上し、バックコート層の摩擦係数の安定化も図ることができる。硬質無機粉末の平均粒子サイズは80〜250nm(更に好ましくは、100〜210nm)の範囲にあることが好ましい。
【0059】
モース硬度が5〜9の硬質無機質粉末としては、例えば、α−酸化鉄、α−アルミナ、および酸化クロム(Cr23)を挙げることができる。これらの粉末は、それぞれ単独で用いても良いし、または併用しても良い。これらの内では、α−酸化鉄またはα−アルミナが好ましい。硬質無機粉末の含有量は、カーボンブラック100質量部に対して通常3〜30質量部であり、好ましくは、3〜20質量部である。
【0060】
バックコート層に前記軟質無機粉末と硬質無機粉末とを併用する場合、軟質無機粉末と硬質無機粉末との硬さの差が、2以上(更に好ましくは、2.5以上、特に好ましくは3以上)であるように軟質無機粉末と硬質無機粉末とを選択して使用することが好ましい。バックコート層には、前記それぞれ特定の平均粒子サイズを有するモース硬度の異なる2種類の無機粉末と、前記平均粒子サイズの異なる2種類のカーボンブラックとが含有されていることが好ましい。
【0061】
バックコート層には、潤滑剤を含有させることができる。潤滑剤は、前述した非磁性層、または磁性層に使用できる潤滑剤として挙げた潤滑剤の中から適宜選択して使用できる。バックコート層において、潤滑剤は、結合剤100質量部に対して通常1〜5質量部の範囲で添加される。
バックコート層の厚みは、例えば0.2〜0.8μm、好ましくは0.3〜0.6μmである。
【0062】
(下塗層)
また、本発明の磁気テープは、非磁性支持体と非磁性層または磁性層の間に密着性向上のための下塗層を設けてもよい。本下塗層厚みは、例えば0.01〜0.5μm、好ましくは0.02〜0.5μmである。この下塗層は公知のものが使用できる。
【0063】
(研磨剤)
本発明の磁気記録媒体に用いられる研磨剤としては、α化率90%以上のα−アルミナ、β−アルミナ、炭化ケイ素、酸化クロム、酸化セリウム、α−酸化鉄、コランダム、人造ダイヤモンド、窒化珪素、炭化珪素チタンカーバイト、酸化チタン、二酸化珪素、窒化ホウ素、などを主とした、モース硬度6以上の公知の材料を単独または組合せで使用することができる。また、これらの研磨剤どうしの複合体(研磨剤を他の研磨剤で表面処理したもの)を挙げることができる。これらの研磨剤には主成分以外の化合物または元素が含まれる場合もあるが、主成分が90%以上であれば効果にかわりはない。これら研磨剤の粒子サイズは、0.01〜2μmであることが好ましく、更に好ましくは0.05〜1.0μmであり、特に好ましくは0.05〜0.5μmの範囲である。特に電磁変換特性を高めるためには、研磨剤の粒度分布が狭い方が好ましい。また耐久性を向上させるために、必要に応じて粒子サイズの異なる研磨剤を組み合わせたり、単独の研磨剤でも粒度分布を広くして同様の効果をもたせたりすることも可能である。研磨剤のタップ密度は0.3〜2g/cc、含水率は0.1〜5%、pHは2〜11、比表面積は1〜30m/g、であることがそれぞれ好ましい。本発明に用いられる研磨剤の形状は、針状、球状、サイコロ状、のいずれでもよいが、形状の一部に角を有する研磨剤は研磨性が高く好ましい。具体的には住友化学社製AKP−12、AKP−15、AKP−20、AKP−30、AKP−50、HIT−20、HIT−30、HIT−55、HIT−60、HIT−70、HIT−80、HIT−100、レイノルズ社製、ERC−DBM、HP−DBM、HPS−DBM、不二見研磨剤社製WA10000、上村工業社製UB20、日本化学工業社製G−5、クロメックスU2、クロメックスU1、戸田工業社製TF100、TF140、イビデン社製ベータランダムウルトラファイン、昭和鉱業社製B−3などが研磨剤として挙げられる。研磨剤は磁性層に添加することで磁気ヘッドのクリーニング効果を高めることができるが、必要に応じて、非磁性層に添加することもできる。非磁性層に研磨剤を添加することで、表面形状を制御したり、研磨剤の突出状態を制御したりすることができる。これら磁性層または非磁性層に添加される研磨剤の粒径や量は最適値に設定されることが好ましい。
【0064】
(添加剤)
本発明の磁気記録媒体において、磁性層、非磁性層およびバックコート層には、目的に応じて、潤滑効果、帯電防止効果、分散効果、可塑化効果、などをもつ種々の添加剤を使用することができる。具体的には、二硫化モリブデン、二硫化タングステングラファイト、窒化ホウ素、フッ化黒鉛、シリコーンオイル、極性基をもつシリコーン、脂肪酸変性シリコーン、フッ素含有シリコーン、フッ素含有アルコール、フッ素含有エステル、ポリオレフィン、ポリグリコール、アルキル燐酸エステルおよびそのアルカリ金属塩、アルキル硫酸エステルおよびそのアルカリ金属塩、ポリフェニルエーテル、フェニルホスホン酸、αナフチル燐酸、フェニル燐酸、ジフェニル燐酸、p−エチルベンゼンホスホン酸、フェニルホスフィン酸、アミノキノン類、各種シランカップリング剤、チタンカップリング剤、フッ素含有アルキル硫酸エステルおよびそのアルカリ金属塩、炭素数10〜24の一塩基性脂肪酸(不飽和結合を含んでも、また分岐していてもかまわない)、これらの金属塩(Li、Na、K、Cuなど)、炭素数12〜22の一価、二価、三価、四価、五価、六価アルコール(不飽和結合を含んでも、また分岐していてもかまわない)、炭素数12〜22のアルコキシアルコール、炭素数10〜24の一塩基性脂肪酸(不飽和結合を含んでも、また分岐していてもかまわない)と炭素数2〜12の一価、二価、三価、四価、五価、六価アルコールのいずれか一つ(不飽和結合を含んでも、また分岐していてもかまわない)とからなるモノ脂肪酸エステルまたはジ脂肪酸エステルまたはトリ脂肪酸エステル、アルキレンオキシド重合物のモノアルキルエーテルの脂肪酸エステル、炭素数8〜22の脂肪酸アミド、炭素数8〜22の脂肪族アミン、などを使用することができる。
【0065】
これらの具体例としては、脂肪酸では、カプリン酸、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、オレイン酸、エライジン酸、リノール酸、リノレン酸、イソステアリン酸、などが挙げられる。エステル類では、ブチルステアレート、オクチルステアレート、アミルステアレート、イソオクチルステアレート、ブチルミリステート、オクチルミリステート、ブトキシエチルステアレート、ブトキシジエチルステアレート、2−エチルヘキシルステアレート、2−オクチルドデシルパルミテート、2−ヘキシルドデシルパルミテート、イソヘキサデシルステアレート、オレイルオレエート、ドデシルステアレート、トリデシルステアレート、エルカ酸オレイル、ネオペンチルグリコールジデカノエート、エチレングリコールジオレイル、アルコール類ではオレイルアルコール、ステアリルアルコール、ラウリルアルコール、などが挙げられる。また、アルキレンオキサイド系、グリセリン系、グリシドール系、アルキルフェノールエチレンオキサイド付加体、等のノニオン系界面活性剤、環状アミン、エステルアミド、第四級アンモニウム塩類、ヒダントイン誘導体、複素環類、ホスホニウムまたはスルホニウム類、等のカチオン系界面活性剤、カルボン酸、スルホン酸、燐酸、硫酸エステル基、燐酸エステル基、などの酸性基を含むアニオン系界面活性剤、アミノ酸類、アミノスルホン酸類、アミノアルコールの硫酸または燐酸エステル類、アルキルベタイン型、等の両性界面活性剤等も使用できる。これらの界面活性剤については、「界面活性剤便覧」(産業図書株式会社発行)に詳細に記載されている。これらの潤滑剤や帯電防止剤等は、必ずしも100%純粋である必要はなく、主成分以外に異性体、未反応物、副反応物、分解物、酸化物等の不純分が含まれていてもかまわない。そのような不純分は、30質量%以下であることが好ましく、さらに好ましくは10質量%以下である。
【0066】
本発明において使用されるこれらの潤滑剤や界面活性剤は、個々に異なる物理的作用を有するものであり、その種類、量、および相乗的効果を生み出す潤滑剤の併用比率は、目的に応じて最適に定められることが好ましい。例えば、非磁性層および磁性層で融点の異なる脂肪酸を用いて表面へのにじみ出しを制御したり、沸点、融点、或いは極性の異なるエステル類を用いて表面へのにじみ出しを制御したり、界面活性剤量を調節することで塗布の安定性を向上させたり、潤滑剤の添加量を中間層で多くすることで潤滑効果を向上させたり、等が考えられる。なお、ここに示した例のみに限られるものではない。
【0067】
また、本発明において用いられる添加剤のすべてまたはその一部は、非磁性層塗布液、磁性層塗布液、およびバックコート層塗布液の製造のどの工程で添加されてもかまわない。例えば、混練工程前に強磁性粉末や非磁性粉末と添加剤とを混合する場合、強磁性粉末や非磁性粉末と結合剤と溶剤による混練工程で添加剤を添加する場合、分散工程で添加剤を添加する場合、分散後に添加剤を添加する場合、塗布直前に添加剤を添加する場合、等がある。また、目的に応じて磁性層や非磁性層を塗布した後に、同時塗布方式または逐次塗布方式によって、添加剤の一部または全部を塗布することにより目的が達成される場合がある。また、目的によっては、カレンダー処理が施された後またはスリット処理が終了した後に、磁性層の表面に潤滑剤を塗布することもできる。本実施形態では、公知の有機溶剤を使用することができ、例えば特開平6−68453号公報に記載の溶剤を用いることができる。
【0068】
次に、磁気記録媒体の製造に用いる塗布液、及び、磁気記録媒体の製造方法の詳細について説明する。
(塗布液の製造方法)
バックコート層塗布液、磁性層塗布液、及び、非磁性層塗布液を製造するプロセスは、好ましくは、混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けられる混合工程を含む。
個々の工程は、2段階以上にわかれていてもかまわない。本発明で使用される強磁性粉末、非磁性粉末、結合剤、カ−ボンブラック、研磨剤、帯電防止剤、潤滑剤、溶剤、等のすべての原料は、どの工程の最初または途中で添加されてもかまわない。また、個々の原料を2つ以上の工程で分割して添加してもかまわない。例えば、結合剤を混練工程、分散工程、および分散後の粘度調整のための混合工程の各々に分割して投入してもよい。本発明の目的を達成するために、公知の製造技術を一部の工程として用いることができる。混練工程ではオープンニーダ、連続ニ−ダ、加圧ニ−ダ、エクストルーダなど強い混練力をもつ装置を使用することが好ましい。ニ−ダを用いる場合、強磁性粉末または非磁性粉末は、結合剤のすべてまたはその一部(ただし全結合剤の30質量%以上が好ましい)および強磁性粉末100質量部に対し、例えば15〜500質量部の範囲で混練処理することができる。これらの混練処理の詳細については、特開平1−106338号公報および特開平1−79274号公報に記載されている。また、バックコート層塗布液、磁性層塗布液および非磁性層塗布液を分散させるためにガラスビーズや、高比重の分散メディアであるジルコニアビーズ、チタニアビーズ、或いはスチールビーズを用いることが好ましい。これらの分散メディアの粒径と充填率は最適化して用いられることが好ましい。分散機として、公知の装置を使用することができる。
【0069】
(塗布方法)
非磁性層、磁性層、バックコート層の作製においては、エクストルージョン塗工方式、ロール塗工方式、グラビア塗工方式、マイクログラビア塗工方式、エアーナイフ塗工方式、ダイ塗工方式、カーテン塗工方式、ディップ塗工方式、ワイヤーバー塗工方式など公知の手法を用いることができる。特に、非磁性層および磁性層を逐次重層方式で塗布する場合、磁性層の作製においてはエクストルージョン塗工方式を用いることが好ましい。
逐次重層方式で磁性層を形成する場合、塗布用スリットと回収用スリットの2つのスリットを有し、塗布用スリットから吐出してウエブに過剰に塗布された塗布液の過剰分を回収用スリット内に吸い取るようにした塗工方式を用いることが好ましい。更に、当該塗工方式において、回収用スリットで過剰な塗布液を吸い取る際の圧力条件の最適化を行って、より薄く塗布ムラのない磁性層を得ることのできる塗工方式を用いることがより好ましい。
【0070】
具体的には、連続走行する非磁性支持体上で、非磁性層および磁性層の形成が行われる。磁性層塗布液を塗布する際、非磁性支持体上に形成された非磁性層と塗布ヘッドの先端のリップ面とを近接させた状態で、塗布ヘッド内に送液される磁性層形成用塗布液を、所望の膜厚の磁性層を形成するために要する塗布量よりも過剰に塗布ヘッドの塗布用スリットから非磁性層上に吐出するとともに、過剰に塗布された磁性層塗布液を非磁性支持体の走行方向から見て塗布用スリットよりも下流側に設けられた回収用スリットから吸い取る。この時、回収用スリットの吸い取り口での液圧力をP(MPa)とすると、回収用スリットによる磁性層塗布液の吸い取りを、下記式(I)を満足するように行うことが好ましい。
【0071】
0.05(MPa)>P≧0(MPa) (I)
【0072】
更に、上述の塗工方式において、過剰に塗布された磁性層塗布液を吸い取りポンプによって吸い取る場合には、吸い取りポンプの吸い込み口側圧力をPIN(MPa)とすると、下記式(II)を満足するように磁性層塗布液の吸い取りを行うことが好ましい。
【0073】
PIN≧−0.02(MPa) (II)
【0074】
上述の塗工方式の詳細は、特開2003−236452号公報に記載されている。
【0075】
(磁気記録媒体の製造方法)
本発明の磁気記録媒体は、以下の方法により製造されることが好ましい。すなわち、非磁性支持体上に、非磁性層用塗布液を塗布した後に当該非磁性層用塗布液を乾燥することにより非磁性層を形成する。そして、非磁性層上に磁性層用塗布液を塗布した後に当該磁性層用塗布液を乾燥することにより磁性層を形成する。このようにして非磁性層と磁性層を逐次重層方式で作製した磁気記録媒体を得ることができる。また、この非磁性層が湿潤状態にあるうちに、非磁性層の上に磁性層塗布液を塗布する同時重層方式で磁気記録媒体を作製することもできる。本発明では、逐次重層方式を用いることが好ましい。
【0076】
またこの時、非磁性支持体原反ロールから送り出される非磁性支持体上に非磁性層および磁性層を順次、連続して形成することにより得られる磁気記録媒体ウェブを巻き取って磁気記録媒体原反ロールを製造して、磁気記録媒体原反ロールの磁気記録媒体ウェブをテープ状に裁断することにより磁気記録媒体テープを得ることが好ましい。
【0077】
なお、バックコート層については、予め非磁性支持体の裏面にバックコート層を形成しておき、非磁性支持体原反ロールからバックコート層が形成された非磁性支持体を送り出すようにしてもよい。また、非磁性支持体原反ロールから非磁性支持体のみを送り出した後、非磁性層および磁性層が形成され、磁気記録媒体ウェブが磁気記録媒体原反ロールに巻き取られるまでの間に、非磁性支持体の裏面にバックコート層を塗設するようにしてもよい。
【0078】
本発明では、非磁性層、磁性層、及び、バックコート層の形成を、非磁性支持体原反ロールから送り出された非磁性支持体上で連続して行い、前記非磁性層、磁性層、及び、バックコート層形成後、非磁性支持体を巻き取ることにより磁気記録媒体原反ロールを得て、磁気記録媒体原反ロールの一部を裁断することによりテープ状磁気記録媒体を得ることが好ましい。例えば、ロール状態に巻かれた非磁性支持体を送り出して非磁性層、磁性層を形成した後に一旦巻き取り、再度非磁性支持体を送り出して、バックコート層を形成する方法では、安価に大量の磁気記録媒体を製造することは困難である。それに対し、上記のように、ロール状態に巻かれた非磁性支持体を送り出して非磁性層、磁性層を形成した後に、非磁性支持体を一度も巻き取らずにバックコート層を形成することにより、磁気記録媒体を安価に大量生産することができる。
【0079】
また、生産性向上のために、各層を形成する際の非磁性支持体の搬送速度は、100m/分以上とすることが好ましく、より好ましくは200m/分以上、更に好ましくは300m/分以上、特に好ましくは400m/分以上である。塗布速度が速いほど生産性向上には有利である。但し、塗布速度が速すぎると塗布故障(塗布スジ、塗布ムラなど)が発生しやすくなるため、塗布速度は700m/分以下とすることが好ましい。
【0080】
磁性層中の強磁性粉末を所望の配向状態とするために、通常、磁性層塗布液の塗布後、湿潤状態にあるうちに磁性層塗布液に対して配向処理が施される。
強磁性金属粉末の配向に関しては、コバルト磁石およびソレノイドを用いて長手方向へ配向させることが好ましい。
六方晶フェライト粉末の配向については、一般的に面内および垂直方向の3次元ランダムになりやすいが、面内2次元ランダムとすることも可能である。また、異極対向磁石などの公知の方法を用いて垂直配向とすることで、円周方向に等方的な磁気特性を磁性層に付与することもできる。特に高密度記録を行う場合は、垂直配向が好ましい。
【0081】
各層形成用塗布液の乾燥は、例えば塗布された塗布液上に温風を吹き付けることにより行うことができる。乾燥風の温度は60℃以上とすることが好ましい。また、乾燥風の風量は、塗布量および乾燥風の温度に応じて設定すればよい。なお、磁性層塗布液の塗布後、配向処理のために磁石ゾーンに導入する前に、適度の予備乾燥を行うこともできる。
【0082】
上記のようにして各層形成用の塗布液の塗布、乾燥後には、通常、磁気記録媒体にカレンダ処理が施される。カレンダ処理用のロ−ルとして、エポキシ、ポリイミド、ポリアミド、ポリイミドアミド等の耐熱性のあるプラスチックロ−ルまたは金属ロ−ルを用いることができる。カレンダ処理時の処理温度は、好ましくは50℃以上、更に好ましくは90℃以上である。カレンダ処理時の線圧力は、好ましくは200kg/cm(196kN/m)以上、更に好ましくは300kg/cm(294kN/m)以上である。
【実施例】
【0083】
以下に、本発明に係る具体的な実施例および比較例を挙げるが、本発明はこれらの実施例に限定されるものではない。尚、実施例中の「部」の表示は、「質量部」を示す。
【0084】
〔実施例1〕
<上層磁性塗料液の調製>
強磁性板状六方晶フェライト粉末 100部
酸素を除く組成(モル比):Ba/Fe/Co/Zn=1/9/0.2/1
Hc:159kA/m(2000Oe)、板径:25nm、板状比:3
BET比表面積:80m2/g、σs:50A・m2/kg(50emu/g)
ポリウレタン樹脂 15部
分岐側鎖含有ポリエステルポリオール/ジフェニルメタンジイソシアネート系
−SONa=150eq/ton
フェニルホスホン酸 3部
α−Al23(粒子サイズ0.15μm) 5部
板状アルミナ粉末(平均粒径:50nm) 1部
カーボンブラック(粒子サイズ 20nm) 2部
シクロヘキサノン 110部
メチルエチルケトン 100部
トルエン 100部
ブチルステアレート 2部
ステアリン酸 1部
【0085】
<下層用非磁性塗料液の調製>
非磁性無機質粉体 85部
α−酸化鉄、表面処理剤:Al23、SiO2、長軸径:0.15μm、
タップ密度:0.8、針状比:7、BET比表面積:52m2/g、pH8、
DBP吸油量:33g/100g
カーボンブラック 20部
DBP吸油量:120ml/100g、pH:8、
BET比表面積:250m2/g、揮発分:1.5%
ポリウレタン樹脂 15部
分岐側鎖含有ポリエステルポリオール/ジフェニルメタンジイソシアネート系
−SONa=70eq/ton
フェニルホスホン酸 3部
α−Al23(平均粒径0.2μm) 5部
シクロヘキサノン 140部
メチルエチルケトン 170部
ブチルステアレート 2部
ステアリン酸 1部
【0086】
<バックコート用塗料液の調整>
カーボンブラック(平均粒径:25nm) 40.5部
カーボンブラック(平均粒径:370nm) 0.5部
硫酸バリウム 4.05部
ニトロセルロース 28部
ポリウレタン樹脂(SO3Na基含有) 20部
シクロヘキサノン 100部
トルエン 100部
メチルエチルケトン 100部
【0087】
上記上層用磁性塗料及び下層用非磁性塗料組成物のそれぞれについて、各成分をオープンニーダーで 60分間混練した後、サンドミルで120分間分散した。得られた分散液に3官能性低分子量ポリイソシアネート化合物(日本ポリウレタン製 コロネート3041)を6部加え、更に20分間撹拌混合したあと、1μmの平均孔径を有するフィルターを用いて濾過し、磁性塗料及び非磁性塗料を調製した。またバックコート用塗料液は、上記のバックコート用塗料組成物をサンドミルで滞留時間45分間分散した後、ポリイソシアネート8.5部を加え、撹拌ろ過して調製した。
このようにして得られた上記非磁性塗料を支持体(芳香族ポリアミドフィルム(アラミド)、厚み:3.6μm、長さ方向のヤング率:1100kg/mm、幅方向のヤング率:1600kg/mm)上に乾燥後の厚さが0.8μmになるように塗布し、100℃で乾燥させた。更にその直後に磁性塗料を乾燥後の厚さが0.08μmになるようにウェットオンドライ塗布し、100℃で乾燥した。この時、磁性層がまだ湿潤状態にあるうちに周波数50Hz、磁場強度25mT(250ガウス)また周波数50Hz、12mT(120ガウス)の2つの磁場強度交流磁場発生装置の中を通過させランダム配向処理を行った。また、この支持体の非磁性下層及び磁性層の形成面とは反対面側に、上記バックコート塗料を乾燥後の厚さが0.5μmとなるように塗布・乾燥し、磁気記録積層体ロールを得た。得られた磁気記録積層体ロールを温度130℃の熱処理ゾーンにて張力3.0kg/mで走行させた(熱処理ゾーンの滞在時間は15秒である)。次いで、金属ロールのみから構成される7段のカレンダー処理機で温度90℃、線圧300kg/cm、巻取り張力4.0kg/mで表面平滑化処理を行った後、60℃で36時間加熱処理を行い、1/2インチ幅に裁断し磁気テープを作成した。その後、得られた磁気テープにサーボ信号を記録しLTO用カートリッジに1050m巻込み、本発明に従う磁気テープカートリッジを作成した。
【0088】
〔実施例2〕
実施例1の磁気テープの作成において、1/2インチ幅に裁断後、張力60g/本で巻かれたパンケーキを50℃dry環境に12時間加熱処理を行ったこと以外は、同様にして本発明に従う磁気テープカートリッジを作成した。
〔実施例3〕
実施例1の磁気テープの作成において、支持体として厚み4.1μmの芳香族ポリアミドフィルムを用いたこと以外は、同様にして本発明に従う磁気テープカートリッジを作成した。
〔実施例4〕
実施例1の磁気テープの作成において、支持体として厚み2.5μmの芳香族ポリアミドフィルムを用いたこと、非磁性下層の厚みが0.6μmであること、及びバックコート層の厚みが0.3μmであること以外は、同様にして本発明に従う磁気テープカートリッジを作成した。
【0089】
〔実施例5〕
実施例1の磁気テープの作成において、磁性体を以下の強磁性針状金属粉末に変更し、上層用磁性塗料の各成分を実施例1と同様の方法で処理し磁性塗料を調製した。更に実施例1と同様に、非磁性塗料を乾燥後の厚さが0.8μmになるように塗布し、100℃で乾燥させた。更にその直後に磁性塗料を乾燥後の厚さが0.08μmになるようにウェットオンドライ塗布し、100℃で乾燥した。この時、磁性層が未乾燥の状態で300mT(3000ガウス)の磁石で磁場配向を行った。その後は、実施例1と同様にして本発明に従う磁気テープカートリッジを作成した。
【0090】
<上層磁性塗料液の調製>
強磁性針状金属粉末 100部
組成:Fe/Co/Al/Y=62/25/5/8、
表面処理剤:Al23、Y23 、Hc:167kA/m(2100Oe)、
結晶子サイズ:11nm、長軸長:60nm、針状比:6、
BET比表面積:70m2/g、
σs:110A・m2/kg(110emu/g)
ポリウレタン樹脂 15部
分岐側鎖含有ポリエステルポリオール/ジフェニルメタンジイソシアネート系
−SONa=70eq/ton
フェニルホスホン酸 3部
α−Al23(粒子サイズ0.15μm) 2部
カーボンブラック(粒子サイズ 20nm) 2部
シクロヘキサノン 110部
メチルエチルケトン 100部
トルエン 100部
ブチルステアレート 2部
ステアリン酸 1部
【0091】
〔比較例1〕
実施例1の磁気テープの作成において、塗布・乾燥後に得られた磁気記録積層体ロールを温度110℃の熱処理ゾーンにて張力3.0kg/mで走行させた(熱処理ゾーンの滞在時間は5秒である)こと以外は、同様にして比較用の磁気テープカートリッジを作成した。
〔比較例2〕
実施例1の磁気テープの作成において、支持体として厚み4.4μmの芳香族ポリアミドフィルムを用いたこと、及び非磁性下層の厚みが1.0μmであること以外は、同様にして比較用の磁気テープカートリッジを作成した。
〔比較例3〕
比較例2の磁気テープの作成において、1/2インチ幅に裁断後、張力60g/本で巻かれたパンケーキを50℃dry環境に12時間加熱処理を行ったこと以外は、同様にして比較用の磁気テープカートリッジを作成した。
〔比較例4〕
実施例1の磁気テープの作成において、支持体として厚み2.3μmの芳香族ポリアミドフィルムを用いたこと、非磁性下層の厚みが0.5μmであること、及びバックコート層の厚みが0.3μmであること以外は、同様にして比較用の磁気テープカートリッジを作成した。
〔比較例5〕
実施例1の磁気テープの作成において、支持体として厚み3.6μmのポリエチレンナフタレート(PEN、長さ方向のヤング率:750kg/mm、幅方向のヤング率:700kg/mm)を用いたこと以外は、同様にして比較用の磁気テープカートリッジを作成した。
【0092】
〔磁気テープカートリッジとしての評価〕
得られたサンプルを下記の評価方法にて評価した。
(1)テープ全厚
得られた磁気テープを適当な大きさに10枚切り出して、10枚重なった状態のものをマイクロメーターにて厚みを測定し、1枚当たりのテープ全厚を求めた。
(2)テープ熱収縮率
長さ100mmの磁気テープサンプルをその長さ(MD)方向に70mgの重りを下げ、これを70℃dryの環境下にて48時間保存した。保存前後のサンプルのMD方向の長さをコンパレーターで測定し、下記式より磁気テープの熱収縮率(%)を求めた。
【0093】
磁気テープの熱収縮率(%)=(保存前のサンプル長−保存後のサンプル長)/保存前のサンプル長×100
【0094】
(3)60℃dry環境2週間保存後のリール最外周部と最内周部のテープ厚みの差
得られた磁気テープカートリッジを60℃dry環境下で2週間保存した後に、リーダーテープ接合部から5m内側に入った部分のテープを切り出した直後(30分以内が好ましい)、高精度フイルム厚み計(Mahr社製、Millimar 1240)にてテープ1枚当たりの厚みを測定した。これを10回繰り返しその平均値をリール最外周部のテープ厚みとした。なお、切り出した直後に測るのは、テープに掛かる面圧がフリーになり、厚み方向につぶされていたテープが元の状態に戻る前のテープ厚みを測るためである。同様にして、リール芯側のテープ終端から10m外側に入った部分のテープを切り出した直後(30分以内が好ましい)、同様の高精度フイルム厚み計にてテープ1枚当たりの厚みを測定し、これを10回繰り返しその平均値をリール最内周部のテープ厚みとした。このようにして得られたリール最外周部と最内周部のテープ厚みからその差([リール最外周部のテープ厚み]−[最内周部のテープ厚み])を求めた。
【0095】
(4)60℃dry環境2週間保存後のリール最外周部と最内周部のテープ幅の差
上記(3)の測定時に得られたリール最外周部と最内周部の各テープの幅をコンパレーターにて測定した。これを3回繰り返しその平均値を求め、その差([リール最外周部のテープ幅]−[最内周部のテープ幅])を算出した。
(5)サーボトラッキングエラー発生率
得られた磁気テープカートリッジを60℃dry環境下で2週間保存した後、LTO−4ドライブ(IBM社製)にて全長走行させ、サーボ信号のオフトラックによるサーボトラッキングエラー発生率を求めた。エラー発生率は10巻走行させた時のエラー発生巻数の割合にて求めた。
(6)繰り返し耐久走行後のエッジ変形
得られた磁気テープカートリッジをLTO−4ドライブ(IBM社製)にて繰り返し500パス走行させた時のエッジの変形を目視で観察し、下記のランクにて評価した。
A:エッジの変形は特に見られなかった。
B:軽いエッジの変形が観察された。
C:かなり大きなエッジの変形が観察された。
(7)1000m以上の巻込み適性
LTO用カートリッジに1000m以上巻き込むことが出来る場合は○、1000m以上巻き込むことが出来ない場合は×とした。
以上の評価結果を表1に示す。
【0096】
【表1】

【0097】
上記表1の結果から、テープ厚みが3.5〜5.5μmで芳香族ポリアミドを支持体とし、60℃dry環境2週間保存後のリール最外周部と最内周部のテープ厚み差を60nm以下に抑えた本発明に従う磁気テープカートリッジ(実施例1〜5)は、テープ熱収縮率が低く、リール芯側と外側とでのテープ幅の差を小さく抑えることが出来るため、サーボ不良率が低く、且つ繰り返し走行でのエッジ耐久性も優れていることが分かる。一方、製造工程における塗布・乾燥後の加熱処理温度が低かった場合(比較例1)は、テープ熱収縮率が高くテープ厚み差が60nmを越え、本発明の構成から外れる。そうすると、テープ幅のリール芯側と外側とでの差は顕著に大きくなり、サーボ不良率が急激に高くなる。テープ厚みが本発明で規定する範囲よりも大きい場合(比較例2)は、支持体の厚みの寄与が大きくなるためにテープ厚み差は更に大きくなり、サーボ不良率は非常に高い。また、1000m以上巻くことが出来ないために記録容量不足を生じる。同じくテープ厚みが本発明で規定する範囲よりも大きい比較例3は、熱処理の強化によりテープ厚みの芯外差は本発明で規定する範囲内であり、サーボ不良率は比較例1、2ほど高くはないが、1000m以上巻くことが出来ないため記録容量不足を生じる。逆に、テープ厚みが本発明で規定する範囲よりも小さい場合(比較例4)には、テープの剛性が低すぎるため、繰り返し走行によるエッジ変形が大きい。また、支持体にポリエチレンナフタレートを使用した場合(比較例5)には、厚み方向の変形は芳香族ポリアミドよりも小さいため、テープ幅の芯外差は小さくサーボ不良率は低いが、支持体自体の力学強度(長手方向、幅方向)は芳香族ポリアミドより劣るため、繰り返し走行によるエッジ変形が大きい。
【産業上の利用可能性】
【0098】
本発明の磁気テープカートリッジは、大容量のデータストレージシステム用として利用可能である。

【特許請求の範囲】
【請求項1】
芳香族ポリアミドを支持体とし、テープ厚みが3.5〜5.5μmであり1000m以上の長さの磁気テープが巻かれた磁気テープカートリッジであって、60℃dry環境2週間保存後のカートリッジリールの最外周部と最内周部のテープ厚みの差が60nm以下である磁気テープカートリッジ。

【公開番号】特開2010−238346(P2010−238346A)
【公開日】平成22年10月21日(2010.10.21)
【国際特許分類】
【出願番号】特願2009−88504(P2009−88504)
【出願日】平成21年3月31日(2009.3.31)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】