説明

空気電池

【課題】出力特性およびサイクル特性に優れた空気電池を提供する。
【解決手段】導電性材料を含有する空気極層4および上記空気極層の集電を行う空気極集電体6を有する空気極と、負極活物質を含有する負極層3および上記負極層の集電を行う負極集電体2を有する負極と、上記空気極層および上記負極層の間に設置されたセパレータ7と、上記空気極層および上記負極層の間で金属イオンの伝導を担う電解質9とを有する空気電池であって、上記空気極層が、触媒として高純度ラムズデライト型二酸化マンガンを含有する空気電池。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、出力特性およびサイクル特性に優れた空気電池に関する。
【背景技術】
【0002】
空気電池は、空気(酸素)を正極活物質として用いた電池であり、エネルギー密度が高い、小型化および軽量化が容易である等の利点を有する。そのため、現在、広く使用されているリチウムイオン二次電池を超える高容量二次電池として、注目を浴びている。ここで、例えば負極活物質として金属Liを用いた空気二次電池では、主に下記の反応(1)〜(6)が生じることが知られている。
【0003】
【化1】

【0004】
また、空気電池に用いられる空気極層は、通常、電極反応をスムーズに行うための触媒、導電性を向上させるための導電性材料、ならびに触媒および導電性材料を固定化するための結着材等を有する。さらに、空気極層に添加する触媒として、従来から二酸化マンガンが知られている。例えば、非特許文献1においては、空気極に用いられる触媒として、電解二酸化マンガン(EMD)を用いた空気電池が開示されている。また、特許文献1においては、R型二酸化マンガンを主成分とするニードル状のナノニードルで構成されており、これらナノニードルでメソポーラス多孔体構造が形成されている二酸化マンガンナノニードル多孔体が開示されている。なお、特許文献2および特許文献3においては、フタロシアニン系錯体を用いた空気電池が開示されている。
【非特許文献1】Takeshi Ogasawara et al, “Rechargeable Li2O2 Electrode for Lithium Batteries”, Journal of the American Chemical Society 2006, 128, 1390-1393
【特許文献1】特開2007―238424号公報
【特許文献2】特開2004―63262号公報
【特許文献3】特許第3515492号
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、従来の空気電池は、出力特性およびサイクル特性が充分に高いとはいえなかった。本発明は、上記実情に鑑みてなされたものであり、出力特性およびサイクル特性に優れた空気電池を提供することを主目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するために、本発明においては、導電性材料を含有する空気極層および上記空気極層の集電を行う空気極集電体を有する空気極と、負極活物質を含有する負極層および上記負極層の集電を行う負極集電体を有する負極と、上記空気極層および上記負極層の間に設置されたセパレータと、上記空気極層および上記負極層の間で金属イオンの伝導を担う電解質と、を有する空気電池であって、上記空気極層が、触媒として、高純度ラムズデライト型二酸化マンガンを含有することを特徴とする空気電池を提供する。
【0007】
本発明によれば、高純度ラムズデライト型二酸化マンガン(高純度R型二酸化マンガン)を触媒として用いることにより、出力特性およびサイクル特性に優れた空気電池とすることができる。これは、高純度ラムズデライト型二酸化マンガンが、従来の二酸化マンガン等と比較して、触媒活性が高いためであると考えられる。
【0008】
上記発明においては、上記高純度ラムズデライト型二酸化マンガンのJahn-Teller distortion factorが0.9以上であることが好ましい。ラムズデライト型二酸化マンガンの純度が高く、より触媒活性が高いからである。
【0009】
また、本発明においては、導電性材料および高純度ラムズデライト型二酸化マンガンを、メカニカルミリングにより混合し、上記導電性材料の表面を上記高純度ラムズデライト型二酸化マンガンで被覆した触媒被覆導電性材料を形成する触媒被覆導電性材料形成工程と、上記触媒被覆導電性材料を含有する空気極層形成用組成物を用いて、空気極集電体上に空気極層を形成する空気極層形成工程と、を有することを特徴とする空気電池の製造方法を提供する。
【0010】
本発明によれば、メカニカルミリングで、触媒被覆導電性材料を形成することにより、導電性材料と高純度ラムズデライト型二酸化マンガンとの密着性を向上させることができ、出力特性およびサイクル特性に優れた空気電池を得ることができる。
【0011】
上記発明においては、上記メカニカルミリングが、ボールミルであることが好ましい。効率良く触媒被覆導電性材料を得ることができるからである。
【0012】
上記発明においては、上記高純度ラムズデライト型二酸化マンガンのJahn-Teller distortion factorが0.9以上であることが好ましい。ラムズデライト型二酸化マンガンの純度が高く、より触媒活性が高いからである。
【発明の効果】
【0013】
本発明においては、出力特性およびサイクル特性に優れた空気電池を提供することができるという効果を奏する。
【発明を実施するための最良の形態】
【0014】
以下、本発明の空気電池、および空気電池の製造方法について詳細に説明する。
【0015】
A.空気電池
まず、本発明の空気電池について説明する。本発明の空気電池は、導電性材料を含有する空気極層および上記空気極層の集電を行う空気極集電体を有する空気極と、負極活物質を含有する負極層および上記負極層の集電を行う負極集電体を有する負極と、上記空気極層および上記負極層の間に設置されたセパレータと、上記空気極層および上記負極層の間で金属イオンの伝導を担う電解質と、を有する空気電池であって、上記空気極層が、触媒として、高純度ラムズデライト型二酸化マンガンを含有することを特徴とするものである。
【0016】
本発明によれば、高純度ラムズデライト型二酸化マンガン(高純度R型二酸化マンガン)を触媒として用いることにより、出力特性およびサイクル特性に優れた空気電池とすることができる。これは、高純度ラムズデライト型二酸化マンガンが、従来の二酸化マンガン等と比較して、触媒活性が高いためであると考えられる。なお、二酸化マンガンには、多くの結晶構造が存在し、特にガンマ型の結晶構造を有する二酸化マンガンは電池材料として年間二十万トンを超える量が世界で消費されている。ところが、このガンマ型の二酸化マンガンは単一の結晶からできている物質ではなく、R型の二酸化マンガン結晶中に、ベータ型およびイプシロン型の二酸化マンガン結晶が不純物として混入した物質である。これに対して、本発明においては、R型の二酸化マンガンの純度が高い触媒を用いることにより、出力特性およびサイクル特性に優れた空気電池とすることができるのである。
【0017】
次に、本発明の空気電池について図面を用いて説明する。図1(a)は、本発明の空気電池の一例を示す概略断面図である。図1(b)は、図1(a)で示される空気電池の外観を示す斜視図である。図1(a)に示される空気電池は、下部絶縁ケース1aの内底面に形成された負極集電体2と、負極集電体2に接続された負極リード2´と、負極集電体2上に形成され金属Liからなる負極層3と、ケッチェンブラック等の導電性材料、および高純度ラムズデライト型二酸化マンガンを含有する空気極層4と、空気極層4の集電を行う空気極メッシュ5および空気極集電体6と、空気極集電体6に接続された空気極リード6´と、負極層3および空気極層4の間に設置されたセパレータ7と、酸素を供給するために設けられた微多孔膜8を有する上部絶縁ケース1bと、負極層3および空気極層4を浸す電解液9と、を有する。
以下、本発明の空気電池について、構成ごとに説明する。
【0018】
1.空気極
本発明に用いられる空気極は、導電性材料を含有する空気極層、および上記空気極層の集電を行う空気極集電体を有するものである。さらに、本発明に用いられる空気極層は、触媒として、高純度ラムズデライト型二酸化マンガンを含有する。
【0019】
(1)空気極層
本発明に用いられる空気極層は、少なくとも、導電性材料と、触媒として機能する高純度ラムズデライト型二酸化マンガンを有する。さらに必要に応じて、結着材等を含有していても良い。
【0020】
(i)空気極層に用いられる触媒
本発明においては、触媒として、高純度ラムズデライト型二酸化マンガンが用いられる。本発明においては、高純度ラムズデライト型二酸化マンガンの純度は、Jahn-Teller distortion factorを用いて評価することができ、ラムズデライト型二酸化マンガンの理論値である0.95に近いことが好ましい。具体的には、高純度ラムズデライト型二酸化マンガンのJahn-Teller distortion factorが、例えば0.9以上であることが好ましい。
【0021】
なお、Jahn-Teller distortion factorは、二酸化マンガン結晶の歪みを表す指標であり、Y. Chabre and J. Pannetie, Structural and electrochemical properties of the proton / gamma-MnO2, Prog. Solid St. Chem., Vol. 23, pp.1-130, 1995に詳細に記載されている。さらに、このJahn-Teller distortion factorは、K. Suetsugu, K. Sekitani and T. Shoj, An investigation of structural water in electrolytic manganese dioxide (EMD), TOSOH, Research & Technology Review, Vol. 49, pp.21-27, 2005の算出方法にしたがって算出・評価することができる。
【0022】
また、Jahn-Teller distortion factorの算出に当たっては、高純度ラムズデライト型二酸化マンガンのX線(Cu−Kα)回折パターンから求められた格子乗数であるd(210)、d(211)、d(610)を用いることができる。その際、結晶軸を決める三次元軸であるa,b,c軸の設定は、C. Fong, B. J. Kennedy, M. M. Elcombe, A powder neutron diffraction study of lambda and gamma manganese dioxide and of LiMn2O4, Zeitschrift Fuer Kristallographie, Vol. 209, pp. 941-945, 1994に従って、行うことができる。
【0023】
本発明に用いられる高純度ラムズデライト型二酸化マンガンの合成方法としては、例えば、特開2007―238424号公報に記載された方法等を挙げることができる。
【0024】
空気極層における高純度ラムズデライト型二酸化マンガンの含有量は、所望の触媒機能を発揮する程度の量であれば特に限定されるものではないが、例えば1重量%〜30重量%の範囲内、中でも5重量%〜20重量%の範囲内であることが好ましい。触媒の含有量が少なすぎると、充分な触媒機能を発揮できない可能性があり、触媒の含有量が多すぎると、相対的に導電性材料の含有量が減り、反応場が減少し、電池容量の低下が生じる可能性があるからである。
【0025】
(ii)空気極層に用いられる触媒以外の部材
上述したように、本発明に用いられる空気極層は、導電性材料を含有する。導電性材料としては、導電性を有するものであれば特に限定されるものではないが、例えば炭素材料等を挙げることができる。さらに、炭素材料は、多孔質構造を有するものであっても良く、多孔質構造を有しないものであっても良いが、本発明においては、多孔質構造を有するものであることが好ましい。比表面積が大きく、多くの反応場を提供することができるからである。多孔質構造を有する炭素材料としては、具体的にはメソポーラスカーボン等を挙げることができる。一方、多孔質構造を有しない炭素材料としては、具体的にはグラファイト、アセチレンブラック、カーボンナノチューブおよびカーボンファイバー等を挙げることができる。空気極層における導電性材料の含有量としては、例えば65重量%〜99重量%の範囲内、中でも75重量%〜95重量%の範囲内であることが好ましい。導電性材料の含有量が少なすぎると、反応場が減少し、電池容量の低下が生じる可能性があり、導電性材料の含有量が多すぎると、相対的に触媒の含有量が減り、充分な触媒機能を発揮できない可能性があるからである。
【0026】
上述したように、本発明に用いられる空気極層は、導電性材料を固定化する結着材を含有していても良い。結着材としては、例えばポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)等を挙げることができる。空気極層における結着材の含有量としては、特に限定されるものではないが、例えば30重量%以下、中でも1重量%〜10重量%の範囲内であることが好ましい。
【0027】
空気極層の厚さは、空気電池の用途等により異なるものであるが、例えば2μm〜500μmの範囲内、中でも5μm〜300μmの範囲内であることが好ましい。
【0028】
(2)空気極集電体
本発明に用いられる空気極集電体は、空気極層の集電を行う機能を有するものである。空気極集電体の材料としては、例えばステンレス、ニッケル、アルミニウム、鉄、チタン、カーボン等を挙げることができる。空気極集電体の形状としては、例えば箔状、板状およびメッシュ(グリッド)状等を挙げることができる。中でも、本発明においては、空気極集電体の形状がメッシュ状であることが好ましい。集電効率に優れているからである。この場合、通常、空気極層の内部にメッシュ状の空気極集電体が配置される。さらに、本発明においては、メッシュ状の空気極集電体により集電された電荷を集電する別の空気極集電体(例えば箔状の集電体)を用いても良い。また、本発明においては、後述する電池ケースが空気極集電体の機能を兼ね備えていても良い。
【0029】
(3)空気極の形成方法
本発明における空気極の形成方法は、上述した空気極を形成することができる方法であれば特に限定されるものではない。空気極の形成方法の一例としては、導電性材料、高純度ラムズデライト型二酸化マンガン、結着材および溶媒を含有する空気極層形成用ペーストを作製し、この空気極層形成用ペーストを、空気極集電体上に塗布して、乾燥する方法等を挙げることができる。また、空気極の形成方法の他の例としては、導電性材料、高純度ラムズデライト型二酸化マンガンおよび結着材を混練して、ペレットを作製し、このペレットと空気極集電体とを圧着する方法等を挙げることができる。
【0030】
2.負極
次に、本発明に用いられる負極について説明する。本発明に用いられる負極は、負極活物質を含有する負極層および上記負極層の集電を行う負極集電体を有する。
【0031】
上記負極層は、少なくとも負極活物質を含有する。負極活物質としては、一般的な空気電池の負極活物質を用いることができ、特に限定されるものではない。なお、本発明の空気電池が二次電池である場合、負極活物質は、通常、金属イオンを吸蔵・放出することができるものである。本発明の空気電池がリチウム空気二次電池である場合、用いられる負極活物質としては、例えば金属リチウム、リチウム合金、金属酸化物、金属硫化物、金属窒化物、およびグラファイト等の炭素材料等を挙げることができ、中でも金属リチウムおよび炭素材料が好ましく、高容量化の観点から金属リチウムがより好ましい。
【0032】
上記負極層は、少なくとも負極活物質を含有してれば良いが、必要に応じて、負極活物質を固定化する結着材を含有していても良い。結着材の種類、使用量等については、上述した「1.空気極」に記載した内容と同様であるので、ここでの説明は省略する。
【0033】
一方、上記負極集電体は、負極層の集電を行う機能を有するものである。負極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、例えば銅、ステンレス、ニッケル等を挙げることができる。上記負極集電体の形状としては、例えば箔状、板状およびメッシュ(グリッド)状等を挙げることができる。本発明においては、後述する電池ケースが負極集電体の機能を兼ね備えていても良い。
【0034】
3.セパレータ
次に、本発明に用いられるセパレータについて説明する。本発明に用いられるセパレータは、上記空気極層および上記負極層の間に設置されるものである。上記セパレータとしては、空気極層と負極層とを電気的に分離する機能を有するものであれば特に限定されるものではないが、例えばポリエチレン、ポリプロピレン等の多孔膜;樹脂不織布、ガラス繊維不織布等の不織布;およびリチウムポリマー電池に使用されているポリマー材料等を挙げることができる。
【0035】
4.電解質
次に、本発明に用いられる電解質について説明する。本発明に用いられる電解質の形態は、金属イオン伝導性を有するものであれば特に限定されるものではないが、例えば、液状(電解液)、固体状(固体電解質)、ゲル状(ゲル電解質)等を挙げることができる。ここで、本発明に用いられる電解質の一例として、リチウム空気電池に用いられる電解液について説明する。
【0036】
このような電解液は、通常、リチウム塩を有機溶媒に溶解してなるものである。上記リチウム塩としては、例えばLiPF、LiBF、LiClOおよびLiAsF等の無機リチウム塩;およびLiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO等の有機リチウム塩等を挙げることができる。上記有機溶媒としては、上記電解質を溶解することができるものであれば特に限定されるものではないが、酸素溶解性が高い溶媒であることが好ましい。溶媒に溶存した酸素を効率良く反応に用いることができるからである。上記有機溶媒としては、具体的にはエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ブチレンカーボネート、γ−ブチロラクトン、スルホラン、アセトニトリル、1,2−ジメトキシメタン、1,3−ジメトキシプロパン、ジエチルエーテル、テトラヒドロフランおよび2−メチルテトラヒドロフラン等を挙げることができる。中でも本発明においては、ECまたはPCと、DECまたはEMCとを組合せた混合溶媒が好ましい。
【0037】
また、本発明においては、上記電解液として、例えばイオン性液体等の低揮発性液体を用いることもできる。低揮発性液体を用いることで、揮発による電解液減少を抑制することができ、より長期間使用することができる。
【0038】
5.電池ケース
次に、本発明に用いられる電池ケースについて説明する。本発明に用いられる電池ケースの形状としては、上述した空気極、負極、セパレータ、電解質を保持することができれば特に限定されるものではないが、具体的にはコイン型、平板型、円筒型、ラミネート型等を挙げることができる。また、電池ケースは、開放型電池ケースであっても良く、密閉型電池ケースであっても良い。ここで、開放型電池ケースとは、大気と接触可能な電池ケースをいい、上述した図1に示すような電池ケースをいう。一方、電池ケースが密閉型電池ケースである場合は、密閉型電池ケースに、空気(酸素)の供給管および排出管を設けることが好ましい。
【0039】
6.空気電池
本発明の空気電池は、上述した触媒を含有する空気極層を備えたものであれば特に限定されるものではない。中でも、本発明の空気電池は、電極反応時に、空気極層のより多くの領域が電解液に浸漬していることが好ましい。特に、本発明の空気電池は、放電または充放電に伴う電極の体積変化が生じた際に、空気極層および負極層が常に電解液で満たされていることが好ましい。空気極層および負極層が常に電解液で満たされていれば、電解液不足に起因する内部抵抗の増加を抑制することができるからである。
【0040】
なお、空気電池には、放電または充放電に伴い電極(空気極および負極)の体積が大きく変化し、電解液が不足する状況が生じるという問題がある。具体的には、放電時に、負極では、LiがLiイオンとして溶出し、空気極では、リチウム酸化物が析出する。この際、リチウム酸化物(例えばLi)の密度が、Liの密度よりも大きいことから、電極全体として体積比35%もの収縮が起こる。その結果、放電末期に電解液量が不足し、空気極等の一部が電解液に浸されない状態となり、内部抵抗が増えるという問題があった。また、金属Li以外の材料として、グラファイト等の炭素材料を負極活物質に用いた場合は、負極での体積変化が少ないが、空気極でLi等が生成し、空気極中の電解液が外に押し出されると、電池内の空隙等に電解液が移動してしまい、充電時Liが溶解した後に、電解液が空気極に戻り難くなり、結果として電解液量が不足して、やはり内部抵抗につながるという問題がある。これに対して、放電または充放電に伴う電極の体積変化が生じた際であっても、空気極層および負極層が常に電解液を満たすことで、電解液不足に起因する内部抵抗の増加を抑制することができるのである。
【0041】
放電または充放電に伴う体積変化が生じた際に、空気極層および負極層が常に電解液で満たされている状態にする構成としては、例えば、電解液を循環させる構成を挙げることができる。電解液を循環させることにより、従来の空気電池を使用する場合に存在した、電解液と大気との気液界面を生じさせないで充放電を行うことができ、電極の体積変化が生じた場合であっても、空気極層および負極層を常に電解液で満たすことができる。また、揮発による電解液の減少を防止することができるという利点も有する。また電解液を循環させることにより、充電反応により生じる酸素を、空気極層から効率良く除去することも可能である。
【0042】
電解液を循環させる構成としては、具体的には、図2に示すように、モーター等の電解液移動手段11を用いて、電解液9を、負極層3、セパレータ7および空気極層4の順に循環させる構成を挙げることができる。放電時には、バブリング等の酸素供給手段12を用いて酸素13を空気極層4に供給し、過剰の酸素は、排気手段14により除去する。酸素供給手段12が、電解液9に溶存する酸素濃度を適度に上昇させることができるものであれば、排気手段14は特に必要ない。また、充電時には、図2に示した電解液の流れと反対の方向に電解液を循環させても良い。なお、図2においては、便宜上、空気極集電体および負極集電体は省略してあるが、適切な方法で集電を行えば良い。
【0043】
放電または充放電に伴う体積変化が生じた際に、空気極層および負極層が常に電解液で満たされている状態にする別の構成としては、電解液を多く用いる構成を挙げることができる。充分に多くの電解液を用いることで、空気極層が電解液不足になることを防止することができる。
【0044】
すなわち、本発明においては、放電または充放電に伴う電極の体積変化により上記電解液の液面の高さが変化する場合に、上記電解液の液面の最も下がった位置が、上記空気極層および上記負極層の最上面の位置よりも高いことが好ましい。電解液の量を、上記の位置となるように設定することで、電解液が不足することを防止できるからである。なお、例えば負極層に金属Liを用いた場合は、放電によりリチウムが溶出する反応が起き、電極全体の体積が減少する。従って、通常は、放電終了時の電解液の液面が、最も下がった位置に相当する。
【0045】
「空気極層および負極層の最上面」は、空気電池の構成によって、空気極層の最上面を意味する場合と、負極層の最上面を意味する場合と、空気極層および負極層の最上面を意味する場合とがある。それぞれの場合について図3を用いて説明する。なお、便宜上、空気極集電体および負極集電体は省略してある。
【0046】
図3(a)は、電解液の液面の最も下がった位置が、空気極層の最上面よりも高い態様を示す概略断面図である。図3(a)に示される空気電池は、電池ケース1の内底面から、負極層3、セパレータ7および空気極層4の順に形成された空気電池であって、電解液9の最も下がった位置が、空気極層4の最上面よりも高い位置になるものである。この空気電池は、酸素の供給が容易であるという利点を有する。
【0047】
図3(b)は、電解液の液面の最も下がった位置が、負極層の最上面よりも高い態様を示す概略断面図である。図3(b)に示される空気電池は、電池ケース1の内底面から、空気極層4、セパレータ7および負極層3の順に形成された空気電池であって、電解液9の最も下がった位置が、負極層3の最上面よりも高い位置になるものである。さらに、この空気電池は、空気極層が負極層よりも下となる構造を有するため、必要に応じて、酸素供給手段12や排気手段14を設けても良い。
【0048】
図3(c)は、電解液の液面が最も下がった位置が、空気極層および負極層の最上面よりも高い態様を示す概略断面図である。図3(c)に示される空気電池は、セパレータ7と、セパレータ7の一方の表面に配置された負極層3と、セパレータ7の他方の表面に配置された空気極層4と、を有する円柱状の空気電池であって、電解液9の最も下がった位置が、負極層3および空気極層4の最上面よりも高い位置になるものである。
【0049】
本発明においては、上記電解液の液面の最も下がった位置が、上記空気極層および上記負極層の最上面の位置よりも高いことが好ましい。上記電解液の液面の最も下がった位置と、上記空気極層および上記負極層の最上面の位置との高さの差としては、用いられる電池ケースの容積等により異なるものであるが、例えば1mm〜30mmの範囲内、中でも3mm〜10mmの範囲内であることが好ましい。上記高さの差が小さすぎると、溶媒等の揮発により電解液不足が生じ易くなり、上記高さの差が大きすぎると、酸素の供給が遅くなってしまい、高率放電特性が悪くなる恐れがあるからである。また、電解液の初期投入量は、放電または充放電に伴う電極の体積変化を予め測定または計算しておき、最適な投入量を決定することが好ましい。
【0050】
また、本発明の空気電池は、上述した空気極、負極、セパレータ、電解質および電池ケースを有するものであれば特に限定されるものではない。本発明の空気電池は、一次電池であっても良く、二次電池であっても良い。さらに、空気電池の種類としては、例えばリチウム空気電池、ナトリウム空気電池、マグネシウム空気電池、カルシウム空気電池およびカリウム空気電池等を挙げることができ、中でもリチウム空気電池が好ましい。また、本発明の空気電池の用途は、特に限定されるものではないが、例えば車両搭載用途、定置型電源用途、家庭用電源用途等を挙げることができる。
【0051】
7.空気電池の製造方法
次に、本発明の空気電池の製造方法について説明する。本発明の空気電池の製造方法は、上述した空気電池を得ることができる方法であれば、特に限定されるものではなく、一般的な空気電池の製造方法と同様の方法を用いることができる。例えば、コインセル型の空気電池を製造する場合は、不活性ガス雰囲気下において、まず、負極層および負極集電体を有する負極を負極側電池ケースに配置し、次に、その負極層上にセパレータを配置し、次に、そのセパレータ上から、フッ素含有化合物を含有する溶媒を用いた電解液を注液し、次に、空気極層および空気極集電体を有する空気極を、空気極をセパレータ側に向けて配置し、次に、空気極側電池ケースに配置し、最後にこれらをかしめる方法等を挙げることができる。また、本発明の空気電池の製造方法は、後述する「B.空気電池の製造方法」に記載する方法であっても良い。
【0052】
B.空気電池の製造方法
次に、本発明の空気電池の製造方法について説明する。本発明の空気電池の製造方法は、導電性材料および高純度ラムズデライト型二酸化マンガンを、メカニカルミリングにより混合し、上記導電性材料の表面を上記高純度ラムズデライト型二酸化マンガンで被覆した触媒被覆導電性材料を形成する触媒被覆導電性材料形成工程と、上記触媒被覆導電性材料を含有する空気極層形成用組成物を用いて、空気極集電体上に空気極層を形成する空気極層形成工程と、を有することを特徴とするものである。
【0053】
本発明によれば、メカニカルミリングで、触媒被覆導電性材料を形成することにより、導電性材料と高純度ラムズデライト型二酸化マンガンとの密着性を向上させることができ、出力特性およびサイクル特性に優れた空気電池を得ることができる。
【0054】
1.触媒被覆導電性材料形成工程
本発明における触媒被覆導電性材料形成工程は、導電性材料および高純度ラムズデライト型二酸化マンガンを、メカニカルミリングにより混合し、上記導電性材料の表面を上記高純度ラムズデライト型二酸化マンガンで被覆した触媒被覆導電性材料を形成する工程である。
【0055】
本工程に用いられる、導電性材料および高純度ラムズデライト型二酸化マンガンの種類、導電性材料および高純度ラムズデライト型二酸化マンガンの割合等については、上記「A.空気電池」に記載した内容と同様であるので、ここでの記載は省略する。
【0056】
また、本発明においては、メカニカルミリングにより、導電性材料の表面を高純度ラムズデライト型二酸化マンガンで被覆した触媒被覆導電性材料を形成する。メカニカルミリングとしては、機械的エネルギーを付与して、触媒被覆導電性材料を形成することができる方法であれば特に限定されるものではないが、例えばボールミル、ターボミル、メカノフュージョン、ディスクミル等を挙げることができ、中でもボールミルが好ましく、特に遊星型ボールミルが好ましい。汎用的であり、効率良く触媒被覆導電性材料を得ることができるからである。
【0057】
上記メカニカルミリングの各種条件は、所望の触媒被覆導電性材料を得ることができる程度に設定することが好ましく、メカニカルミリングの種類に応じて適宜選択することが好ましい。例えば、ボールミルにより触媒被覆導電性材料を形成する場合、通常、ポット内に、導電性材料、高純度ラムズデライト型二酸化マンガン、および粉砕用ボールを加え、所定のモーター回転数および時間で処理を行う。遊星型ボールミルを行う際のモーター回転数としては、例えば100rpm〜2000rpmの範囲内、中でも200rpm〜1000rpmの範囲内であることが好ましい。また、遊星型ボールミルを行う際の処理時間としては、例えば2時間〜24時間の範囲内、中でも3時間〜12時間の範囲内であることが好ましい。
【0058】
2.空気極層形成工程
本発明における空気極層形成工程は、上記触媒被覆導電性材料を含有する空気極層形成用組成物を用いて、空気極集電体上に空気極層を形成する工程である。
【0059】
本発明における空気極層形成用組成物は、少なくとも触媒被覆導電性材料を含有するものであり、必要に応じて結着材を含有することが好ましい。結着材の種類および添加量等については、上記「A.空気電池」に記載した内容と同様であるので、ここでの説明は省略する。また、本発明に用いられる空気極集電体についても同様である。
【0060】
空気極の形成方法の一例としては、導電性材料、高純度ラムズデライト型二酸化マンガン、結着材および溶媒を含有する、ペースト状の空気極層形成用組成物を、空気極集電体上に塗布して、乾燥する方法等を挙げることができる。また、空気極の形成方法の他の例としては、導電性材料、高純度ラムズデライト型二酸化マンガンおよび結着材を混練して、ペレット状の空気極層形成用組成物を作製し、このペレットと空気極集電体とを圧着する方法等を挙げることができる。
【0061】
3.その他の工程
上述した触媒被覆導電性材料形成工程および空気極層形成工程を行うことにより、空気極を得ることができる。その他の工程については、一般的な空気電池の製造方法と同様であるので、ここでの説明は省略する。
【0062】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【実施例】
【0063】
以下に実施例を示して本発明をさらに具体的に説明する。
[実施例]
本実施例においては、コインセル型のリチウム空気二次電池を作製した。なお、コインセルの組立はアルゴンボックス内で行った。
コインセルの模式図を図4に示す。負極ケース22、空気極ケース20はともにSUS材からなり、空気極ケース20は、直径2mmの貫通孔29を複数有している。まず、負極ケース22の上に、金属リチウム箔24を配置した。金属リチウム箔24として、厚み250μmのシートを直径18mmで打ち抜いたものを使用した。次に、金属リチウム箔24の上にポリエチレン製セパレータ25を設置した。セパレータ25として、厚み25μmのシートを直径19.5mmに打ち抜いたものを使用した。次に、セパレータ25の上から、電解液23をスポイトで注液した。電解液23には、エチレンカーボネート(キシダ化学製):ジエチルカーボネート(キシダ化学製)=1:1(体積比)で混合した混合溶媒中にLiClO(キシダ化学製)を濃度1Mで溶解させたものを使用した。
【0064】
次に、空気極メッシュ26に空気極合材27を押さえつけて、空気極メッシュ26に空気極合材27をめり込ませた。空気極メッシュ26として、厚み150μm、直径15mmのNiメッシュを使用した。空気極合材27として、ケッチェンブラック(KB)82重量部と、ポリテトラフルオロエタン(PTFE)3重量部と、高純度ラムズデライト型二酸化マンガン(フォワードサイエンスラボラトリー社製)15重量部とをめのう乳鉢にて混練したものを使用した。次に、一体化した空気極メッシュ26および空気極合材27を、空気極集電体28が溶接にて接合された空気極ケース20上に設置した。空気極集電体28として、厚み150μm、直径15mmのNiメッシュを使用した。次に、空気極ケース20にガスケット21をはめ込んだ。
【0065】
次に、得られた負極ケースおよび空気極ケースを、コインセル用かしめ機(宝泉製)を用いて接合した。このようにしてコインセルを得た。
【0066】
[比較例]
触媒を、電解二酸化マンガン(高純度化学研究所製)に変更したこと以外は、実施例と同様にしてコインセルを得た。
【0067】
[評価]
実施例および比較例で得られたコインセルを用いて、放電容量試験およびサイクル試験を行った。
【0068】
(1)放電容量試験
放電容量試験により、一次電池としての機能を評価した。まず、得られたコインセルをセルケースにはめ込み、それをガラス容器に入れ、アルミニウム製の蓋で密閉した。なお、正極端子および負極端子の配線は、アルミニウム製の蓋から取り出せるようにした。このガラス容器をアルゴンボックスから取り出し、アルミニウム製の蓋に備え付けられた配管を用いて、ガラス容器内をアルゴンから酸素にガス置換した。その後、以下の放電条件で放電を行い、放電容量を測定した。その結果を表1に示す。なお、下記(g−carbon)とは、正極層中のカーボン重量をいう。
・放電条件:50mA/(g−carbon)の電流で電池電圧2Vになるまで放電を行う
【0069】
(2)サイクル試験
サイクル試験により、二次電池としての機能を評価した。まず、得られたコインセルをセルケースにはめ込み、それをガラス容器に入れ、アルミニウム製の蓋で密閉した。なお、正極端子および負極端子の配線は、アルミニウム製の蓋から取り出せるようにした。このガラス容器をアルゴンボックスから取り出し、アルミニウム製の蓋に備え付けられた配管を用いて、ガラス容器内をアルゴンから酸素にガス置換した。その後、以下の放電条件および充電条件で充放電を行い、10サイクル目の放電容量を測定した。その結果を表1に示す。
・放電条件:50mA/(g−carbon)の電流で電池電圧2Vになるか、1500mAh/(g−carbon)の電気量に到達するまで放電を行う
・充電条件:25mA/(g−carbon)の電流で電池電圧4.3Vになるまで充電を行う
なお、サイクル試験は放電から開始した。
【0070】
【表1】

【0071】
放電容量試験の結果に示されるように、実施例で得られたコインセルは、比較例で得られたコインセルと比較すると、高い放電容量を示すことが確認された。これは、高純度ラムズデライト型二酸化マンガンの触媒活性が、電解二酸化マンガンの触媒活性よりも高く、酸素の授受がスムーズになったためであると考えられる。このことから、一次空気電池として考えた場合に、本発明の空気電池は、優れた放電特性を示すことがわかった。
【0072】
一方、サイクル試験の結果、比較例で得られたコインセルと比較して、初回、1500mAh/(g−carbon)に対し、実施例で得られたコインセルはいずれも高い容量維持率を示すことが明らかになった。この現象についても、上記と同様に、高純度ラムズデライト型二酸化マンガンの触媒活性が、電解二酸化マンガンの触媒活性よりも高く、酸素の授受がスムーズになったためであると考えられる。
【図面の簡単な説明】
【0073】
【図1】本発明の空気電池を説明する説明図である。
【図2】本発明の空気電池を例示する概略断面図である。
【図3】本発明の空気電池を例示する概略断面図である。
【図4】実施例で作製した空気電池を説明する説明図である。
【符号の説明】
【0074】
1 … 電池ケース
1a … 下部絶縁ケース
1b … 上部絶縁ケース
2 … 負極集電体
2´ … 負極リード
3 … 負極層
4 … 空気極層
5 … 空気極メッシュ
6 … 空気極集電体
6´ … 空気極リード
7 … セパレータ
8 … 微多孔膜
9 … 電解液

【特許請求の範囲】
【請求項1】
導電性材料を含有する空気極層および前記空気極層の集電を行う空気極集電体を有する空気極と、負極活物質を含有する負極層および前記負極層の集電を行う負極集電体を有する負極と、前記空気極層および前記負極層の間に設置されたセパレータと、前記空気極層および前記負極層の間で金属イオンの伝導を担う電解質と、を有する空気電池であって、
前記空気極層が、触媒として、高純度ラムズデライト型二酸化マンガンを含有することを特徴とする空気電池。
【請求項2】
前記高純度ラムズデライト型二酸化マンガンのJahn-Teller distortion factorが0.9以上であることを特徴とする請求項1に記載の空気電池。
【請求項3】
導電性材料および高純度ラムズデライト型二酸化マンガンを、メカニカルミリングにより混合し、前記導電性材料の表面を前記高純度ラムズデライト型二酸化マンガンで被覆した触媒被覆導電性材料を形成する触媒被覆導電性材料形成工程と、
前記触媒被覆導電性材料を含有する空気極層形成用組成物を用いて、空気極集電体上に空気極層を形成する空気極層形成工程と、
を有することを特徴とする空気電池の製造方法。
【請求項4】
前記メカニカルミリングが、ボールミルであることを特徴とする請求項3に記載の空気電池の製造方法。
【請求項5】
前記高純度ラムズデライト型二酸化マンガンのJahn-Teller distortion factorが0.9以上であることを特徴とする請求項3または請求項4に記載の空気電池の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2009−289616(P2009−289616A)
【公開日】平成21年12月10日(2009.12.10)
【国際特許分類】
【出願番号】特願2008−141342(P2008−141342)
【出願日】平成20年5月29日(2008.5.29)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】