説明

粉末成形品の製造方法および粉末成形装置

【課題】粉末成形品の密度分布の偏りを小さくすることが可能な粉末成形品の製造方法および粉末成形装置を提供することを目的とする。
【解決手段】材料粉末Pが充填される充填部Aが形成されたダイ11と、前記ダイ11に対して相対移動可能に取り付けられ、前記ダイ11とともに充填部Aを画成する下パンチ21と、前記ダイ11の上方に配置され、前記ダイ11に対して進退可能に支持された上パンチ31と、前記上パンチ31を前記ダイ11に対して前進又は後退させる上ラム71と、制御部80と、を備えた粉末成形装置1であって、前記上パンチは、複数のDDV型サーボ駆動装置D10を介して前記上ラム71に接続されていることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、粉末成形品の製造方法および粉末成形装置に関するものである。
【背景技術】
【0002】
周知のように、自動車部品や電子部品、切削用工具等の分野において、金属粉末やアルミナをはじめとするセラミックス粉末を粉末成形品に成形し、その粉末成形品を焼結することによって粉末焼結品からなる製品を製造する粉末冶金焼結法が広く用いられている。
【0003】
粉末冶金焼結法は、ダイと、ダイとともに充填部を画成する下パンチと、充填部に向かい進退可能に支持された上パンチとを備えた粉末成形装置において、ダイの形成された充填部に材料粉末が充填され、この材料粉末を上パンチと下パンチにより押圧して粉末成形品が成形されるようになっている。そして、この粉末成形品は、所定の条件で焼結することで粉末焼結品が製造されるようになっている。
【0004】
上記粉末成形品は、焼結する際に大幅に収縮し、その収縮の大きさは粉末成形品の密度に大きく影響されるため、圧粉、成形した粉末成形品の密度分布の偏りを小さくして焼結時の収縮を抑制することが望ましい。
【0005】
そこで、粉末成形品の密度分布の偏りを小さくするため、ダイを固定して上パンチを下降させるとともに下パンチを上昇させて充填部内の材料粉末を上下双方から圧粉するダイ固定方式(例えば、特許文献1参照)や、下パンチを固定して上パンチを下降させる際にダイを上パンチの約1/2の速度で下降させることで充填部内の材料粉末を相対的に下方からも圧粉して成形するウィズドローアル方式(例えば、特許文献2参照)が実用化されているが、充填時に充填部の部位によって材料粉末の供給量が偏ると粉末成形品の密度分布の偏りの発生を避けることは困難であった。
【0006】
一方、シューボックスにより材料粉末を充填する場合に、充填部内の部位によって材料粉末の供給量が偏るのを軽減して密度分布の偏りを小さくするため、例えば、図9に示すようないわゆる傾斜充填(コンターフィリング)による材料粉末の充填技術が用いられる場合がある。
例えば、図9(A)に示すように、材料粉末Pを供給するシューボックス120をダイ111の充填部A上まで前進して材料粉末Pを充填部Aに充填し、材料粉末Pが充填されたらシューボックス120を後退させる。このとき、例えば、シューボックス120の後退動作と対応させて下パンチ121を上昇させる。
【0007】
充填部Aに充填された材料粉末Pの上面は、シューボックス120が通過することで擦り切られるが、シューボックス120が通過した後に下パンチ121が上昇するため、時間が経過するにしたがって、図9(B)に示すようにシューボックス120の後退側から前進側に向かってしだいに高くなる傾斜面が形成される。
そして、シューボックス120が後退し終わると、図9(C)に示すように、材料粉末Pの上面全体にわたって傾斜面が形成される。
その後、下パンチ121を一旦下降して材料粉末Pを充填部A内に収納してから上パンチ及び下パンチ121により材料粉末Pを圧粉するようになっており、かかるコンターフィリングを用いてシューボックス120の前進端側に多くの材料粉末Pを供給することで、材料粉末Pが供給されにくいシューボックス120の前進端側における密度を高くして粉末成形品の密度分布の偏りを改善する場合がある。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平1−181997号公報
【特許文献2】特開平5−92299号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、粉末成形品の形状等によって、材料粉末を傾斜充填しても密度分布の偏りが充分に改善できない場合があり、粉末成形品の形状や材料粉末の供給形態に関わらず、密度分布の偏りが小さい粉末成形品を成形するための技術が要請されている。
【0010】
この発明は、このような事情を考慮してなされたもので、粉末成形品の密度分布の偏りを小さくすることが可能な粉末成形品の製造方法および粉末成形装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記目的を達成するために、この発明は以下の手段を提案している。
請求項1に記載された発明は、材料粉末が充填される充填部が形成されたダイと、前記ダイに対して相対移動可能に取り付けられ、前記ダイとともに充填部を画成する下パンチと、前記ダイの上方に配置され、前記ダイに対して進退可能に支持された上パンチと、前記上パンチを前記ダイに対して前進又は後退させる上ラムと、制御部と、を備えた粉末成形装置であって、前記上パンチは、複数のDDV型サーボ駆動装置を介して前記上ラムに接続されていることを特徴とする。
【0012】
請求項4に記載された発明は、材料粉末が充填される充填部が形成されたダイと、前記ダイに対して相対移動可能に取り付けられ、前記ダイとともに充填部を画成する下パンチと、前記ダイの上方に配置され、前記ダイに対して進退可能に支持された上パンチと、前記上パンチを前記ダイに対して前進又は後退させる上ラムとを備えた粉末成形装置による粉末成形品の製造方法であって、前記ダイに材料粉末を供給し、DDV型サーボ駆動装置によって前記上パンチの上下方向位置を制御し、前記上パンチおよび前記下パンチを、前記ダイのそれぞれの所定位置まで相対的に移動させて圧粉することを特徴とする。
【0013】
この発明に係る粉末成形装置及び粉末成形方法によれば、DDV型サーボ駆動装置によって上パンチの上下方向位置等を制御して材料粉末の圧縮量を調整するので、粉末成形品の密度分布の偏りを小さくすることができる。
その結果、粉末成形品を焼結して粉末焼結品とした場合の粉末焼結品の精度を向上することができる。
【0014】
請求項2に記載された発明は、請求項1に記載の粉末成形装置であって、圧粉された粉末成形品の厚さの偏りを測定するための形状測定手段を備え、前記制御部は、前記形状測定手段により測定された粉末成形品の厚さの偏りに基づき、前記上パンチが前記粉末成形品の厚さの偏りを縮小するような上下方向位置に前記DDV型サーボ駆動装置を制御することを特徴とする。
【0015】
請求項5に記載された発明は、請求項4に記載の粉末成形品の製造方法であって、圧粉された粉末成形品の厚さの偏りを形状測定手段によって測定し、前記形状測定手段により測定された粉末成形品の厚さの偏りに基づき、前記上パンチが前記粉末成形品の厚さの偏りを縮小するような上下方向位置に前記DDV型サーボ駆動装置を制御して圧粉することを特徴とする。
【0016】
この発明に係る粉末成形方法及び粉末成形装置によれば、形状測定手段により測定された粉末成形品の厚さの偏りに基づいてDDV型サーボ駆動装置を制御するので、容易かつ効率的に粉末成形品の密度分布の偏りを調整することができる。
【0017】
請求項3に記載された発明は、請求項2に記載の粉末成形装置であって、前記圧粉された粉末成形品の厚さの偏りを測定するための形状測定手段を備え、前記形状測定手段は、前記粉末成形品に、レーザ光を照射し、その反射光によって前記粉末成形品の厚さを測定するレーザ形状測定器であることを特徴とする。
【0018】
この発明に係る粉末成形装置によれば、形状測定手段がレーザ形状測定器とされているので、粉末成形品に直接接触することなく、短時間で正確に粉末成形品の厚さの偏りを測定することができる。その結果、粉末成形品の損傷が抑制されるとともにインラインで容易に粉末成形品の厚さの偏りを測定して、その結果をDDV型サーボ駆動装置にフィードバックして密度分布の偏りが小さい粉末成形品を成形することができる。
【発明の効果】
【0019】
この発明に係る粉末成形方法および粉末成形装置によれば、粉末成形品を成形する際に生じる粉末成形品の密度分布の偏りを抑制することができる。
【図面の簡単な説明】
【0020】
【図1】この発明の一実施形態に係る粉末成形装置の概略を示す図である。
【図2】一実施形態に係るDDV型サーボ駆動装置の構成の一例を示す図である。
【図3】一実施形態に係るDDV型サーボ駆動装置の配置の一例を示す図である。
【図4】一実施形態に係るレーザ形状測定器による粉末成形品の厚さ測定の一例を示す図である。
【図5】一実施形態に係る制御部の一例を示す図である。
【図6】この発明に係る粉末成形品の密度分布、加圧力、圧縮量の相関を示す図である。
【図7】図6に係る粉末成形品の密度分布、加圧力、圧縮量の相関を示す図を求めるための手順の一例を説明する図である。
【図8】一実施形態に係る粉末成形装置の動作を説明する概略フローの一例を示す図である。
【図9】従来の材料粉末の充填の一例を説明する図である。
【発明を実施するための形態】
【0021】
以下、図面を参照し、この発明の実施の形態について説明する。
図1は、この実施形態の粉末成形装置1を示す図であり、ダイセット(金型)10と、粉末成形プレス50とを備え、例えば、上パンチ及び下パンチはCNC制御可能とされている。
また、この実施形態において、粉末成形装置1は、金属粉末(材料粉末)Pを傾斜充填するとともに、固定されたダイに上パンチ及び下パンチが前進及び後退するダイ固定方式により成形するようになっている。
【0022】
ダイセット10は、中央に貫通孔が形成されたダイ11と、ダイ11の下方に配置される下パンチ21と、ダイの上方に配置される上パンチ31とを備え、ダイ11の貫通孔に下パンチ21が挿入されることで充填部Aが画成され、この充填部Aに金属粉末Pが充填されるようになっている。
ダイ11は、ダイプレート12の中央部に配置され、ダイプレート12にはガイド孔18Hが形成されている。
【0023】
下パンチ21は、本体ベッド68上に固定されたベースプレート14と相対的に移動可能とされた下パンチプレート13に立設されており、下パンチプレート13は、後述する下パンチ用のDDV型サーボ駆動装置D20を介して押上プレート44に接続され、下パンチプレート13から下方に形成されたガイドロッド40が押上プレート44のガイド孔に挿入されることで、下パンチプレート13は、押上プレート44と水平方向のズレを抑制しつつ上下方向に相対移動可能とされている。
【0024】
また、押上プレート44はT型ジョイント45と連結され、さらにT型ジョイント45のT溝45Aが下ラム61のT形状部と接続されており、下ラム61が上下方向に進退して、下パンチ21及び下パンチプレート13が押上プレート44とともに上下方向に移動可能とされている。
【0025】
また、ダイプレート12の下方に立設されたガイドロッド41は、ベースプレート14のガイド孔に挿入され、ダイプレート12はベースプレート14と上下方向に相対移動可能とされている。
また、下パンチ21は、DDV型サーボ駆動装置D20が位置制御機能によって進退することで押上プレート44に対して上下方向に相対移動可能とされており、下ラム61に対する下パンチ21の上下方向の相対的位置を調製することが可能とされている。
【0026】
上パンチ31は、上パンチプレート34に固定されるとともに、上パンチプレート34に下方(ダイ11の方向)に向けて立設され、充填部Aに挿入可能とされている。
また、上パンチプレート34は、後述する粉末成形プレス50の上パンチ用のDDV型サーボ駆動装置D10と図示しないジョイントを介して接続されるようになっている。
【0027】
上パンチプレート34には、ガイドロッド18が立設されるとともにダイプレート12に形成されたガイド孔18Hに摺動可能に挿入され、上パンチ31がダイ11に対して上下方向に移動する際に上パンチ31がダイ11とずれるのを抑制するようになっている。
【0028】
粉末成形プレス50は、プレス下側本体部60と、プレス上側本体部70と、制御部80と、シューボックス90と、レーザ形状測定器Lとを備え、レーザ形状測定器Lで測定した粉末成形品Wの厚さに基づいて、上パンチ31の上下方向位置を調整して上パンチ31による金属粉末Pの圧縮量を調整するようになっている。
【0029】
プレス下側本体部60は、下ラム61と、下ラム駆動部62と、本体支持部63と、下ラム駆動部支持板64と、下ラムベースプレート65と、廻り止めロッド66と、下ラムガイドプレート67と、本体ベッド68とを備えており、本体支持部63と、下ラム駆動部支持板64と、下ラムベースプレート65と、下ラムガイドプレート67と、本体ベッド68とは、下方からこの順序で配置され、廻り止めロッド66は、下ラムベースプレート65と下ラムガイドプレート67との間に立設されている。
また、プレス下側本体部60とプレス上側本体部70とは、連結部材52で連結されている。
【0030】
下ラム駆動部62は、下ラム駆動部支持板64に設けられた下ラム駆動モータ62Mと、下ラム駆動モータ62Mの回転軸に設けられた駆動プーリ62Aと、伝達ベルト62Bと、従動プーリ62Cと、従動プーリ62Cと同心とされた下ラム駆動軸62Dとを備えており、伝達ベルト62Bが駆動プーリ62Aと従動プーリ62Cに巻回されて、下ラム駆動モータ62Mの回転が従動プーリ62Cに伝達されて下ラム駆動軸62Dが回転されるようになっている。
【0031】
また、下ラム駆動軸62Dの先端側に形成された雄ネジ62Eが下ラム61の下側端面の中央から軸線に沿って延在する雌ネジ61Aと螺合して配置され、下ラム駆動軸62Dが回転されることにより、下ラム61が上昇下降するようになっている。
【0032】
下ラム61は、下ラム61の下方側に、雄ネジ62Eと係合可能な雌ねじ61Aが形成され、下ラム61の外周は下ラムガイドプレート67に設けられたガイド部材67Aに挿入されるとともに上下方向に摺動可能とされ、下ラム61は基端部(下方側)が下ラムベースプレート65に固定されるとともに下ラムベースプレート65に立設されている。
【0033】
下ラムベースプレート65は、その中央部に貫通孔65Aが形成され、下ラム61の雌ネジ61Aが貫通孔65Aと同心とされ、下ラム61の雌ネジ61Aには下ラム駆動軸62Dが挿入され、雄ネジ62Eと雌ネジ61Aが係合されている。
【0034】
また、下ラムベースプレート65に形成された孔65Bに廻り止めロッド66が貫通されることにより、下ラム駆動モータ62Mの下ラム駆動軸62Dが回転した場合に、下ラム61及び下ラムベースプレート65が回転するのが防止されている。
その結果、下ラム駆動モータ62Mの下ラム駆動軸62Dが回転されると、下ラム駆動軸62Dの雄ネジ62Eと下ラム61の雌ネジ61Aが係合して、下ラム駆動モータ62Mの回転が上下方向の移動に変換され、下ラム61が上下方向に進退するようになっている。
【0035】
プレス上側本体部70は、上ラム71と、上ラム駆動部73と、支持板74と、上ラムベースプレート75と、廻り止めロッド76と、上ラムガイドプレート77と、上ラムプレート78とを備えており、支持板74と、上ラムベースプレート75と、上ラムガイドプレート77と、上ラムプレート78とは、上方からこの順序で配置され、廻り止めロッド76は、上ラムベースプレート75と上ラムガイドプレート77との間に立設されている。
【0036】
上ラム駆動部73は、支持板74に取り付けられた上ラム駆動モータ73Mと、上ラム駆動モータ73Mの回転軸に設けられた駆動プーリ73Aと、伝達ベルト73Bと、従動プーリ73Cと、従動プーリ73Cと同心とされた上ラム駆動軸73Dとを備えており、伝達ベルト73Bが駆動プーリ73Aと従動プーリ73Cに巻回されて、上ラム駆動モータ73Mの回転が従動プーリ73Cに伝達されて上ラム駆動軸73Dが回転されるようになっている。
【0037】
上ラム71は、上ラム71の上方端面の中央に雄ネジ73Eと係合可能な雌ねじ71Aが形成され、上ラム71の外周は上ラムガイドプレート77に設けられたガイド部材77Aに挿入されるとともに上下方向に摺動可能とされ、上ラム71は基端部(上方側)が上ラムベースプレート75に固定されるとともに上ラムベースプレート75に立設されている。
【0038】
また、上ラムベースプレート75に形成された孔75Bに廻り止めロッド76が貫通されることにより、上ラム駆動軸73Dが回転した場合に、上ラム71及び上ラムベースプレート75が回転するのが防止されている。
【0039】
また、上ラム駆動軸73Dの先端側に形成された雄ネジ73Eが上ラム71の下側端面の中央から軸線に沿って形成された雌ネジ71Aと螺合して配置され、上ラム駆動軸73Dが回転されることにより上ラム71が上昇下降するようになっている。
【0040】
上ラムプレート78は、上ラムプレート78はその上部に設けられた上部連結部材78A及びTジョイント78Bを介して上ラム71に接続されており、DDV型サーボ駆動装置D10を介して上パンチプレート34と接続され、DDV型サーボ駆動装置D10が位置制御機能によって進退することで、上ラムプレート78に対する上パンチ31の上下方向位置が調整されるようになっている。
【0041】
この実施形態における上パンチ用のDDV型サーボ駆動装置D10、下パンチ用のDDV型サーボ駆動装置D20は、例えば、図2に示すような構成とされている。
以下、図2を参照して、DDV(Direct Drive Volume Control)サーボ駆動装置の一例であるDDV型サーボ駆動装置D1について説明する。
【0042】
DDV型サーボ駆動装置D1は、加算器D2と、サーボ増幅器D3と、サーボモータM1と、油圧ポンプP1と、油圧シリンダP2と、位置検出センサD4とを備え、位置検出センサD4は油圧シリンダP2のロッドの進退量を検出するようになっている。
【0043】
加算器D2は、外部から入力される、位置制御又は圧力制御に係る制御信号Sdと位置検出センサD4からのフィードバック信号Stを加算してサーボ増幅器D3に出力し、サーボ増幅器D3は加算器D2からの信号を増幅してサーボモータM1を駆動するようになっている。
サーボモータM1は、油圧ポンプP1を駆動して加圧した作動油を油圧シリンダP2に送り、油圧シリンダP2のロッドを前進又は後退させてその進退量を調整するようになっている。
【0044】
その結果、制御信号をDDV型サーボ駆動装置D1に出力することで油圧シリンダP2のロッドの進退量を変化させ、DDV型サーボ駆動装置D1を位置制御するようになっている。
また、油圧シリンダP2のロッド側及びヘッド側は、圧力センサT1、T2が接続され、それぞれの作動油の圧力が検出可能とされている。
なお、上記以外の周知の他の形式のDDV型サーボ駆動装置が適用可能であることはいうまでもない。
【0045】
図3は、上ラムプレート78におけるDDV型サーボ駆動装置D10の配置の一例を示す図であり、二点鎖線は、DDV型サーボ駆動装置D10との位置関係を表す上パンチ31、ダイ11、充填部Aを示している。
【0046】
DDV型サーボ駆動装置D10は、DDV型サーボ駆動装置D11、DDV型サーボ駆動装置D12、DDV型サーボ駆動装置D13、DDV型サーボ駆動装置D14を備え、例えば、DDV型サーボ駆動装置D11とDDV型サーボ駆動装置D13、DDV型サーボ駆動装置D12とDDV型サーボ駆動装置D14は、それぞれ充填部Aを挟んで対向し、DDV型サーボ駆動装置D11とDDV型サーボ駆動装置D13を結ぶ線分と、DDV型サーボ駆動装置D12とDDV型サーボ駆動装置D14を結ぶ線分が互いに直交するように配置されている。
【0047】
かかる構成によって、上パンチ31が上昇及び下降する軸線方向における上パンチ31の上下方向位置、及び上パンチ31先端面の傾斜(充填部Aを挟んで対向する部位の相対的な上下方向位置)を調整することができるようになっている。
【0048】
シューボックス90は、制御部80から、シューボックス90の駆動源に出力された信号によって、ダイプレート12上を充填部Aに向かって前進及び後退するようになっており、上パンチ31及び下パンチ21とシーケンス制御されるようになっている。
【0049】
レーザ形状測定器Lは、ダイ11の外方に配置され、シューボックス90が搬出してきた粉末成形品Wの厚さをレーザ光Bによって測定するようになっており、例えば、図4(A)に示すように、粉末成形品Wを計測位置において移動させながら照射部からレーザ光Bを照射し、その反射光をレーザ形状測定器Lの受光部で受けて信号処理をして、粉末成形品Wの形状、すなわち予め設定した測定部位の厚さを算出するようになっている。
【0050】
また、レーザ形状測定器Lは、例えば、図4(B)に示すように、粉末成形品Wの計測開始端SPから計測終了端EPに向かって走査した形状データを検出し、例えば、計測開始端SPの厚さH1、計測終了端EPの厚さH2を制御部80に送信するようになっている。なお、図4は、便宜のため、計測開始端SP及び計測終了端EPに関して測定するように図示しているが、例えば、計測開始端SPと計測終了端EPの中央位置の両側端部を、計測開始端SP、計測終了端EPとともに、又は単独で測定部位としてもよい。
【0051】
制御部80は、例えば、図5に示すように、入力部81と、メモリ82と、演算部83と、ハードディスク装置84と、出力部86と、これら相互のデータ等を通信するための通信線87とを備え、入力部81には、DDV型サーボ駆動装置D10、DDV型サーボ駆動装置D20、下ラム駆動モータ62M、上ラム駆動モータ73M、レーザ形状測定器Lが接続され、出力部86には、上ラムDDV型サーボ駆動装置D10、DDV型サーボ駆動装置D20、下ラム駆動モータ62M、上ラム駆動モータ73Mが接続されている。
【0052】
入力部81は、例えば、図示しないキーボード等のデータ入力機器を有していて演算部83に設定等を出力するとともに、上ラムDDV型サーボ駆動装置D10及びDDV型サーボ駆動装置D20の圧力センサ(図示せず)の検出信号、下ラム駆動モータ62M及び上ラム駆動モータ73Mのエンコーダ(図示せず)の回転角検出信号、レーザ形状測定器Lからの測定データの信号が入力され、これら信号を演算部83に出力するようになっている。
【0053】
演算部83は、例えば、メモリ82のROMに格納されたプログラムを読み込んでプログラムを実行し、メモリ82に格納された粉末成形プレス50の動作プログラムデータと、下ラム駆動モータ62M及び上ラム駆動モータ73Mのエンコーダからの信号に基づいて下ラム駆動モータ62M及び上ラム駆動モータ73Mに制御信号を出力して下ラム61及び上ラム71の位置、速度、停止動作等を制御するとともに、シューボックス90の駆動源に出力してシューボックス90を駆動するようになっている。
【0054】
また、レーザ形状測定器Lからの測定データをデータベース85に参照して各DDV型サーボ駆動装置D11、D12、D13、D14のロッドの進退量を算出して各DDV型サーボ駆動装置D11、D12、D13、D14に出力するようになっている。
また、メモリ82に格納された動作プログラムデータに基づいて、DDV型サーボ駆動装置D20の傾斜充填及び充填時の振動生成に関する信号を、DDV型サーボ駆動装置D20に出力するようになっている
【0055】
出力部86は、演算部83からの信号を、DDV型サーボ駆動装置D10、DDV型サーボ駆動装置D20、下ラム駆動モータ62M、上ラム駆動モータ73Mに出力するようになっている。
【0056】
ハードディスク装置84にはデータベース85が格納されている。
データベース85は、粉末成形品Wの厚さを、粉末成形品Wの対象となる部位の厚さ(測定データ)に応じて、目標厚さとするためのDDV型サーボ駆動装置D10のロッドの進退量の数値データが、加圧力ごとにデータテーブルの形態で構成されており、例えば、図6に示すような相関に基づいている。図6におけるパラメータ△L1〜△L4は、金属粉末Pの圧縮量と対応するDDV型サーボ駆動装置D10のロッドの進退量を表している。
【0057】
次に、図7を参照して、図6で示した、DDV型サーボ駆動装置D10の加圧力と、DDV型サーボ駆動装置D10のロッドの進退量(金属粉末Pの圧縮量と対応)と、粉末成形品Wの密度の相関を求める手順について説明する。
1)ます、金属粉末P等の材料粉末を充填部Aに充填する(手順1)。
充填部Aへの材料粉末の充填は、シューボックスや供給ホース内の材料粉末の挙動による影響をなくし、材料粉末を充填部Aに均等に充填するために手で行なう。
2)DDV型サーボ駆動装置D10の各DDV型サーボ駆動装置D11、D12、D13、D14のロッドを所定の進退量とすることで上パンチ31による圧縮量を一定にし、充填した材料粉末を圧粉して粉末成形品Wを成形する(手順2)。
3)各DDV型サーボ駆動装置D11、D12、D13、D14の圧粉時の加圧力を測定する(手順3)。
4)粉末成形品Wの密度分布測定(手順4)。
粉末成形品Wの密度分布測定は、粉末成形品Wから測定対象の部位を切り出し、この測定部位を、例えば、水等の液体中に没して測定部位が排除した液体の容積と、液体内、液体外における測定部位の重量差、液体の密度とから算出する、いわゆるアルキメデス法を用いる。
5)DDV型サーボ駆動装置の加圧力と、材料粉末の圧縮量と、粉末成形品Wの密度の相関を求める(手順5)。
手順2におけるDDV型サーボ駆動装置D10の進退量を変化させて、手順1から手順5を複数回繰返して測定する。そして、材料粉末の圧縮量をDDV型サーボ駆動装置D10のロッドの進退量に変換し、DDV型サーボ駆動装置D10のロッドの進退量をパラメータとして、例えば、図6に示すような加圧力と密度の相関を示すグラフを作成する。
【0058】
以下、図8を参照して、粉末成形装置1において粉末成形品Wの密度分布を調整するための概略動作の一例を説明する。
まず、粉末成形装置1を起動しての自動運転を開始する。
粉末成形装置1の自動運転を開始する場合、下パンチ21は下死点に、上パンチ31は上死点に、シューボックス90は後退端に位置している。
(1)まず、制御部80は、DDV型サーボ駆動装置D10に出力してDDV型サーボ駆動装置D10のロッドの進退量(例えば、前進量)を初期値Lに設定する(S1)。
(2)制御部80は、粉末成形装置1が自動運転中かどうかを判定する(S2)。
自動運転中の場合には、S3に移行し、自動運転中でない場合にはプログラムを終了する。
(3)金属粉末Pを充填する(S3)。
1)制御部80は、シューボックス90の駆動源に出力してシューボックス90を充填部Aの上に前進させる。
2)制御部80は、シューボックス90が充填部Aの上まで前進したら、シューボックス90の駆動源にシューボックス90を後退させる信号を出力する。
3)シューボックス90が前進している間、シューボックス90が後退している間のいずれか又は両方の間、制御部80は、DDV型サーボ駆動装置D20に振動を生成するための信号を出力して、DDV型サーボ駆動装置D20が充填部A内の金属粉末Pを振動させて充填を効率的にする。
4)制御部80は、シューボックス90が後退する間、シューボックス90の後退位置に応じて下パンチ21を上昇させる信号をDDV型サーボ駆動装置D20に出力する。これにより、シューボックス90が後退している間、前述の図9で説明したような傾斜充填をさせて金属粉末Pの上面に傾斜面を形成し、その後下パンチ21を下降させて圧粉可能な状態とする。
(4)次に、充填部Aに充填された金属粉末Pを圧粉する(S4)。
1)制御部80は、下ラム駆動モータ62M及び上ラム駆動モータ73Mに駆動信号を出力して下ラム61を上昇させるとともに上ラム71を下降させ、充填部A内の金属粉末Pを圧粉して粉末成形品Wとする。
2)制御部80は、粉末成形品Wを成形した後、下ラム駆動モータ62M及び上ラム駆動モータ73Mに、上パンチ31及び下パンチ21が同期して上昇する信号を出力し、上パンチ31及び下パンチ21が粉末成形品Wを挟んで上昇しダイ11の上面に粉末成形品Wを抜き出す。
3)次いで、制御部80は、シューボックス90の駆動源に出力し、次の粉末成形品Wに対応する金属粉末Pを充填するためシューボックス90を前進させる。
シューボックス90が前進すると、ダイ11から抜き出された粉末成形品Wがダイプレート12の外に押し出されてレーザ形状測定器Lの測定位置まで移動する。
(5)レーザ形状測定器Lにより粉末成形品Wの形状測定をする(S5)。
1)レーザ形状測定器Lは、計測位置に移動した粉末成形品Wを移動させながら照射部からレーザ光Bを照射し、その反射光により予め設定した測定部位の厚さを算出する。
2)レーザ形状測定器Lで算出した粉末成形品Wの厚さに関する数値データ(例えば、計測開始端SPの厚さH1、計測終了端EPの厚さH2)が入力部81に送信されメモリ82に格納される。
(6)粉末成形品Wの形状、すなわち厚さがあらかじめ設定した許容範囲であるかどうかを判定する(S6)。
演算部83は、メモリ82から計測開始端SPの厚さH1、計測終了端EPの厚さH2を取出し、厚さの差異△Hを算出するとともに、これらが予め設定していた許容範囲であるかどうかを判定する。
粉末成形品Wの各部位の厚さが許容範囲内である場合は、S2に移行し、許容範囲でない場合はS7に移行する。
(7)各DDV型サーボ駆動装置D11、D12、D13、D14による圧縮量(ロッドの進退量)を調整する(S7)。
粉末成形品Wの各部位の厚さ等が許容範囲でない場合、演算部83は、許容範囲外となっている部位の厚さの側定データを、データベース85を参照して各DDV型サーボ駆動装置D11、D12、D13、D14のロッドの進退量を取得するとともに各DDV型サーボ駆動装置D11、D12、D13、D14に出力する。
各DDV型サーボ駆動装置D11、D12、D13、D14のロッドの進退量の調整が完了したら、S2に移行する。
上記(2)から(7)を、自動運転が終了するまで繰り返す。
【0059】
粉末成形装置1によれば、DDV型サーボ駆動装置D10のロッドの進退量を変化させて金属粉末Pの圧縮量を調整するので、粉末成形品Wの密度分布の偏りを小さくすることができる。
その結果、密度分布の偏りが小さい粉末成形品を効率的に成形することができる。
【0060】
また、粉末成形装置1によれば、成形した粉末成形品Wの厚さをレーザ形状測定器Lで測定してDDV型サーボ駆動装置D10の位置制御にフィードバックして上パンチ31の上下方向位置等を調整して次の粉末成形品Wを成形するので、粉末成形品Wの厚さの偏りを容易かつ効率的に調整することができる。
【0061】
また、粉末成形装置1によれば、レーザ形状測定器Lを備え、粉末成形品に直接接触することなく、短時間で正確に粉末成形品の厚さの偏りを測定してDDV型サーボ駆動装置D10にフィードバックするので、粉末成形品Wの損傷が抑制しつつサイクルタイムの延長をともなわずにインラインで容易かつ効率的に粉末成形品Wの厚さの偏りを測定することができる。
【0062】
なお、この発明は上記実施の形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において、種々の変更をすることが可能である。
例えば、上記実施の形態においては、粉末成形装置1が、上パンチ31用のDDV型サーボ駆動装置D10及び下パンチ21用のDDV型サーボ駆動装置D20を備える場合について説明したが、例えば、上パンチ用のDDV型サーボ駆動装置D10のみを備える構成としてもよい。
【0063】
また、上記実施の形態においては、DDV型サーボ駆動装置D10が4本のDDV型サーボ駆動装置D11、D12、D13、D14により構成され、対をなすDDV型サーボ駆動装置D10がそれぞれ充填部Aを挟んだ位置に互いに直交する方向に配置される場合について説明したが、例えば、4本以外の複数のDDV型サーボ駆動装置によりDDV型サーボ駆動装置D10を構成してもよいし、DDV型サーボ駆動装置D10の数及び配置を任意に設定してもよい。
【0064】
また、上記実施の形態においては、粉末成形装置1が粉末成形品Wの形状測定手段としてレーザ形状測定器Lを備える場合について説明したが、例えば、レーザ形状測定器Lに代えて超音波や放射線を用いた形状測定器を用いてもよいし、形状測定手段を備えない構成としてもよい。
【0065】
また、上記実施の形態においては、粉末成形品Wの厚さに関して許容範囲外の部位があった場合にDDV型サーボ駆動装置D10のロッドの進退量を調整する場合について説明したが、許容範囲を設定せずに、例えば、圧粉するごとにレーザ形状測定器Lからの信号に基づいて進退量を調整する構成としてもよい。
【0066】
また、上記実施の形態においては、各DDV型サーボ駆動装置D11、D12、D13、D14のロッドの進退量を算出する場合に、制御部80においてデータベース85を参照する場合について説明したが、例えば、演算部83において設定された数式に基づいて算出してもよいし、例えば、レーザ形状測定器Lからの信号に基づいて目標厚さと測定厚さの差異分だけ進退量を調整する構成としてもよい。
【0067】
上記実施の形態においては、上パンチ及び下パンチの位置制御を、下ラム駆動軸62D及び下ラム61に設けられたネジ構造と、上ラム駆動軸73D及び上ラム71に設けられたネジ構造とを有するCNC制御方式による場合について説明したが、CNC制御方式以外の制御方式やネジ構造以外の駆動装置を用いて上パンチ31及び下パンチ21を作動させてもよい。また、エンコーダに代えて、リニアスケール等、他の位置測定手段を用いて構成してもよい。
【0068】
上記実施の形態においては、金属粉末Pの充填において、DDV型サーボ駆動装置D20によって下パンチ21を作動することで傾斜充填する場合について説明したが、例えば、下ラム61を作動させることで傾斜充填してもよいし、ダイ11を下パンチ21に相対的に下降させて傾斜充填してもよい。
また、傾斜充填をすることなく金属粉末Pを充填してもよいことはいうまでもない。
また、金属粉末Pを充填する場合に、DDV型サーボ駆動装置D20を用いて金属粉末Pを振動させるかどうかは任意に設定可能な事項である。
【0069】
上記実施の形態においては、粉末成形装置1における成形が、ダイ11が粉末成形プレス50に対して固定され、上パンチ31と下パンチ21がダイ11に対して前進するダイ固定成形方式である場合について説明したが、ウィズドローアル成形方式に適用することも可能である。
【0070】
上記実施の形態においては、下パンチ21及び上パンチ31がそれぞれ単一の場合について説明したが、下パンチ21と上パンチ31のいずれか一方又は双方が圧粉方向に複数段に進退するパンチからなる構成としてもよく、また、下パンチ21、上パンチ31のいずれか又は双方がコアロッドを備えた構成とすることも可能である。
【0071】
また、上記実施の形態においては、材料粉末として金属粉末Pを用いて粉末成形品Wを成形する場合について説明したが、金属粉末Pに代えて、超硬合金粉末、セラミックス粉末、サーメット粉末等を用いて、切削用のインサート、切削工具、その他種々の製品を生産に用いることも可能である。
【0072】
また、上記実施の形態においては、プログラムを格納するための記憶媒体がROMである場合について説明したが、ROM以外にも、例えば、EP−ROM、 ハードディスク、フレキシブルディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、磁気テープ、不揮発性のメモリカードなどを用いてもよい。また、演算部が読出したプログラムを実行することにより上記実施形態の作用が実現されるだけでなく、そのプログラムの指示に基づき、演算部で稼働しているOS(オペレーティングシステム)などが実際の処理の一部または全部を行い、その処理によって上記実施形態の作用が実現される場合も含まれる。さらに、記憶媒体から読出されたプログラムが、演算部に挿入された機能拡張ボードや演算部に接続された機能拡張ユニットに備わるメモリに書込まれた後、そのプログラムの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施形態の作用が実現される場合も含まれることはいうまでもない。
【産業上の利用可能性】
【0073】
この発明に係る粉末成形装置及び粉末成形品の製造方法によれば、密度分布の偏りが小さい粉末成形品を効率的に生産できるので、産業上利用可能である。
【符号の説明】
【0074】
A 充填部
B レーザ光
D10 DDV型サーボ駆動装置(上パンチ用)
D20 DDV型サーボ駆動装置(下パンチ用)
L レーザ形状測定器
P 金属粉末(材料粉末)
1 粉末成形装置
11 ダイ
21 下パンチ
31 上パンチ
71 上ラム

【特許請求の範囲】
【請求項1】
材料粉末が充填される充填部が形成されたダイと、
前記ダイに対して相対移動可能に取り付けられ、前記ダイとともに充填部を画成する下パンチと、
前記ダイの上方に配置され、前記ダイに対して進退可能に支持された上パンチと、
前記上パンチを前記ダイに対して前進又は後退させる上ラムと、
制御部と、を備えた粉末成形装置であって、
前記上パンチは、複数のDDV型サーボ駆動装置を介して前記上ラムに接続されていることを特徴とする粉末成形装置。
【請求項2】
請求項1に記載の粉末成形装置であって、
圧粉された粉末成形品の厚さの偏りを測定するための形状測定手段を備え、
前記制御部は、
前記形状測定手段により測定された粉末成形品の厚さの偏りに基づき、前記上パンチが前記粉末成形品の厚さの偏りを縮小するような上下方向位置に前記DDV型サーボ駆動装置を制御することを特徴とする粉末成形装置。
【請求項3】
請求項2に記載の粉末成形装置であって、
前記圧粉された粉末成形品の厚さの偏りを測定するための形状測定手段を備え、
前記形状測定手段は、
前記粉末成形品に、レーザ光を照射し、その反射光によって前記粉末成形品の厚さを測定するレーザ形状測定器であることを特徴とする粉末成形装置。
【請求項4】
材料粉末が充填される充填部が形成されたダイと、
前記ダイに対して相対移動可能に取り付けられ、前記ダイとともに充填部を画成する下パンチと、
前記ダイの上方に配置され、前記ダイに対して進退可能に支持された上パンチと、
前記上パンチを前記ダイに対して前進又は後退させる上ラムとを備えた粉末成形装置による粉末成形品の製造方法であって、
前記ダイに材料粉末を供給し、
DDV型サーボ駆動装置によって前記上パンチの上下方向位置を制御し、
前記上パンチおよび前記下パンチを、前記ダイのそれぞれの所定位置まで相対的に移動させて圧粉することを特徴とする粉末成形品の製造方法。
【請求項5】
請求項4に記載の粉末成形品の製造方法であって、
圧粉された粉末成形品の厚さの偏りを形状測定手段によって測定し、
前記形状測定手段により測定された粉末成形品の厚さの偏りに基づき、前記上パンチが前記粉末成形品の厚さの偏りを縮小するような上下方向位置に前記DDV型サーボ駆動装置を制御して圧粉することを特徴とする粉末成形品の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2010−234377(P2010−234377A)
【公開日】平成22年10月21日(2010.10.21)
【国際特許分類】
【出願番号】特願2009−82043(P2009−82043)
【出願日】平成21年3月30日(2009.3.30)
【出願人】(000006264)三菱マテリアル株式会社 (4,417)