説明

精度管理システム、分析装置および精度管理方法

【課題】従来よりも的確な精度管理を行うことを可能とする精度管理システムを提供する。
【解決手段】複数の分析装置とネットワークを介した管理装置を備える精度管理システムであって、前記複数の分析装置おける試料を測定する測定部と、前記測定部によって精度管理用試料を測定することによって得られる精度管理データを前記ネットワークを介して前記管理装置に送信する精度管理データ送信手段と、前記管理装置に設けられた精度管理データ受信手段と、前記管理装置に設けられた受信データに基づいて精度管理を行う精度管理手段と、前記分析装置の校正の不確かさを記憶する校正不確かさ記憶部と、前記校正不確かさと前記精度管理データとに基づいて分析装置による測定の不確かさを分析装置ごとに算出する測定不確かさ算出手段と、前記精度管理の結果を出力する精度管理結果出力手段と、前記算出手段によって算出された測定不確かさ出力を手段するとを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、精度管理システム、分析装置および精度管理方法に関し、特に、複数の分析装置と前記複数の分析装置にネットワークを介して接続される管理装置とを備える精度管理システム、分析装置および精度管理方法に関する。
【背景技術】
【0002】
分析装置によって得られた測定データの不確かさを求めることが知られている。例えば、特許文献1には、測定部の器具公差の不確かさと、器具操作の不確かさと、標準試料を測定したときの検量線の不確かさと、未知試料を測定したときの未知試料測定値に対する不確かさと、を合成して合成不確かさを算出する計測装置が記載されている。
【0003】
また、ネットワークを利用して精度管理物質の測定データを収集し、収集したデータに基づいて精度管理を行う精度管理システムが知られている(例えば、特許文献2)。このような精度管理システムでは、自施設の分析装置による精度管理物質の測定データと、他施設の分析装置による精度管理物質の測定データとを比較することが可能となる。従って、上記精度管理システムに接続される分析装置の使用者は、自施設の測定データを他施設の測定データの平均値などと比較し、測定データが許容範囲内に収まっていれば、分析装置によって検体を測定することが可能であると判断している。
【0004】
【特許文献1】特開2004−20323号公報
【特許文献2】米国特許第6,937,964号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかし、上記特許文献1には、上記計測装置で合成された測定データの不確かさによって計測装置を評価する方法についての記載がない。従って、上記計測装置によって測定データの不確かさを算出しても、分析装置の使用者は、不確かさのデータに基づいて分析装置による検体の測定が可能であるか否かを判断することはできなかった。また、上記特許文献1の計測装置では、未知試料を測定したときの未知試料測定値に対する不確かさを算出するために、同一の未知試料を複数回測定する必要がある。しかし、未知試料は患者などから採取するのが通常であり、複数回測定可能な量の未知試料を患者から採取することは、患者にとって負担となっていた。
【0006】
また、上記特許文献2に示される精度管理システムは非常に有用なものであるが、測定データに不確かさが含まれていることについては考慮されていなかった。
本発明は、従来よりも的確な精度管理を行うことを可能とする精度管理システム、分析装置および精度管理方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
この発明の第1の局面による精度管理システムは、複数の分析装置と前記複数の分析装置にネットワークを介して接続される管理装置とを備える精度管理システムであって、
前記複数の分析装置にそれぞれ設けられ、試料を測定する測定部と、
前記複数の分析装置にそれぞれ設けられ、前記測定部によって精度管理用試料を測定することによって得られる精度管理データを前記ネットワークを介して前記管理装置に送信する精度管理データ送信手段と、
前記管理装置に設けられ、それぞれの前記精度管理データ送信手段によって送信される複数の前記精度管理データを受信する精度管理データ受信手段と、
前記管理装置に設けられ、前記精度管理データ受信手段によって受信された複数の前記精度管理データに基づいて精度管理を行う精度管理手段と、
分析装置の校正の不確かさを前記分析装置ごとに記憶する校正不確かさ記憶部と、
前記校正不確かさと前記精度管理データとに基づいて分析装置による測定の不確かさを分析装置ごとに算出する測定不確かさ算出手段と、
前記精度管理手段による精度管理の結果を出力する精度管理結果出力手段と、
前記測定不確かさ算出手段によって算出された測定の不確かさを出力する測定不確かさ出力手段と、を備えることを特徴とする。
【0008】
精度管理システムをこのように構成することにより、精度管理結果と測定の不確かさの両方の情報に基づいて分析装置による検体の測定の可否を判断することが可能となるので、測定の不確かさの許容範囲を示すデータが存在しなくても、従来の精度管理よりも的確な判断が可能となる。また、検体(未知試料)ではなく、精度管理用試料から得られる精度管理データに基づいて測定の不確かさを算出するので、同一の検体を複数回測定しなくても測定の不確かさを算出することが可能となる。
【0009】
第1の局面による精度管理システムにおいて、前記校正不確かさ記憶部および前記測定不確かさ算出手段は、前記管理装置に設けられており、前記精度管理結果出力手段および前記測定不確かさ出力手段は、前記複数の分析装置にそれぞれ設けられており、
前記管理装置は、前記精度管理の結果を前記ネットワークを介して前記複数の分析装置に送信する精度管理結果送信手段と、前記測定の不確かさを前記ネットワークを介して前記複数の分析装置に送信する測定不確かさ送信手段とを備え、
前記複数の分析装置は、前記精度管理結果送信手段によって送信される前記精度管理結果を受信する精度管理結果受信手段と、測定不確かさ送信手段によって送信される前記測定の不確かさを受信する測定不確かさ受信手段とを備えることが好ましい。
【0010】
このような構成によれば、分析装置で測定の不確かさを算出する必要がなくなるので、分析装置の使用者は測定の不確かさ算出の指示やデータ入力などの作業をする必要がなくなる。また、管理装置で各分析装置の測定の不確かさを管理することができるので、管理装置の使用者が各分析装置の状況を推測することが可能となる。
【0011】
第1の局面による精度管理システムにおいて、前記管理装置は、前記測定不確かさ算出手段によって前記分析装置ごとに算出された複数の前記測定の不確かさに基づいて、前記測定の不確かさの精度管理結果を行う測定不確かさ精度管理手段を備え、
前記精度管理システムは、前記測定不確かさ精度管理手段による測定不確かさの精度管理の結果を出力する測定不確かさ精度管理結果出力手段を備えることが好ましい。
【0012】
このような構成によれば、前記測定の不確かさの精度管理結果を示す不確かさ精度管理結果が出力されるので、測定の不確かさが許容範囲内のものであるか否かを判断することが容易になる。
【0013】
第1の局面による精度管理システムにおいて、前記測定不確かさ算出手段は、
前記精度管理データの不確かさを算出する精度管理データ不確かさ算出手段と、
前記校正不確かさ記憶部に記憶された前記校正の不確かさと、前記精度管理データの不確かさとを用いて前記測定の不確かさを算出する不確かさ算出手段と、を備えることが好ましい。
【0014】
このような構成によれば、分析装置の校正の不確かさと、精度管理データの不確かさとに基づいて測定の不確かさを算出することにより、分析装置による測定の不確かさの信頼性が高まる。
【0015】
第1の局面による精度管理システムにおいて、前記校正の不確かさは、測定データが未知である検体を第1および第2の基準分析装置で測定することによって得られる第1および第2の不確かさを合成することによって得られる結果に基づいて算出されることが好ましい。
【0016】
このような構成によれば、例えば血球計数装置などの、国際的な標準物質(測定データが既知である物質)が存在しない分析装置に対する校正の不確かさを算出することが可能となる。
【0017】
第1の局面による精度管理システムにおいて、前記精度管理結果は、所定の分析装置によって得られる精度管理データと、複数の前記分析装置から送信された前記精度管理データとの乖離の程度を示す結果を含むことが好ましい。
【0018】
前記精度管理手段は、下記の式(1)に基づいて前記精度管理結果を算出することが好ましい。
精度管理結果={(所定の分析装置によって得られる精度管理データ) − (複数の分析装置の所定期間内の精度管理データの平均値)}/√{1/(m-1)Σ(i=1 to m) ni(ai-b)}・・・(1)
(mは複数の前記分析装置の数、niは分析装置ごとの所定期間内の精度管理データの数、aiは分析装置ごとの所定期間内の精度管理データの平均値、bは複数の前記分析装置による所定期間内の精度管理データの平均値を示す。)
【0019】
第1の局面による精度管理システムにおいて、前記精度管理結果は、所定の分析装置によって所定期間内に得られる精度管理データのばらつきと、複数の前記分析装置から所定期間内に送信された前記精度管理データのばらつきとの比を示す結果を含むことが好ましい。
【0020】
前記精度管理手段は、下記の式(2)に基づいて前記精度管理結果を算出することが好ましい。
精度管理結果=(所定の分析装置によって所定期間内に得られる精度管理データの標準偏差)/√{1/(N-m)Σ(i=1 to m) (ni-1)Si2 }・・・(2)
(Nは複数の分析装置の所定期間内の前記精度管理データの数、mは複数の前記分析装置の数、niは分析装置ごとの所定期間内の精度管理データの数、Siは、分析装置ごとの所定期間内の精度管理データの標準偏差を示す。)
【0021】
第1の局面による精度管理システムにおいて、前記精度管理結果出力手段は、前記精度管理の結果をWEB上に公開し、測定不確かさ出力手段は、前記測定の不確かさを前記WEB上に公開することが好ましい。このような構成によれば、分析装置の使用者は、精度管理の結果および測定の不確かさを確認することが容易となる。
【0022】
この発明の第2の局面による分析装置は、複数の分析装置にネットワークを介して接続され、前記複数の分析装置によって精度管理試料を測定することによって得られる複数の精度管理データを受信し、受信した精度管理データに基づいて精度管理を行い、得られた精度管理結果を前記複数の分析装置にそれぞれ送信する管理装置に前記ネットワークを介して接続される分析装置であって、
試料を測定する測定部と、
前記測定部によって前記精度管理用試料を測定することによって得られる前記精度管理データを前記ネットワークを介して前記管理装置に送信する送信部と、
前記管理装置から送信される前記精度管理結果を受信する受信部と、
該分析装置の校正の不確かさを記憶する校正不確かさ記憶部と、
前記校正不確かさと前記精度管理データとに基づいて該分析装置による測定の不確かさを算出する不確かさ算出手段と、
前記精度管理結果を出力する精度管理結果出力手段と、
前記測定の不確かさを出力する測定不確かさ出力手段と、を備えることを特徴とする。
【0023】
分析装置をこのように構成することにより、精度管理結果と測定の不確かさの両方の情報に基づいて分析装置による検体の測定の可否を判断することが可能となるので、測定の不確かさの許容範囲を示すデータが存在しなくても、従来の精度管理よりも的確な判断が可能となる。また、検体(未知試料)ではなく、精度管理用試料から得られる精度管理データに基づいて測定の不確かさを算出するので、同一の検体を複数回測定しなくても測定の不確かさを算出することが可能となる。
【0024】
この発明の第3の局面による分析装置は、
試料を測定する測定部と、
該分析装置の校正の不確かさを記憶する校正不確かさ記憶部と、
前記校正不確かさと、前記測定部によって精度管理用試料を測定することによって得られる精度管理データとに基づいて該分析装置による測定の不確かさを算出する不確かさ算出手段と、
前記測定の不確かさを出力する出力手段と、を備えることを特徴とする。
【0025】
分析装置をこのように構成することにより、検体(未知試料)ではなく、精度管理用試料から得られる精度管理データに基づいて測定の不確かさを算出するので、同一の検体を複数回測定しなくても測定の不確かさを算出することが可能となる。
【0026】
この発明の第4の局面による精度管理方法は、
複数の分析装置と前記複数の分析装置にネットワークを介して接続される管理装置とを用いる精度管理方法であって、
前記複数の分析装置によって精度管理用試料を測定するステップと、
前記精度管理用試料を測定することによって得られる複数の精度管理データを前記管理装置に収集するステップと、
収集された前記精度管理データに基づいて前記管理装置によって精度管理を行うステップと、
分析装置の校正の不確かさと、前記精度管理データとに基づいて分析装置による測定の不確かさを分析装置ごとに算出するステップと、
前記精度管理の結果を出力するステップと、
前記測定の不確かさを出力するステップと、を備えることを特徴とする。
【0027】
精度管理方法をこのように構成することにより、精度管理結果と測定の不確かさの両方の情報に基づいて分析装置による検体の測定の可否を判断することが可能となるので、測定の不確かさの許容範囲を示すデータが存在しなくても、従来の精度管理よりも的確な判断が可能となる。また、検体(未知試料)ではなく、精度管理用試料から得られる精度管理データに基づいて測定の不確かさを算出するので、同一の検体を複数回測定しなくても測定の不確かさを算出することが可能となる。
【0028】
この発明の第5の局面による精度管理方法は、
複数の分析装置にネットワークを介して接続され、前記複数の分析装置によって精度管理試料を測定することによって得られる複数の精度管理データを受信し、受信した精度管理データに基づいて精度管理を行い、得られた精度管理結果を前記複数の分析装置にそれぞれ送信する管理装置に前記ネットワークを介して接続される分析装置を用いる精度管理方法であって、
前記精度管理用試料を該分析装置によって測定するステップと、
前記精度管理用試料を測定することによって得られる前記精度管理データを該分析装置から前記管理装置に送信するステップと、
該分析装置の校正の不確かさと、前記精度管理データとに基づいて該分析装置による測定の不確かさを算出するステップと、
前記精度管理結果を出力するステップと、
前記測定の不確かさを出力するステップと、を備えることを特徴とする。
【0029】
精度管理方法をこのように構成することにより、精度管理結果と測定の不確かさの両方の情報に基づいて分析装置による検体の測定の可否を判断することが可能となるので、測定の不確かさの許容範囲を示すデータが存在しなくても、従来の精度管理よりも的確な判断が可能となる。また、検体(未知試料)ではなく、精度管理用試料から得られる精度管理データに基づいて測定の不確かさを算出するので、同一の検体を複数回測定しなくても測定の不確かさを算出することが可能となる。
【0030】
この発明の第6の局面による精度管理方法は、
分析装置の精度管理方法であって、
精度管理用試料を測定するステップと、
該分析装置の校正不確かさと、前記精度管理用試料を測定することによって得られる精度管理データとに基づいて該分析装置による測定の不確かさを算出するステップと、
前記測定の不確かさを出力するステップと、を備えることを特徴とする。
【0031】
精度管理方法をこのように構成することにより、検体(未知試料)ではなく、精度管理用試料から得られる精度管理データに基づいて測定の不確かさを算出するので、同一の検体を複数回測定しなくても測定の不確かさを算出することが可能となる。
【発明の効果】
【0032】
本発明に係る精度管理システムおよび精度管理方法によれば、分析装置および/または管理装置の使用者は、精度管理結果と測定の不確かさの両方の情報に基づいて分析装置による検体の測定の可否を判断できるので、測定の不確かさの許容範囲を示すデータが存在しなくても、従来の精度管理よりも的確な判断が可能となる等、本発明は優れた効果を奏する。
【発明を実施するための最良の形態】
【0033】
以下、本発明の実施の形態に係る精度管理システムについて、図面を参照しながら具体的に説明する。
図1に示すように、実施形態に係る精度管理システム10は、精度管理サーバ1と、精度管理サーバ1にインターネット等のネットワーク2を介して接続される複数の分析装置3とを備える。分析装置3としては、生化学分析装置、血球計数装置、血液凝固測定装置、免疫測定装置、および尿分析装置など様々な試料分析装置が適用される。精度管理サーバ1に接続される分析装置3は、1種類には限られず、生化学分析装置と血球計数装置など、複数種類を接続してもよいが、ここでは説明を簡単にするため、血球計数装置のみが接続された例を説明する。分析装置3としては、データ処理装置4と分析装置本体5が接続されて分析装置としての機能を発揮する分析装置が使用されてもよいし、分析装置本体3に入力デバイス、ディスプレイ、および制御部などが組み込まれた分析装置が使用されてもよい。
【0034】
精度管理サーバ1は、分析装置3を製造・販売する製造販売業者内またはその委託先に設置される。分析装置3は、複数の検査施設に設置される。精度管理サーバ1は、ネットワーク2を介して多数の検査施設から送られてきた精度管理データに基づいて、外部精度管理を行う。外部精度管理は、精度管理用試料(「コントロール物質」ともいう)を各検査施設において分析装置3によって測定して得られる精度管理データ(内部精度管理データ)が精度管理サーバ1に送信され、これが精度管理サーバ1によって統計処理されることによって行われる。
また、精度管理サーバ1は、分析装置3による測定の不確かさを算出する。
【0035】
図2は、サーバ1のハードウェア構成を示すブロック図である。サーバ1は、本体110と、ディスプレイ120と、入力デバイス130とから主として構成されたコンピュータによって構成されている。
本体110は、CPU110aと、ROM110bと、RAM110cと、ハードディスク110dと、読出装置110eと、入出力インタフェース110fと、画像出力インタフェース110hと、通信インタフェース110jとから主として構成されており、CPU110a、ROM110b、RAM110c、ハードディスク110d、読出装置110e、入出力インタフェース110f、画像出力インタフェース110h、および通信インタフェース110jは、バス110iによってデータ通信可能に接続されている。
【0036】
CPU110aは、ROM110bに記憶されているコンピュータプログラム及びRAM110cにロードされたコンピュータプログラムを実行することが可能である。そして、アプリケーションプログラム140aを当該CPU110aが実行することにより、後述するような各機能ブロックが実現され、コンピュータがサーバ1として機能する。
ROM110bは、マスクROM、PROM、EPROM、EEPROM等によって構成されており、CPU110aに実行されるコンピュータプログラムおよびこれに用いるデータ等が記録されている。
【0037】
RAM110cは、SRAM又はDRAM等によって構成されている。RAM110cは、ROM110b及びハードディスク110dに記録されているコンピュータプログラムの読み出しに用いられる。また、これらのコンピュータプログラムを実行するときに、CPU110aの作業領域として利用される。
ハードディスク110dは、オペレーティングシステム及びアプリケーションプログラム等、CPU110aに実行させるための種々のコンピュータプログラム及び当該コンピュータプログラムの実行に用いるデータがインストールされている。アプリケーションプログラム140aも、このハードディスク110dにインストールされている。
【0038】
読出装置110eは、フレキシブルディスクドライブ、CD−ROMドライブ、又はDVD−ROMドライブ等によって構成されており、可搬型記録媒体140に記録されたコンピュータプログラム又はデータを読み出すことができる。また、可搬型記録媒体140には、コンピュータを本発明のシステムとして機能させるためのアプリケーションプログラム140aが格納されており、コンピュータが当該可搬型記録媒体140から本発明に係るアプリケーションプログラム140aを読み出し、当該アプリケーションプログラム140aをハードディスク110dにインストールすることが可能である。
【0039】
なお、前記アプリケーションプログラム140aは、可搬型記録媒体140によって提供されるのみならず、電気通信回線(有線、無線を問わない)によってコンピュータと通信可能に接続された外部の機器から前記電気通信回線を通じて提供することも可能である。例えば、前記アプリケーションプログラム140aがインターネット上のサーバコンピュータのハードディスク内に格納されており、このサーバコンピュータにコンピュータ100aがアクセスして、当該コンピュータプログラムをダウンロードし、これをハードディスク110dにインストールすることも可能である。
また、ハードディスク110dには、例えば米マイクロソフト社が製造販売するWindows(登録商標)等のグラフィカルユーザインタフェース環境を提供するオペレーティングシステムがインストールされている。以下の説明においては、本実施形態に係るアプリケーションプログラム140aは当該オペレーティングシステム上で動作するものとしている。
さらに、ハードディスク110dの所定の領域は、分析装置3から送信される精度管理データが記憶される精度管理データDB(データベース)140bおよび、後述する校正の不確かさが記憶される校正不確かさDB(データベース)140cとして使用される。
【0040】
入出力インタフェース110fは、例えばUSB、IEEE1394、RS−232C等のシリアルインタフェース、SCSI、IDE、IEEE1284等のパラレルインタフェース、およびD/A変換器、A/D変換器等からなるアナログインタフェース等から構成されている。入出力インタフェース110fには、キーボードおよびマウスからなる入力デバイス130が接続されており、操作者が当該入力デバイス130を使用することにより、コンピュータ100aにデータを入力することが可能である。
通信インタフェース110jは、例えばEthernet(登録商標)インタフェースであり、サーバ1は、当該通信インタフェース110jにより、所定の通信プロトコルを使用してネットワーク2を介して接続された分析装置3との間でデータの送受信が可能である。
画像出力インタフェース110hは、LCDまたはCRT等で構成されたディスプレイ120に接続されており、CPU110aから与えられた画像データに応じた映像信号をディスプレイ120に出力するようになっている。ディスプレイ120は、入力された映像信号にしたがって、画像(画面)を表示する。
【0041】
図3は、分析装置3の概観構成を示す斜視図である。図3は、血球計数装置本体5及びデータ処理装置4の外観構成を示す斜視図である。分析装置3は、血液検査に使用される血球計数装置であり、血液検体中に含まれる血球を分類して計数することが可能であるように構成されている。データ処理装置4は、ディスプレイ4aおよびキーボード4bなどを備え、データの表示および入力が可能であるように構成されている。
図4は、分析装置3の構成を示すブロック図である。分析装置3は、光学式検出部31と、RBC検出部32と、HGB検出部33と、IMI検出部34と、制御部35と、通信インタフェース38とを主要な構成要素として構成されている。制御部35は、CPU,ROM,RAM等から構成されており、分析装置3の各種構成要素の動作制御を行うようになっている。通信インタフェース38は、例えばEthernet(登録商標)インタフェースであり、サーバ1との間でデータの送受信を行うことが可能である。制御部35および通信インタフェース38は、データ処理装置4に設けられており、通信インタフェース38を介してサーバ1から受信したデータは、制御部35が所定の制御を行うことによってディスプレイ4aに表示される。ディスプレイ4aおよびキーボード4bは、制御部35に接続され、制御部35によってデータの表示および入力が制御される。
【0042】
光学式検出部31は、白血球、有核赤血球、網赤血球を半導体レーザによるフローサイトメトリー法により測定することが可能である。RBC検出部32は、赤血球数及び血小板数を、シースフローDC検出法により測定することが可能である。HGB検出部33は、血色素量(HGB)を、SLSヘモグロビン法によって測定することが可能である。IMI検出部34は、検体中の幼若球の出現度合いをRF/DC検出法により測定することが可能である。
【0043】
図5を使用して、精度管理システム10による精度管理処理を説明する。なお、この図は、説明を簡単にするために1台の分析装置3とサーバ1との関係を示したものであり、実際には、サーバ1は、複数の分析装置3に対して精度管理処理を並行して行っている。なお、この分析装置3を以下では分析装置Aとよぶ。
図の左側に示す分析装置側の精度管理処理は、分析装置Aがコントロール物質を示すバーコードを図示しないバーコードリーダによって読み取ることによって開始されてもよいし、分析装置Aの使用者がキーボード4bを使用してコントロール物質の測定を指示することによって開始されてもよい。
一方、精度管理サーバ1側の精度管理処理は、サーバ1が起動している間は、随時実行されている。
【0044】
分析装置Aがコントロール物質を示すバーコードを読み取ると、まず、ステップS1において分析装置Aは、コントロール物質を測定する。そして、ステップS2において、その測定結果である精度管理データをサーバ1に送信する。具体的には、この精度管理データには、コントロール物質を測定して得られた赤血球数、白血球数、ヘモグロビン量、およびヘマトクリット値などの測定値、コントロール物質のロット番号、コントロール物質の測定日時、および分析装置Aを特定するための分析装置IDなどが含まれている。なお、精度管理データは、コントロール物質を1回測定して得られる精度管理データであってもよいし、同じコントロール物質を複数回測定して得られる複数個の測定データの平均値であってもよい。
【0045】
サーバ1は、精度管理データが送信されるのを待機し、精度管理データが送信されると、ステップS11において精度管理データを通信インタフェース110jを介して受信する。サーバ1は、精度管理データを受信すると(ステップS11においてYes)、受信した精度管理データを、分析装置ID、およびコントロール物質の測定日時と対応付けて精度管理データDB140bに記憶する(ステップS12)。
なお、精度管理データDB140bには、分析装置Aを含む複数の分析装置3から送信された複数の精度管理データが分析装置ごとに仕分けされ随時記憶される。
【0046】
サーバ1は、ステップS13において、精度管理処理を行う。この精度管理処理は、所定期間内(例えば、1ヶ月以内)にサーバ1に全ての分析装置3から送信された精度管理データに統計処理を施すことによって行われる。
この精度管理処理(ステップS13)においてサーバ1は、施設間(分析装置間)の精度管理情報を示すSDI値を算出する。
【0047】
より具体的には、SDIは、分析装置Aによって得られる精度管理データと、サーバ1に接続された全ての分析装置3によって所定期間内に得られる精度管理データの平均値との乖離の程度を示し、SDIの算出は、以下の式(3)を使用して行われる。
SDI={(分析装置Aによって得られる精度管理データ) − (サーバ1に接続された全ての分析装置3から所定期間内に送信された精度管理データの平均値)}/√{1/(m-1)Σ(i=1 to m) ni(ai-b)}・・・(3)
ここで、mはサーバ1に接続された分析装置の数、niは所定期間内の分析装置ごとの精度管理データの数、aiは分析装置ごとの所定期間内の精度管理データの平均値、bは複数の前記分析装置による所定期間内の精度管理データの平均値を示す。
【0048】
また、精度管理処理(ステップS13)においてサーバ1は、施設内(分析装置内)の精度管理情報を示すPI値を算出する。
より具体的には、PIは、分析装置Aによって所定期間内に得られる精度管理データのばらつきと、サーバ1に接続された全ての分析装置3によって所定期間内に得られる精度管理データのばらつきとの比を示し、PIの算出は、以下の式(4)を使用して行われる。
PI=(分析装置Aによって所定期間内に得られる精度管理データの標準偏差)/√{1/(N-m)Σ(i=1 to m) (ni-1)Si2 } ・・・(4)
ここで、Nは所定期間内にサーバに送信された前記精度管理データの数、mはサーバ1に接続された分析装置の数、niは所定期間内の分析装置ごとの精度管理データの数、Siは、所定期間内の分析装置ごとの精度管理データの標準偏差を示す。
【0049】
次に、サーバ1は、ステップS14において、分析装置Aによる日常検査における測定の不確かさの算出を行う。この処理では、図6に示すように、まず、分析装置Aの校正の不確かさuCALが校正不確かさDB140cから読み出される(ステップS21)。
分析装置Aの校正の不確かさuCALは、予め、サーバ1の管理者によって取得され、校正不確かさDB140cに記憶されている。以下、校正の不確かさuCALの取得方法について図7を使用して説明する。
【0050】
図7に示すように、校正の不確かさデータuCALは、新鮮血23による校正の不確かさデータuWBと、標準物質24による校正の不確かさデータuSCSとを合成することによって算出される。なお、新鮮血23は、測定データが未知であるヒトの血液である。標準物質24は、測定データが既知である人工の物質であり、分析装置Aを校正するために用いられる。具体的には、分析装置Aによる標準物質24の測定結果が基準分析装置26による標準物質24の測定結果と一致するように分析装置Aが校正(調整)される。
【0051】
校正の不確かさuCALの取得は、例えば、分析装置3の製造・販売者に所属し、日常的に分析装置3の操作を行う技術員などの、標準器25や分析装置3の操作に熟練した者によって行われる。このような技術員は、まず、国際標準測定法に準拠した標準器25によって新鮮血23を所定回数(但し、複数回であり、例えば10回)測定する。そして、得られた複数個の測定データの標準偏差uを算出する。また、技術員は、分析装置Aと同じ種類の分析装置であり、分析装置Aの基準器として使用される基準分析装置26によって、上記と同じ新鮮血23を所定回数(但し、複数回)測定する。この基準分析装置26は、新鮮血23の測定データが標準器25による新鮮血23の測定データと一致するように校正(調整)されている。そして、得られた複数個の測定データの標準偏差uを算出する。そして、uおよびuを合成することによって新鮮血23による校正の不確かさuWBが算出される。uWBの算出には、例えば下記の式(5)を使用できる。
WB=√(u+u)・・・(5)
【0052】
なお、標準器25も標準器が備える定量部等の不確かさに起因する不確かさuを有しているので、校正の不確かさuWBを、uとuとuとを合成することによって算出してもよい。これによって、校正の不確かさuWBがより正確なものとなる。
【0053】
次に、技術員は、基準分析装置26によって標準物質24を所定回数(但し、複数回)測定する。そして、得られた複数個の測定データの標準偏差uを算出する。また、技術員は、分析装置Aが設置された検査施設に出向き、分析装置Aによって上記と同じ標準物質24を所定回数(但し、複数回)測定する。そして、得られた複数個の測定データの標準偏差uを算出する。そして、uおよびuを合成することによって標準物質24による校正の不確かさuSCSが算出される。uSCSの算出には、例えば下記の式(6)を使用できる。
SCS=√(u+u)・・・(6)
【0054】
そして、uWBおよびuSCSを合成することによって分析装置Aの校正の不確かさuCALが算出される。uCALの算出には、例えば下記の式(7)を使用できる。
CAL=√(uWB+uSCS)・・・(7)
なお、上記の分析装置Aの校正の不確かさuCALの算出方法は一例にすぎず、様々な方法が使用できる。
【0055】
このようにして取得された分析装置Aの校正の不確かさuCALは、分析装置Aを特定するための分析装置IDに対応付けられ、入力部130などを用いて校正不確かさデータDB140cに記憶される。また、校正の不確かさuCALは、複数の分析装置3の全てについて上記のような方法で取得され、校正不確かさデータDB140cに記憶される。
【0056】
図6に戻り、測定の不確かさ算出処理について説明する。サーバ1は、上記のように算出および記憶された校正の不確かさデータuCALを校正不確かさDB140cから読み出したのち、ステップS22において、精度管理データの不確かさuQCを算出する。精度管理データの不確かさuQCとしては、例えば、分析装置Aから送信された過去所定回数分の精度管理データの標準偏差を用いることができる。なお、サーバ1は、精度管理データを受信するたびにそのデータを精度管理データDB140bに記憶しており、過去所定回数分の精度管理データは、精度管理データDB140bから読み出すことができる。
【0057】
そして、サーバ1は、ステップS23において、uCALおよびuQCを合成することによって日常検査における測定の不確かさuを算出する。uの算出には、例えば下記の式(8)を使用できる。
u=√(uCAL+uQC)・・・(8)
なお、uは日常検査における測定の標準不確かさを表し、日常検査における測定の拡張不確かさUは、U=ku(但し、kは包含係数であり、例えば2である)によって算出される。拡張不確かさは、uWB、uSCSおよびuQCについても同様に算出される。なお、以降の説明においては、拡張不確かさを用いる。
【0058】
そして、サーバ1は、図5のステップS15において、サーバ1に接続されている複数の分析装置3から送信される全ての測定の不確かさUを用いた精度管理(統計処理)を行う。この統計処理としては、複数の分析装置3から所定期間内に送信された測定の不確かさUを平均してもよいし、所定期間内に送信された測定の不確かさUの標準偏差を求めてもよい。
【0059】
そして、サーバ1は、ステップS16において、SDI,PI,日常検査における測定の不確かさU、測定の不確かさUの精度管理結果などを含む処理結果を、WEB(World Wide Web)上に公開する。WEB上に公開された処理結果は、分析装置Aのデータ処理装置4または検査施設に設置された他のコンピュータによってインターネットエクスプローラ(登録商標)等のWEB閲覧用のアプリケーションプログラムを起動し、所定のアドレスにアクセスし、所定のパスワードを入力することによって分析装置3のディスプレイ4aなどに出力される。なお、サーバ1は、分析装置A以外の分析装置3についてサーバ1で得られた測定の不確かさUをこれらの処理結果とともにWEB上に公開してもよい。なお、上記のSDI,PI,測定の不確かさUは、測定項目ごとに算出され、WEB上に公開してもよい。
【0060】
なお、上記の処理結果は、必ずしもWEB上に公開される必要はなく、分析装置Aに送信してもよい。処理結果を受信した分析装置3は、それらの処理結果を含む画面を分析装置Aが備えるディスプレイ4a上に表示する。
【0061】
図8は、ステップS16においてWEB上に公開される画面の一例である。この画面50は、赤血球数についての精度管理結果を示す画面である。画面50の上部には、不確かさ表示領域51が設けられている。不確かさ表示領域51には、上記した新鮮血校正の不確かさUWB、標準物質校正の不確かさUSCS、精度管理データ不確かさUQCおよびそれらの合成結果である測定の不確かさUの値が表示されている。また、不確かさ表示領域51には、新鮮血校正の不確かさUWB、標準物質校正の不確かさUSCS、および精度管理データ不確かさUQCの基準値がそれぞれ表示されている。
【0062】
画面50の中央部には、新鮮血校正の不確かさUWB、標準物質校正の不確かさUSCS、および精度管理データ不確かさUQCを対比するためのグラフ52が表示されている。上記のように、新鮮血校正の不確かさUWBの算出には、分析装置Aは全く関与していないが、標準物質校正の不確かさUSCSおよび精度管理データ不確かさUQCの算出には分析装置Aが関与しているので、標準物質校正の不確かさUSCSおよび精度管理データ不確かさUQCの割合が新鮮血校正の不確かさUWBの割合に対して大きいことは、分析装置Aの状態が好ましくないことを示している。従って、このようなグラフを表示することによって、分析装置Aの使用者は、その分析装置Aの状態を推測することが可能となる。また、このようなデータを、サーバ1に保存しておけば、サーバ1の使用者が検査施設に出向くことなく分析装置Aの状態を推測することが可能となる。なお、グラフ52は、UWB、USCSおよびUQCの大きさの比較のみを示す相対的なグラフであってもよいし、参照値として、標準的な不確かさを示す標準値が示されていてもよい。
【0063】
画面50の下部には、精度管理の結果であるPIおよびSDIの表示領域53が設けられている。分析装置Aの使用者は、これらPIおよびSDIの大きさと、測定の不確かさUの大きさと、上記の標準物質校正の不確かさUSCSおよび精度管理データ不確かさUQCの割合の大きさとに基づいて、分析装置Aの状態を把握し、検体の測定が可能であるか否かを従来よりも的確に判断することができる。例えば、PIは、各検査施設における内部精度管理の状態を表す指標として使用でき、測定の総合評価に有益である。すなわち、PI=1であれば、その施設(分析装置)による測定データの日差変動が平均的であり、PI<1であれば、日差変動が小さく、PI>1であれば、日差変動が大きいことを示している。
【0064】
図9は、ステップS4において分析装置Aのディスプレイ4a上に表示される画面の他の例である。
図9に示す画面56は、所定の複数の分析装置3によって得られた精度管理データと、サーバ1に接続された全ての分析装置3から所定期間内に送信された精度管理データの平均値との関係を示すグラフ57が表示されている。このグラフ57には、サーバ1に接続された全ての分析装置3から所定期間内に送信された精度管理データの平均値を示すライン58と、標準偏差2SDを示すライン59aおよび59bが表示されている。なお、標準偏差2SDは一例にすぎず、標準偏差1SDや3SDなどを分析装置Aの使用者が任意に設定することが可能である。このグラフ57において、菱形ポインタ61aは、分析装置Aによる精度管理データを示しており、矢印62aは、分析装置Aによる日常検査の測定の不確かさUを示している。同様に、菱形ポインタ61bは、分析装置B(同一の検査施設内の他の分析装置3であってもよいし、他の検査施設に設置された分析装置3であってもよい)による精度管理データを示しており、矢印62bは、分析装置Bによる測定の不確かさUを示している。分析装置CからFについても同様である。グラフ57によると、分析装置Aは、測定の不確かさが他の装置よりも少し大きいものの、精度管理データは平均値に近く、装置状態は良好であることが分かる。
【0065】
分析装置Bは、測定の不確かさが他の装置と比較しても非常に小さく、精度管理データも平均値に近いため、装置状態は非常によいことが分かる。分析装置Cは、精度管理データは平均値に近いが、測定の不確かさ大きく、測定の不確かさを考慮すると2SDを外れてしまう可能性があることが分かる。従って、分析装置Cについては、分析装置の点検や校正を行ったほうが好ましいことが分かる。分析装置Dは、精度管理データは平均値からやや外れているが、測定の不確かさが非常に小さく、測定の不確かさを考慮しても2SDを外れていないため、この装置の状態は良好であることが分かる。分析装置Eは、精度管理データが平均値から外れており、測定の不確かさを考慮すると2SDを外れてしまう可能性があるので、分析装置の点検や校正などを行った方が好ましいことが分かる。分析装置Fは、精度管理データは平均値と非常に近く、測定の不確かさも小さいため、この装置の状態は非常に良好であることが分かる。このようなグラフによって分析装置Aの使用者は、従来の外部精度管理精度管理では得られなかった情報に基づいて分析装置の状態を判断することが可能となり、従来よりも的確な判断が可能となる。
【0066】
また、画面56には、不確かさ表示領域60が設けられている。不確かさ表示領域60には、分析装置Aについての日常検査における測定の不確かさUと、ステップS15(図5)においてサーバ1によって算出された分析装置3の測定の不確かさの平均値が表示されている。これによって分析装置Aの使用者は、分析装置Aの測定の不確かさUと不確かさの平均値とを比較することが可能となり、分析装置Aの状態を判断することが容易になる。
【0067】
なお、上記実施形態において、サーバ1は、SDIおよびPIを1台の分析装置Aを評価するための値として算出されているが、本発明はこれには限定されず、同一の検査施設内に設置され、同一のコントロール物質を使用する複数の分析装置3を評価するための値としてSDIおよびPIを算出してもよい。この場合、サーバ1がステップS13で使用する分析装置Aの精度管理データに代えて、同一検査施設内に設置された上記複数の分析装置3によって得られた精度管理データの平均値が使用されてもよい。
【0068】
また、上記実施形態において、複数の分析装置3は複数の検査施設に設置されているが、これら複数の分析装置3を同一の検査施設に設置してもよい。この場合、同一検査施設の複数の分析装置3のみを用いて精度管理処理を行ってもよい。

図10および図11を使用して変形実施形態について説明する。この例では、精度管理システム10の全体構成は、図1に示した例と同様であるが、図10に示すように、分析装置Aの制御部35は、上記した校正不確かさDB140cを備えている。
【0069】
図11を参照して、変形実施形態の精度管理処理について説明する。分析装置Aは、精度管理物質を測定すると(ステップS101)、得られた精度管理データをサーバ1に送信する(ステップS102)。サーバ1は、精度管理データを受信し(S111)、受信した精度管理データを精度管理データDB104bに記憶する(ステップS112)。そして、サーバ1は、複数の分析装置3から受信した精度管理データに基づいて上記した精度管理処理を行い(ステップS113)、精度管理の結果を分析装置Aに送信する(ステップS114)。一方、分析装置Aは、分析装置Aによる測定の不確かさUを、ステップS101で得られた精度管理データと、校正不確かさDB140cに記憶されている分析装置Aの校正の不確かさUCALとに基づいて算出する(ステップS103)。そして、分析装置Aは、精度管理の結果をサーバ1から受信し(ステップS104)、ステップS103で得られた測定の不確かさUと、精度管理の結果とを含む画面50(図8参照)をディスプレイ4aに表示する。なお、この変形実施形態においても、ステップS114においてサーバ1は精度管理結果をWEB上に公開してもよい。
【0070】
なお、上記変形実施形態では、分析装置3は、サーバ1から精度管理結果を受信していたが、この変形実施形態の分析装置3を、サーバ1から精度管理結果を受信しないように構成してもよい。この分析装置3は、精度管理物質を測定するだけで測定の不確かさを出力するので、従来のように検体(未知試料)を複数回測定する必要がなくなり、使用者は通常通り内部精度管理を行うだけで測定の不確かさを知ることができる。
また、上記の全ての実施形態では、校正の不確かしさUCALは予め校正不確かさDB140cに記憶されているが、不確かさ算出の際(ステップS14またはステップS103)に、管理装置1または分析装置3の使用者に校正の不確かしさUCALの入力を促し、入力された校正の不確かしさUCALを校正不確かさDB140cに記憶するようにしてもよい。
【産業上の利用可能性】
【0071】
本発明に係る精度管理システムは、分析装置および/または管理装置の使用者が、精度管理結果と測定の不確かさの両方の情報に基づいて分析装置による検体の測定の可否を判断できるので、測定の不確かさの許容範囲を示すデータが存在しなくても、従来の精度管理よりも的確な判断が可能となるという効果を奏し、検査の質の向上のために利用可能である。
【図面の簡単な説明】
【0072】
【図1】精度管理システムのネットワーク構成図である。
【図2】精度管理サーバのハードウェア構成図である。
【図3】分析装置3の概観構成を示す斜視図である。
【図4】分析装置3の構成を示すブロック図である。
【図5】精度管理処理のフローチャートである。
【図6】測定の不確かさ算出のフローチャートである。
【図7】校正の不確かさを算出する方法を示す概念図である。
【図8】分析装置のディスプレイに表示される画面の一例である。
【図9】分析装置のディスプレイに表示される画面の一例である。
【図10】変形実施形態に係る分析装置3の構成を示すブロック図である。
【図11】変形実施形態に係る精度管理処理のフローチャートである。
【符号の説明】
【0073】
1 精度管理サーバ
2 ネットワーク
3 分析装置
4 データ処理装置
5 分析装置本体

【特許請求の範囲】
【請求項1】
複数の分析装置と前記複数の分析装置にネットワークを介して接続される管理装置とを備える精度管理システムであって、
前記複数の分析装置にそれぞれ設けられ、試料を測定する測定部と、
前記複数の分析装置にそれぞれ設けられ、前記測定部によって精度管理用試料を測定することによって得られる精度管理データを前記ネットワークを介して前記管理装置に送信する精度管理データ送信手段と、
前記管理装置に設けられ、それぞれの前記精度管理データ送信手段によって送信される複数の前記精度管理データを受信する精度管理データ受信手段と、
前記管理装置に設けられ、前記精度管理データ受信手段によって受信された複数の前記精度管理データに基づいて精度管理を行う精度管理手段と、
分析装置の校正の不確かさを前記分析装置ごとに記憶する校正不確かさ記憶部と、
前記校正不確かさと前記精度管理データとに基づいて分析装置による測定の不確かさを分析装置ごとに算出する測定不確かさ算出手段と、
前記精度管理手段による精度管理の結果を出力する精度管理結果出力手段と、
前記測定不確かさ算出手段によって算出された測定の不確かさを出力する測定不確かさ出力手段と、を備える精度管理システム。
【請求項2】
前記校正不確かさ記憶部および前記測定不確かさ算出手段は、前記管理装置に設けられており、前記精度管理結果出力手段および前記測定不確かさ出力手段は、前記複数の分析装置にそれぞれ設けられており、
前記管理装置は、前記精度管理の結果を前記ネットワークを介して前記複数の分析装置に送信する精度管理結果送信手段と、前記測定の不確かさを前記ネットワークを介して前記複数の分析装置に送信する測定不確かさ送信手段とを備え、
前記複数の分析装置は、前記精度管理結果送信手段によって送信される前記精度管理結果を受信する精度管理結果受信手段と、測定不確かさ送信手段によって送信される前記測定の不確かさを受信する測定不確かさ受信手段とを備える請求項1記載の精度管理システム。
【請求項3】
前記管理装置は、前記測定不確かさ算出手段によって前記分析装置ごとに算出された複数の前記測定の不確かさに基づいて、前記測定の不確かさの精度管理結果を行う測定不確かさ精度管理手段を備え、
前記精度管理システムは、前記測定不確かさ精度管理手段による測定不確かさの精度管理の結果を出力する測定不確かさ精度管理結果出力手段を備える請求項2記載の精度管理システム。
【請求項4】
前記測定不確かさ算出手段は、
前記精度管理データの不確かさを算出する精度管理データ不確かさ算出手段と、
前記校正不確かさ記憶部に記憶された前記校正の不確かさと、前記精度管理データの不確かさとを用いて前記測定の不確かさを算出する不確かさ算出手段と、を備える請求項1〜3のいずれか1項に記載の精度管理システム。
【請求項5】
前記校正の不確かさは、測定データが未知である検体を第1および第2の基準分析装置で測定することによって得られる第1および第2の不確かさを合成することによって得られる結果に基づいて算出される、請求項4記載の精度管理システム。
【請求項6】
前記精度管理結果は、所定の分析装置によって得られる精度管理データと、複数の前記分析装置から送信された前記精度管理データとの乖離の程度を示す結果を含む、請求項1〜5のいずれか1項に記載の精度管理システム。
【請求項7】
前記精度管理手段は、下記の式(1)に基づいて前記精度管理結果を算出する請求項6記載の精度管理システム。
精度管理結果={(所定の分析装置によって得られる精度管理データ) − (複数の分析装置の所定期間内の精度管理データの平均値)}/√{1/(m-1)Σ(i=1 to m) ni(ai-b)}・・・(1)
mは複数の前記分析装置の数、niは分析装置ごとの所定期間内の精度管理データの数、aiは分析装置ごとの所定期間内の精度管理データの平均値、bは複数の前記分析装置による所定期間内の精度管理データの平均値を示す。
【請求項8】
前記精度管理結果は、所定の分析装置によって所定期間内に得られる精度管理データのばらつきと、複数の前記分析装置から所定期間内に送信された前記精度管理データのばらつきとの比を示す結果を含む、請求項1〜7のいずれか1項に記載の精度管理システム。
【請求項9】
前記精度管理手段は、下記の式(2)に基づいて前記精度管理結果を算出する請求項8記載の精度管理システム。
精度管理結果=(所定の分析装置によって所定期間内に得られる精度管理データの標準偏差)/√{1/(N-m)Σ(i=1 to m) (ni-1)Si2 } ・・・(2)
Nは複数の分析装置の所定期間内の前記精度管理データの数、mは複数の前記分析装置の数、niは分析装置ごとの所定期間内の精度管理データの数、Siは、分析装置ごとの所定期間内の精度管理データの標準偏差を示す。
【請求項10】
前記精度管理結果出力手段は、前記精度管理の結果をWEB上に公開し、測定不確かさ出力手段は、前記測定の不確かさを前記WEB上に公開する請求項1〜9のいずれか1項に記載の精度管理システム。
【請求項11】
複数の分析装置にネットワークを介して接続され、前記複数の分析装置によって精度管理試料を測定することによって得られる複数の精度管理データを受信し、受信した精度管理データに基づいて精度管理を行い、得られた精度管理結果を前記複数の分析装置にそれぞれ送信する管理装置に前記ネットワークを介して接続される分析装置であって、
試料を測定する測定部と、
前記測定部によって前記精度管理用試料を測定することによって得られる前記精度管理データを前記ネットワークを介して前記管理装置に送信する送信手段と、
前記管理装置から送信される前記精度管理結果を受信する受信手段と、
該分析装置の校正の不確かさを記憶する校正不確かさ記憶部と、
前記校正不確かさと前記精度管理データとに基づいて該分析装置による測定の不確かさを算出する不確かさ算出手段と、
前記精度管理結果を出力する精度管理結果出力手段と、
前記測定の不確かさを出力する測定不確かさ出力手段と、を備える分析装置。
【請求項12】
分析装置であって、
試料を測定する測定部と、
該分析装置の校正の不確かさを記憶する校正不確かさ記憶部と、
前記校正不確かさと、前記測定部によって精度管理用試料を測定することによって得られる精度管理データとに基づいて該分析装置による測定の不確かさを算出する不確かさ算出手段と、
前記測定の不確かさを出力する出力手段と、を備える分析装置。
【請求項13】
複数の分析装置と前記複数の分析装置にネットワークを介して接続される管理装置とを用いる精度管理方法であって、
前記複数の分析装置によって精度管理用試料を測定するステップと、
前記精度管理用試料を測定することによって得られる複数の精度管理データを前記管理装置に収集するステップと、
収集された前記精度管理データに基づいて前記管理装置によって精度管理を行うステップと、
分析装置の校正の不確かさと、前記精度管理データとに基づいて分析装置による測定の不確かさを分析装置ごとに算出するステップと、
前記精度管理の結果を出力するステップと、
前記測定の不確かさを出力するステップと、を備える精度管理方法。
【請求項14】
複数の分析装置にネットワークを介して接続され、前記複数の分析装置によって精度管理試料を測定することによって得られる複数の精度管理データを受信し、受信した精度管理データに基づいて精度管理を行い、得られた精度管理結果を前記複数の分析装置にそれぞれ送信する管理装置に前記ネットワークを介して接続される分析装置を用いる精度管理方法であって、
前記精度管理用試料を該分析装置によって測定するステップと、
前記精度管理用試料を測定することによって得られる前記精度管理データを該分析装置から前記管理装置に送信するステップと、
該分析装置の校正の不確かさと、前記精度管理データとに基づいて該分析装置による測定の不確かさを算出するステップと、
前記精度管理結果を出力するステップと、
前記測定の不確かさを出力するステップと、を備える精度管理方法。
【請求項15】
分析装置の精度管理方法であって、
精度管理用試料を測定するステップと、
該分析装置の校正不確かさと、前記精度管理用試料を測定することによって得られる精度管理データとに基づいて該分析装置による測定の不確かさを算出するステップと、
前記測定の不確かさを出力するステップと、を備える精度管理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2008−76267(P2008−76267A)
【公開日】平成20年4月3日(2008.4.3)
【国際特許分類】
【出願番号】特願2006−256702(P2006−256702)
【出願日】平成18年9月22日(2006.9.22)
【出願人】(390014960)シスメックス株式会社 (810)
【Fターム(参考)】