説明

繊維束の開繊方法とその方法に使用する装置

【課題】繊維束を一挙に高速かつ簡便に開繊を行うことができ、しかも構成繊維が幅方向へ平行かつ一様な密度に整列した状態の高品質な開繊繊維束や開繊糸シートを高能率に製造できる繊維束の開繊方法と、その開繊装置を提供する。
【解決手段】給糸体11から送り出されてくる繊維束Tmを、その移動方向とは交差する方向へ局部的に屈伸させることにより、移動過程にある当該繊維束の張力を緊張・弛緩・緊張・…と交互に反復的に変化させ、こうして張力変化を伴いながら移動する繊維束を、流体通流部31aへ架線状態で移動させ、前記繊維束を流体通流部31aで流体と接触させて流体通過方向へ撓曲させ、その際生じた繊維束の間隙に当該流体を通過させて繊維同士の間隔を幅方向に広げる繊維束の開繊方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、繊維束の開繊技術、より詳しくは、繊維束を、乱流のない流動流体に複数回にわたり連続的に波状に撓ませながら繰り返し接触させつゝ移動させ、要すれば、この開繊作用を受けながら移動する繊維束に対して当該移動方向とは交差する方向へ断続的に局部押圧を加えて繰り返し張力変化を与え、更に要すれば、開繊進行途上にある開繊繊維束に対して開繊幅方向へ直線的な進退摩擦を付与して、高品質の開繊繊維束および開繊糸シートを量産することができる繊維束の開繊方法とその方法に使用する開繊装置に関するものである。
【背景技術】
【0002】
周知のとおり、炭素繊維、ガラス繊維、アラミド繊維などの強化繊維とエポキシ樹脂などのマトリックス樹脂とからなる繊維強化複合材料は、軽量にして機械的強度や耐食性にも優れているところから、釣り竿やゴルフシャフトのごとき一般消費者のための耐久消費材、産業機械の構成部品など、さらには航空機・ロケットなど幅広い分野で用いられている。しかして、この繊維強化複合材料の成形体を製造する方法としては、前記強化繊維から成るプリプレグシート(preimpregnationsheet)の繊維間にマトリクス樹脂を含浸せしめた中間材料を用いるのが一般的である。そして、近年においては製品に対する軽量化の要請が高まり、より均一で薄いプリプレグシートが求められるようになってきた。
【0003】
もし、そのような均一で薄いプリプレグシートが大量かつ安価に得られるならば、薄肉成形体を量産できるだけではなく、一方向へ整然と引き揃えられた繊維シートは縦横斜めに繊維の向きを様々に組み合わせて積層させることにより多重プリプレグシートにアレンジすることも可能にする。そして、そのような積層プリプレグシートが実現されて、これを使用して繊維強化製品を製することができたならば、その製品の破壊強度を大幅に向上する。このような産業各分野の要請から、繊維束を構成する繊維が幅方向に平行で、しかも全体的に薄くて繊維の分布密度も一様な開繊繊維シートの合理的製造技術が必要になってきているのである。
【0004】
また、プリプレグシートの製造に関しては、開繊した強化繊維束の材料コストの低減化も要求される。均一で薄いプリプレグシートを作る場合には、通常、フィラメント数の少ない強化繊維束を一方向に引揃えて使うのが簡単である。しかし、フィラメント数の少ない強化繊維束は高価であることから、フィラメント数の多い強化繊維束を使用しなければならなくなる。そこで、フィラメント数の多い強化繊維束を開繊して、薄い強化繊維束シートを作り、これを用いて相対的に安価で、薄くて繊維並びの均一なプリプレグシートを得る技術が必要となるのである。
【0005】
従来、繊維束を開繊する方法としては、丸棒で繊維束を扱いて構成繊維を延し広げる方法、水流や高圧空気流を当てゝ構成繊維を幅方向へ散ける方法、そして超音波で各繊維を振動させ散けさせる方法等が知られている。例えば、丸棒で扱く方法としては、軸方向に振動する回転ロールに繊維束を接触通過させ開繊させる方法(特開昭56−43435号公報)、30〜90°に配置された複数本のロールに繊維束を接触通過させて開繊させる方法(特公平3−31823号公報)などがある。また、水流や高圧空気流を作用させる方法としては、高圧流体を繊維束に当てゝ開繊させる方法(特開昭52−151362公報)、移動する繊維束に当該移動方向に対し垂直に流体当てゝ、その際の流体分散力によって開繊させる方法(特開昭57−77342公報)があり、さらに超音波を利用する方法としては、軸方向に超音波振動している丸棒に直交方向に繊維束を接触させ開繊させる方法(特開平1−282362号公報)などがある。
【0006】
しかしながら、上記何れの従来方法にあっても、収束方向へ復元力の働く繊維束に対して、繊維束を引っ張りながら走行させ物理的な力を付加して繊維を強制的に幅方向へ移動させ開繊させようとする。このため、開繊幅は広くならず、かつ繊維は傷付き、毛羽立ち・繊維切れなどを生ずる。この場合、繊維束の走行速度を高めるならば、丸棒で扱く方法にあっては丸棒と繊維束の摩擦抵抗が大きくなりより繊維切れが生じ易くなるし、水流を作用させる方法では水の乾燥に大きなエネルギーを必要とするなどの難点が生ずる。このように従来においては、繊維束を高速、かつ連続安定して幅広く開繊することは難しく、有効な技術が未だ確立されていなかったのである。
【0007】
ところが、かゝる状況下で本発明者らは、特許第3049225号「開繊シートの製造方法、および開繊シート製造装置」、特許第3064019号「マルチフィラメント開繊シートの製造方法、およびその製造装置」を提案し、繊維束を撓ませた状態にして繊維束の移動方向と直行方向に吸引空気流を作用させることにより、繊維束を幅広く、かつ繊維分布が良好な開繊繊維束を製造することに成功した。この方法では、繊維束が撓んでいることにより、繊維束を構成する各繊維が幅方向に無理なく移動できる、つまり、幅方向に開繊し易い状態となり、この状態にある繊維束に吸引空気流を作用させ、各繊維間に空気を通過させることにより、繊維分散性の良い、幅広な開繊を実施できるようになったのである。
【0008】
しかしながら、本発明者が先に提案した開繊技術においても、フロントフィーダ、吸引風洞管、バックフィーダ、撓み測定センサーなどを1単位とした開繊機構を必要とする。そして、繊維束の繊維をより均一に分散させ、もっと幅広く薄く開繊させようとするならば、そのような開繊機構を何連も連続的に縦列的に設置し徐々に開繊を進行させる必要があり、装置の大型化となっていた。また、多数本の繊維束を幅方向に並べ、同時に開繊を進行させようとするならば、前記の開繊機構を幅方向にも並列させなければならず、さらに装置が大型化・複雑化する問題を生じているのである。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開昭56−43435号公報
【特許文献2】特公平3−31823号公報
【特許文献3】特開昭52−151362公報
【特許文献4】特開昭57−77342公報
【特許文献5】特開平1−282362号公報
【特許文献6】特許第3049225号公報
【特許文献7】特許第3064019号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明は、開繊繊維束を製造する従来技術に前述の如き技術的隘路があったのに鑑みて為されたものであって、構成繊維が幅方向へ平行かつ一様な密度に整列した状態の高品質な開繊繊維束および開繊糸シートを高能率に製造することができる合理的な繊維束の開繊方法と、その方法を有利に実施することができる開繊装置を提供することを目的とする。
【0011】
また、本発明の他の目的は、FRPやFRTP成形品などの補強基材として使用するに足るだけの十分に広幅で、構成繊維の間にも高粘度の溶融熱可塑性樹脂を円滑かつ一様に含浸させ得る樹脂浸透性の優れた繊維束の開繊方法と、それに使用する開繊装置を提供することにある。
【0012】
また、本発明の他の目的は、高強度繊維(例えば、炭素繊維、ガラス繊維、セラミック繊維、アロマティック・ポリアミド繊維など)の集束した繊維束を省スペースで安価に開繊して広幅の開繊繊維束に加工することができる経済的な繊維束の開繊方法と、その装置を提供するにある。
【0013】
さらに、本発明の他の目的は、高強度繊維束を一挙に高速かつ簡便に開繊を行うことができる方法と装置を提供するにある。
【0014】
本発明の更に他の目的は、以下の説明において一層具体的に解説してゆくものとする。
【課題を解決するための手段】
【0015】
本発明者が上記課題を解決するために採用した方法的手段と機械的手段は、添附図面を参照して説明すれば、次のとおりである。
【0016】
給糸体11(ボビン、コーン、チーズ等)から送り出されてくる繊維束Tmを、その移動方向とは交差する方向へ局部的に屈伸させることにより、移動過程にある当該繊維束の張力を緊張・弛緩・緊張・…と交互に反復的に変化させ、こうして張力変化を伴いながら移動する繊維束を、流体通流部31aに架線状態を成して渡る如く移動させ、この流体通流部を移動する際に当該繊維束が流体との接触抵抗によって流体通過方向へ撓曲され、かつ、この流体接触抵抗を受けて繊維結束が弛められて形成された当該繊維束の間隙に前記流体を通過させることによって繊維同士の間隔を幅方向に広げて開繊を進行させ、繊維束を拡幅開繊する点に特徴がある。
【0017】
次に、本発明者が上記課題を解決するため機械的手段として採用したところの繊維束の“開繊装置”は、繊維束Tmが巻き付けられた給糸体(ボビン、コーン、チーズなど)11と;この給糸体11から繊維束Tmを一定張力で解舒して当該繊維束の引戻りを抑制しながら送り出す繊維束供給機構2と;こうして送り出されてくる繊維束Tmの移動進路に沿って配設されており、移動する当該繊維束を架線状に支持した状態にて直交方向へ流体を接触・通過させることによって前記繊維束を流体通過方向へ撓曲させながら開繊せしめる流体通流部31aから成る流体通流開繊機構3と;移動過程にある繊維束Tmの張力を緊張・弛緩・緊張・弛緩・…と交互に変化させる張力与除機構4という機構手段を採用した点に特徴がある。
【0018】
そこで、本発明を構成する要素に関連して若干の補足説明するならば、本発明の対象とする繊維束は、FRTP(Fiber ReinforcedThermo−Plastics)やFRP(Fiber Reinforced Plastics)やFRPの補強基材として使用される炭素繊維、ガラス繊維、セラミック繊維、ポリオキシメチレン
(polyoxymethylene)繊維、アロマティック・ポリアミド繊維などの如き従来周知の多数の高強度繊維を集束させたマルチフィラメント形態のものが主流であるが、金属繊維や通常の合成繊維を多数本集束させた繊維束を除くものではなくて、必要に応じて、その他あらゆるマルチフィラメント形態の繊維束も対象とすることが可能である。
【発明の効果】
【0019】
本発明によれば、給糸体11から繊維束Tmを解舒して送り出す一方、こうして送り出されてくる前記繊維束Tmを、流体通流部31aに架線状態を成して渡る如く移動させ、この流体通流部31aを移動する際に当該繊維束が流体との接触抵抗によって流体通過方向へ撓曲させ、この流体接触抵抗により弛められた当該繊維束の間隙に前記流体を通過させ、更に、こうして開繊作用を受ける当該繊維束の幅面を、その移動方向とは交差する方向へ局部的に屈伸させて移動過程にある当該繊維束の張力を緊張・弛緩・緊張・…と交互に反復的な張力変化させているので、隣接する繊維同士が平行かつ一様な密度で接線状態に寄り添った状態の理想的な拡幅開繊繊維束を高能率に製造することができる。
【0020】
さらに、本発明は、給糸体と、繊維束供給機構と、流体通流部から成る流体通流開繊機構と、そして、繊維束の張力を緊張・弛緩・緊張・弛緩・…と交互に変化させる張力与除機構とを基本要素とした極めて簡素な装置によって、炭素繊維、ガラス繊維、セラミック繊維、ポリオキシメチレン繊維、アロマティック・ポリアミド繊維などから成る高強度繊維束を省スペースに効率的に拡幅開繊することができるので、得られる開繊繊維束の製造コストは安価となり、製品自体は良質であるので、経済的にも非常に有利である。
【図面の簡単な説明】
【0021】
【図1】本発明の実施例である“繊維束の開繊方法”に用いる装置例を側面から見た機構説明図である。
【図2】図1の装置例を上方から見た機構説明図である。
【図3】図3の[a][b]は張力与除機構の動作に応じて流体通流部を通過する繊維束に及ぶ緊張・弛緩の影響を説明するために示したモデル図である。
【発明を実施するための形態】
【0022】
以下、本発明が具体的に実施される場合の好ましい形態を例示的に掲げつゝ添付図面を引用しながら、本発明の内容を更に詳細に説明する。
【実施例】
【0023】
本発明の第実施例としては、図1〜図3に図示する装置例の開繊装置を用いて繊維束(1条)を開繊する具体的仕組みについて説明するものとする。
【0024】
〔装置例〕
図1および図2において符号11にて指示するものは、長尺の繊維束Tmを多層に巻付けて成るボビン形式の給糸体であって、給糸モータ12の出力軸に連結したボビン軸12aに横置状態に支承されており、給糸モータ12の回転によって繊維束Tmを繰り出し解舒可能になっている。本実施例の処理対象とする繊維束Tmとしては、炭素繊維束、ガラス繊維束、アラミド繊維束、セラミックス繊維束などの高強度繊維から成る強化繊維束、ポリエチレン、ポリプロピレン、ナイロン6、ナイロン66、ナイロン12、ポリエチレンテレフタレート、ポリフェニレンサルファイド、ポリエーテルエーテルケトンなどの熱可塑性の合成繊維繊維を引き揃えた熱可塑性樹脂繊維束などがある。もっとも、加撚された繊維束は、撚りを完全に戻さなければ連続的に開繊できないため理論的には可能であっても、コスト的には無撚繊維束又は予め撚りの戻された解撚繊維束を用いるものとする。
【0025】
つぎに、符号2で指示するものは繊維束供給機構である。この繊維束供給機構2は、給糸体11から解舒され繰り出されてくる繊維束Tmを所定位置に支持する回転可能な案内ロール21と;この案内ロール21より下流側で前記繊維束Tmを支持する回転可能な前後一対の支持ロール22・22と;この支持ロール22・22と前記案内ロール21の間に回転自在に配設され、かつ、其処を通過する繊維束Tmに当接し張力変化に応じて昇降することにより当該繊維束の張力を一定の張力に保たせるための張力安定ロール24aと;この張力安定ロール24aの上限位置を検知する上限センサー25aおよび下限センサー25bと;下流側の前記支持ロール22に圧接して繊維束Tmを挟み付けて回転するニップロール23aと;このニップロールに送り方向へのみ回転させ、繊維束Tmが引き戻りしないように繊維束搬送方向と逆方向には回転しない一方向回転クラッチ23bとから構成されている。
【0026】
この装置例において、給糸体11から引き出されてくる繊維束Tmの張力の安定は、次のように実現される。 即ち、上記した繊維束の供給機構においては、張力安定ロール24aは通過する繊維束Tmの張力が上がると上方へ移動し、張力が下がると下方へ移動する。そして、張力安定ロール24aの上昇位置が上限位置に達したときには上記上限センサー25aが検知して、その信号が上記給糸用モーター12に入力されて給糸体11の回転を増速し、繊維束Tmの繰出量が増加させると張力安定ロール24aは下降する。そして、当該張力安定ロール24aが下限位置に達すると、上記の下限センサー25bが検知する。すると今度は、その下限位置信号が給糸用モーター12に入力されて給糸体11の回転が減速され、繊維束Tmの繰出量が減少する。かくして、装置例における繊維束Tmの張力は常に安定に保つことができる。
【0027】
こうして一定の初期張力を与えられた繊維束Tmは、支持ロール22とニップロール23aとの間を走行するが、本装置例にあってはニップロール23aに一方向回転クラッチ23bが付設してあるので逆方向には回転せず、後述の下流側に配設される張力与除機構が繊維束に対し緊張・弛緩・緊張・弛緩・…の作用を与えてもニップロール23aより上流側には影響が及ぶことなく、繊維束Tmは移動進路に沿って一定張力で繰り出されることになる
【0028】
次に、図1・2の符号3で指示するものは、風洞管方式の流体通流開繊機構である。同図中の本装置例にあっては、上面の開口が流体通流部31aとして機能する吸引風洞管が用いられている。この流体通流部31aは、前記繊維束Tmが移動する方向に沿って当該移動進路と同一レベルで配設されており、当該流体通流部31aの出入り側には通過する繊維束Tmを一定レベルに支持するガイドロール32が配設されている。そして、装置例における吸引風洞管としての流体通流部31aには吸気ポンプ34が接続されており、適宜に流量調整バルブ33を調節して吸気ポンプ34を作動させれば流体通流部31aに所要流速の吸引気流が発生されるようになっている。
【0029】
また次に、符号4で指示するものは張力与除機構であり、流体通流開繊機構3の下流に一定間隔をもって水平配置された前後1対の支持ロール41と41との間に配設されている。しかして、装置例における張力与除機構4は、下端に押圧ロール42aを有する昇降ロッド42と;この昇降ロッド42に屈伸自在に連結されたクランクアーム43と;このクランク軸43に連接する回転ロータ43aを出力軸に備えたクランクモータ44とによって構成されており、クランクモータ44が駆動して回転ロータ43aが回転されることによりクランクアーム43を介して生起される昇降ロッド42の昇降動作に応じて、押圧ロール42aが開繊途上にある繊維束に対し押下げ・離間動作を繰り返すことによって、当該繊維束の張力を緊張・弛緩・緊張・弛緩・…と交互に変化させることになる。この張力与除機構4は、開繊途上にある繊維束を一定レベルに支持する支持ロール41と41の間に配設されている。なお、装置例1においては、クランクモーター44の回転速度を変動させることにより、当該繊維束Tmの緊張・弛緩・緊張・弛緩・…の反復サイクルを調節できるように構成してある。
【0030】
一方、流体通流開繊機構3の流体通流部31aでは、繊維束Tmが支持ロール22とニップロール23aとの挟圧部を通過して架線状態で渡る途上にあるのであるが、当該繊維束は下流側に配設された張力与除機構4の押圧ロール42aによって緊張・弛緩・緊張・弛緩・…と張力の急激な変化が反復的に与えられているのであって、その影響は前記支持ロール22とニップロール23aに挟圧された範囲にまで及ぶ。このため、かゝる緊張・弛緩・緊張・弛緩・…の状態にある繊維束Tmに対して吸引気流が作用すると、図3の[a]⇔[b]に示されるように、当該繊維束の張力が緊張から弛緩へ移行するときは(図3の[a]→[b])、当該繊維束は気流の通過方向へ撓曲して流体通流部31a内に存する繊維長が瞬間的に長くなり幅方向へ開繊し易い状態となるのである。即ち、当該繊維束の弛緩によって隣接する構成繊維間の緊張が緩んで隣接繊維の間への気流が通過量が増大して強力な開繊が営まれることになるのである。逆に、当該繊維束の張力が弛緩から緊張へ移行するときは(図3[b]→[a])、流体通流部31aにおける当該繊維束の撓み量が減少することになり、この際、通過繊維束は開繊された糸列状態を維持したまゝ、これらの構成各繊維は恰も吸引気流に梳られる如く真直な状態に引き揃えられることになる。
【0031】
かくして、開繊された繊維束つまり開繊繊維束Tsは、引取り機構5により引取られる。引取り機構5は引取りロール51と引取り用モーター52から構成されている。ちなみに補足しておくと、繊維束の移動速度は当該引取り用モーター52の回転速度によって決定されるのであり、図示しない速度設定器によりモーター52を制御して自由に変更調節をすることができる。また、引取り機構5の下流には、開繊繊維束Tsを巻き取る巻取装置(図示せず)が配設されるのであり、更に要すれば、前記開繊繊維束Tsに各種樹脂などのマトリックス含浸処理を施すプリプレグ加工装置(図示せず)を連設することも可能である。
【0032】
そこで、上記実施例につき実施の試験例を挙げて、本発明の実際上の作用を検証しておく。
【0033】
〔試験例〕
本発明の第1実施例の作用を検証する事例として、図1に図示する装置例1の流体通流開繊機構3の上方に更に加熱器として熱風機を付設して構成した開繊装置を用いて、1条の炭素繊維束を開繊処理した実施試験例について説明する。
【0034】
この実施試験では、単糸直径7μmのカーボン・モノフィラメントを12,000本集束せしめた炭素繊維束12K(三菱レイヨン株式会社=パイロフィルTR50S)を試験材料として使用している。この実施試験では、張力安定ロール24aにより繊維束Tmの初期張力40gに調整して、風洞管方式の流体通流開繊機構3に送り込んだ。ちなみに、この実施試験に用いた開繊装置は、次のようなものである。
(1) 流体通流部31aの横幅は40mm、移動方向への長さは30mmの開口サイズであり、繊維束のない開放状態において20m/secの吸引気流を作用させた。
(2) 開繊装置の流体通流部31aの出入口には直径10mmの梨地仕上げのステンレス鋼材製の固定ロールがガイドロール32として配設されている。
(3) 流体通流部31aに向けて付設した加熱器(熱風機)は120℃の熱風を連続的に吹付け可能である。
(4) 張力与除機構4はクランクモーター44の回転数が350rpm、ロッド42の繊維束を下側に押し付けるストロークを20mmに設計されている。
(5) 引取り機溝5による繊維束の引取り速度は10m/minに設定してある。
【0035】
この実施試験においては、開繊処理前の原糸の状態で幅5mm、厚み0.15mmであった炭素繊維束12Kが、幅20mm、厚さ0.04mmの開繊繊維束Tsに調製することができた。製品としても、この開繊繊維束Tsは開繊幅が安定し、かつ、繊維の配列も分散性も良好な状態であることが確認された。
【0036】
本明細書と図面に具体的に例示する本発明の実施の形態は概ね上記のとおりであるが、本発明は前述の実施形態例に限定されるもので決してなく、「特許請求の範囲」記載内において種々の変形実施が可能であることは言うまでもない。
【0037】
本発明に係る繊維束の開繊方法と装置を採用実施するならば、給糸体から繊維束を一定速度で解舒して送り出し、送り出した各々の繊維束を当該繊維束の移動進路に沿って配設された複数の流体通流部に架線状態で移動させ、これらの流体通流部を移動する際に当該繊維束は流体との接触抵抗によって流体通過方向へ撓曲せしめ、かつ、当該接触抵抗で弛んだ繊維束を構成する繊維間に流体を通過させて開繊作用を与え、こうして開繊作用を受ける当該繊維束の幅面を、その移動方向とは交差する方向へ局部的に屈伸させて移動過程にある当該繊維束の張力を緊張・弛緩・緊張・…と交互に反復的な張力変化させるというメカニズムを採用しているので、高能率に開繊繊維束を製造することができ、また隣接する各々の繊維同士が平行かつ一様な密度で接線状態に寄り添った状態の均質かつ高品質の開繊糸シートを量産率に製造することが可能であり、産業上非常に有益である。
【0038】
さらに、本発明の提供する開繊装置は、構成が極めて簡素であるうえに、炭素繊維、ガラス繊維、セラミック繊維、ポリオキシメチレン繊維、アロマティック・ポリアミド繊維などの高強度繊維束を省スペースに効率的に開繊することができしかも、得られる開繊繊維束や開繊糸シートの製造コストは安価で生産性も高いから、その産業上の利用価値は頗る大きいものと云える。
【符号の説明】
【0039】
11 給糸体
12 給糸(用)モーター
12a ボビン軸
2 繊維束供給機構
21 案内ロール
22 支持ロール
23a ニップロール
23b 一方向回転クラッチ
24a 張力安定ロール
25a 上弦センサー
25b 下限センサー
3 流体通流開繊機構
31a 流体通流部
32 ガイドロール
33 流量調整バルブ
34 吸気ポンプ
4 張力与除機構
41 支持ロール
42 昇降ロッド
42a 押圧ロール
43 クランクアーム
43a 回転ロータ
44 クランクモーター
5 引取り機構
51 引取りロール
52 引取り用モーター
Tm 繊維束
Ts 開繊繊維束

【特許請求の範囲】
【請求項1】
給糸体から送り出されてくる繊維束Tmを、その移動方向とは交差する方向へ局部的に屈伸させることにより、移動過程にある当該繊維束の張力を緊張・弛緩・緊張・…と交互に反復的に変化させ、こうして張力変化を伴いながら移動する繊維束を、流体通流部に架線状態を成して渡る如く移動させ、この流体通流部を移動する際に当該繊維束が流体との接触抵抗によって流体通過方向へ撓曲され、かつ、この流体接触抵抗を受けて繊維結束が弛められて形成された当該繊維束の間隙に前記流体を通過させることによって繊維同士の間隔を幅方向に広げて開繊を進行させ、繊維束を拡幅開繊せしめることを特徴とする繊維束の開繊方法。
【請求項2】
給糸体から解舒される繊維束の逆流戻りを阻止しながら送り出し、逆流戻りが阻止された箇所から下流を移動する繊維束が流体通流部を移動するとき、繊維束が開繊されることを特徴とする請求項1記載の繊維束の開繊方法。
【請求項3】
繊維束が巻き付けられた給糸体と;この給糸体の繊維束を一定張力で解舒して当該繊維束の逆流引戻りを阻止しながら当該繊維束を一定平面に保持して送り出す繊維束供給機構と;この送り出されて移動してくる繊維束に沿って配設されており、この移動する当該繊維束を架線状に支持した状態で直交方向へ流体を接触・通過させることによって前記繊維束を流体通過方向へ撓曲させつつ開繊せしめる流体通流部から成る流体通流開繊機構と;移動過程にある繊維束を局部的に屈伸させて緊張・弛緩・緊張・弛緩・…と交互に反復的に張力変化せしめる張力与除機構とを包含して構成されることを特徴とする繊維束の開繊装置。
【請求項4】
張力与除機構が、下端に押圧ロールを有する昇降ロッドと;この昇降ロッドに屈伸自在に連結されたクランクアームと;このクランクアームに連接する回転ロータを出力軸に備えたクランクモータとによって構成されていることを特徴とする請求項3記載の繊維束の開繊装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2009−256870(P2009−256870A)
【公開日】平成21年11月5日(2009.11.5)
【国際特許分類】
【出願番号】特願2009−150971(P2009−150971)
【出願日】平成21年6月25日(2009.6.25)
【分割の表示】特願2006−518512(P2006−518512)の分割
【原出願日】平成16年7月7日(2004.7.7)
【出願人】(592029256)福井県 (122)
【Fターム(参考)】