説明

耐疲労鋼床版

【課題】ルート溶接部と止端溶接部の双方の疲労強度を向上させる耐疲労鋼床版を提供すること。
【解決手段】断面逆T字状縦リブ5または断面L字状縦リブのウェブ6が、溶接でデッキプレート2の下面に固定されて、前記断面逆T字状縦リブ5または断面L字状縦リブがデッキプレート2に設置され、前記断面逆T字状縦リブ5または断面L字状縦リブのフランジ8には、横桁4にボルト9で固定するためのボルト挿通孔を備えており、断面逆T字状縦リブ5または断面L字状縦リブのウェブ平面中心軸線C1と横桁の平面中心軸線C2との交差部を中心とする範囲であって、前記溶接によるウェブ長手方向の溶接ビードの少なくとも前記縦リブ高さ寸法の範囲に超音波ピーニングを施している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、鋼床版を有する橋梁をはじめとする桁構造物等に用いられる床版に関し、溶接部の疲労性能を向上させた耐疲労鋼床版に関する。
【背景技術】
【0002】
一般に、図41に示すような鋼床版箱桁1は、橋梁の桁構造を軽くしたいという要請上で作られる構造であり、路面本体を構成する部材であるデッキプレート2に、デッキプレート2を下側から支承するために溶接により固定された補強材である橋軸方向に延長する断面U字状縦リブ40と、前記断面U字状縦リブ40を下側から支承する橋軸直角方向の横リブ41が溶接されている構造が基本構造で、図示の場合には、前記横リブ41に平行に横桁42の上部が断面U字状縦リブ40に溶接により固定され、前記横桁42または横リブ41はこれらに溶接により固定された主桁43により支承されている構造が知られている。したがって、前記断面U字状縦リブ40は、橋軸方向に延長するように配置されている構造で、デッキプレート2と断面U字状縦リブ40との当接部、断面U字状縦リブ40と横リブ41とを結合するための交差部または断面U字状縦リブ40と横桁42とを結合するための交差部、あるいは横桁42あるいは横リブ41と主桁43とを結合するための交差部が多数存在する構造で、多数の交差部を溶接により固定する溶接部とする構造である。これは箱桁の場合であるが,プレートガーダー橋などでも基本構成は同様である。
【0003】
多くの場合、図42に示すように、前記の断面U字状縦リブ40は、鋼鈑を断面U字状に折り曲げ加工して構成した断面U字状縦リブ40であり、その両側板44の先端部がデッキプレート2に溶接により固定された状態では、デッキプレート2と断面U字状縦リブ40とにより略台形状の閉鎖断面が形成されて、閉断面とするための断面U字状縦リブ40であるのが特徴で、断面U字状縦リブ40からなる縦リブの配置間隔は、300〜400mmで、横リブ41は多くの場合、逆T字状断面であり、その橋軸方向の配置間隔が2〜4m程度である。標準的には2.5mである。なお、デッキプレート2の板厚は、12mm〜14mm程度が標準的な板厚である。また、図41中58はアスファルト舗装である。
【0004】
前記のような構造の場合には、主に通行する車両からの荷重によって、前記の溶接部の疲労損傷を生じることが多い。その疲労損傷の中で特に重要なものは、(a)断面U字状縦リブ40とデッキプレート2との溶接部から発生するもの、また、(b)断面U字状縦リブ40と横リブ41の交差部の溶接部から発生するものである。なお、溶接部には止端部とルートがあり、主に、そのいずれか又は両方が起点となった疲労き裂が発生する。
【0005】
(A)図42(b)に示すように、断面U字状縦リブ40のき裂は、発生する頻度は少ないが、片側から溶接の行われたルート側から発生し、多くの場合は溶接ビード45を切る方向に進展するルートき裂46である。しかし、時にはデッキプレート2側に進行する場合もある。デッキプレート2側に進行した場合、横桁42または主桁43などの桁の下側、箱桁1の中側(内側)からだけの補修作業を行うのは困難である。なお、このルートき裂46は、大部分、横リブ41と断面U字状縦リブ40の交差点部における当該溶接部から発生する。
【0006】
(B)図42(c)に示すように、断面U字状縦リブ40と横リブ41の交差部から発生するき裂は、主に断面U字状縦リブ40を通しにするために横リブ41に設けたU字状スリット部47を断面U字状縦リブ40に溶接する部位から発生し、主に止端部から発生している止端き裂48が多い。これは、大きな事故に至る可能性は少ないが、発生する数が多く、一つの橋梁で数十箇所も生じていることがある。
【0007】
これまで、鋼床版49の疲労性能の向上に関しては、いくつかの技術の適用が試みられてきた。以下従来の対策1〜4について説明する。
【0008】
<従来の対策1>
まず、図43(a)(b)に示すように、側板44に開先を設けない形態の溶接接合に対して、図43(c)(d)に示すように、断面U字状縦リブ40の側板44の溶接部の開先をつけることによる、溶け込み量の確保である。これは、前記(A)のルートき裂46による疲労き裂を防止するための対策であり、断面U字状縦リブ40とデッキプレート2の間の溶接の量を増加させることによって、溶接部の断面積を大きく(のど厚を大きく)し溶接ビード45に発生する応力を低減し、疲労寿命を向上しようというものである(例えば、非特許文献1参照)。
この措置は、鋼床版の製作仕様として、溶接部の70%の溶け込みが導入されているが、実際の構造で疲労き裂の発生を防止できていないことが既に判明している。これは、やはりグラインダーなどをかけることのできないビードのルート側の疲労強度が非常に低いことが一つの理由として挙げられる。
また、開先を取ったことによって、ルート側の溶接のフランク角がむしろ悪化していることも理由として想定される。さらに、この構造仕様は長い断面U字状縦リブ40の全長について、カイ先を設けるために部材加工に大きなコストが必要となることである。また、溶け込みを確保するために、しばしば溶接を2パスにする必要がある場合もあり、それも多大なコストアップの要因となる。
もちろん、この対策は、前記(B)の止端き裂48の防止にはなんら寄与しない。
【0009】
<従来対策2>
また、図43(e)(f)に示すように、デッキプレート2と断面U字状縦リブ40の側板44との溶接部の疲労寿命を向上させるために、図43(e)に示すような12〜14mmのデッキプレート2から図43(f)に示すように、デッキプレート2の板厚を、16mmを超える板厚寸法や19mmに増加させる事も知られている(例えば、非特許文献2参照)。
これによって、デッキプレート2に発生する応力を低下させ、デッキプレート2と断面U字状縦リブ40の溶接部での発生応力を低下させ、疲労強度を向上させている。これにより、前記(A)のルートき裂を向上させるのには効果的であるが、前記(B)の止端き裂の防止への寄与度は小さい。しかも、デッキプレート2の板厚をあげることは、ダイレクトにコストの大幅な増加に繋がるのみならず、重量が激増するために、もともと重量を軽くするために用いられている鋼床版の意義を低下させる手法となっている。
【0010】
<従来対策3>
前記(B)の止端き裂について、断面U字状縦リブ40と横リブ41の交差部の溶接部の疲労強度を向上させるために、図44に示すように、当該溶接部の回し溶接部51となっている部分をグラインダー50によるグラインディングで仕上げることも試みられている(例えば、非特許文献3参照)。
これは、当該溶接部51の疲労寿命を向上することに効果的である。しかしながら、この部分で十分な性能を発揮するグラインディングを行うには、断面U字状縦リブ40と横リブ41の溶接部の少なくとも回し溶接部51近傍を全溶け込み溶接にする必要がある。これは、すみ肉溶接部にグラインディングを行うと、全部ビードが削られてしまい、横リブ41のルートが露出してしまう、または、のど厚52が極端に低下してしまうために、グラインディングによってむしろ疲労強度が低下してしまうためである。このフルペネ化(フルペネトレーション:完全溶け込み溶接)は、構造の製作コストをまさに激増させてしまう。また当然、この技術は前記(A)のルートき裂の性能向上には寄与しない。
【0011】
<従来対策4>
これは疲労強度向上を目的とした構造ではないが、現場での据付を容易にするために実施された構造がバトルデッキタイプの構造である。この形式には、図45に示すような米国において1930年代において仮設橋梁用として実施された形態と図46に示すような日本において提案された形式がある。
【0012】
図45(a)(b)に示す形態では、横桁42に支持された断面I字状縦リブ53上にデッキプレート2を支承させるようにした形態であり、断面I字状縦リブ53の上フランジ54の両側部をデッキプレート2に隅肉溶接する形態で、この形態の場合には、上フランジ間が固定されていないので、ルートRが長い構造である。上フランジ54間の非溶接のルートが大きいため、ルート疲労強度が低いという問題がある。
【0013】
また、図46に示す形態では、縦リブを断面逆T字状縦リブ55としており、横リブ41と断面逆T字状縦リブ55との接合は、横リブ41にスカーラップ56を設けたスミ肉溶接構造となっている。この構造は、断面逆T字状縦リブ55のウエブ57とデッキプレート2との溶接が、ウエブ57の両側のスミ肉溶接となっていることによって、ウェブ57の板厚程度とルートが短く、その結果、前記(A)のルート疲労強度が向上している。
ただし、止端側は変わらないはずであるため、前記(B)止端き裂に対する十分な疲労強度が確保されているかどうかは不明である。非特許文献4に記載の疲労試験においては、断面逆T字状縦リブ55と横リブ41の溶接部においてルートからき裂が発生している。
縦リブの形状を断面I字状縦リブ53から断面逆T字状縦リブ55に変えたことによって、横リブ41がせん断で荷重を縦リブ55に伝えるような形態から、横リブ41が曲げ梁として直接荷重を受けてしまい、結果、スミ肉溶接で溶接された断面逆T字状縦リブ55と横リブ41の溶接部からルートき裂が発生したようである。なお、この実験は前記の従来対策2のデッキプレート2の板厚増加も同時に用いており、それぞれの効果の寄与分は分析することができない。ただし、まとめて言えば、前記(A)のルートき裂の疲労強度は向上するが、その向上は十分であるのかは確認されていない。また、前記(B)の止端き裂の疲労強度は特に改善されない。
【0014】
また、最も橋梁用床版として用いられている旧設計基準によるRC床版は、図47に示すように、輪荷重が直接載荷され、設計応力における活荷重の影響が大きく、旧設計基準による配力筋不足、床版厚不足に加えて、過積載車輌による影響等により、ひび割れ損傷、耐久性、耐荷力不足を招くようになる。図47に示す損傷工程順に示すように、床版損傷の進行過程として次の項目が挙げられる。
(1) 等方性に近い版からなる旧設計基準によるコンクリート床版
(2) 一方向ひび割れの発生(乾燥収縮クラックの発生により異方性版に変化)
(3) 二方向ひび割れの発生(輪荷重により、異方性の方向が90°変化)
(4) 二方向ひび割れの拡大(サイコロ状に近い形態までクラック密度が増加)
(5) ひび割れ幅の拡大(クラック幅の拡大:すり磨き現象、浸透水の浸入凍結膨張等)
(6) 抜け落ち現象(押し抜きせん断強度の低下による抜け落ち)
従来の補修・補強工法としては、工法面(保全技術)からの最適な方法は、床版上面を増厚すると共に、かつ防水層を施し、床版下面にはコンクリート片の落下防止のためにFRP接着工法を行うのが望ましい方法である。しかし、路面高さを変更できない場合や、損傷が著しく、床版を取り替える必要がある場合がある。この場合は、再度RC床版で施工を行うと、長い工期を必要とするようになる。
【非特許文献1】道路橋示方書疲労設計編
【非特許文献2】合理化鋼床版の論文(勝俣・小笠原・町田・吉家・川瀬・溝江:これからの鋼床版―新しい構造の提案.川田技報,Vol17,1998)
【非特許文献3】リーハイ型論文(Tsakopoulos and Fisher:Fatigue performance and design of steel orthotropic deck panels full-scale laboratory tests, International journal of steel structures, Vol5,No3,2005)
【非特許文献4】中村聖三 プレファブ鋼床版を用いた橋梁床版架け替え工法に関する研究,九州大学博士論文,平成7年4月
【発明の開示】
【発明が解決しようとする課題】
【0015】
従来の鋼床版構造においては、鋼床版を製造する場合、反転状態のデッキプレート2に、縦リブに閉断面となるように断面U字状縦リブ40を通しで用い、そこに横リブ41をかぶせて溶接する。横リブ41の断面U字状縦リブ40が通る部分にはスリット47が設けられている。断面U字状縦リブ40はデッキプレート2にスミ肉溶接で接合され、横リブ41と断面U字状縦リブ40もスリット47においてスミ肉溶接で接合される。このとき、スリット47側の横リブ41の端部は回し溶接の形態とされる。
【0016】
このような形態では、閉断面のUリブ構造が縦リブ40に用いられることによって、ルート疲労強度が小さくなっている。また、断面U字状縦リブ40と横リブ41の交差点では、まわし溶接の構造となるために、止端疲労強度が低くなっている。
この両箇所の疲労強度を向上するために、前記の<対策1>では、前記(A)のルート疲労強度を十分に上げることができないことが判明している。また、前記(B)の止端疲労強度は向上しない。
前記<対策2>では、前記(A)のルート疲労強度を向上させるが、デッキプレート2厚が厚くなり重くなり、そのために鋼床版としての軽量化のメリットをなくしてしまう。また、前記(B)の止端疲労強度は向上しない。
前記<対策3>では、前記(B)の止端疲労強度は向上するが、前記(A)のルート疲労強度を向上しない。また、コストを激増させてしまう。
前記<対策4>では、前記(A)のルート疲労強度は向上するが、前記(B)の止端疲労強度は向上しない。
【0017】
このように、従来から用いられている鋼床版構造では、前記(A)のルート溶接部と、前記(B)の止端溶接部を同時に向上させることができなかった。また、どちらかを向上させたとしても、それは多くの場合、適正なコストと重量の制限のもとで成立する手法ではなかった。
上記の状況に鑑み、鋼床版構造において、前記(A)のルート溶接部と前記(B)の止端溶接部の双方の疲労強度を向上させることを課題とする。このとき、過大な重量およびコストが必要とならないことが望まれる。
【0018】
また、(1)溶接止端の仕上げに関しては、効果がほとんどない。その理由は、損傷した前記(A)のルート溶接部は、ルートき裂であり、閉断面側からの仕上げは不可能だからである。また、前記(B)の止端溶接部については仕上げを行うと、ルートが露出してしまうことがあるために、仕上げを行うことができないからである。そのため、米国での仕上げを行った鋼床版では、この溶接部の一部をフルペネ(完全溶け込み溶接)にしており、著しいコスト増となっている。
(2)デッキプレート上でのSFRC(繊維強化コンクリート)舗装することも知られている。これは損傷した前記(A)のルートき裂には著しく効果的である。しかし、前記(B)の止端き裂には効果がないという問題がある。また、SFRCは高価であるために、コストが高くなる。また、鋼材とSFRCの付着強度が低く剥がれやすい可能性があるという付着の問題があるために、長期での合成効果が確認されていないという課題も残る。
(3)断面逆T字状の縦リブ形態としたバトルデッキタイプの鋼床版では、損傷した前記(A)のルートき裂には効果的である。断面逆T字状縦リブのウエブの溶接が、そのウェブの両側のスミ肉溶接になるために、ルート疲労強度が著しく向上する。しかしながら、損傷した前記(B)の止端き裂には効果がない。しかも、その疲労き裂はルートからとなる、そのため仕上げを併用したことによる効果も期待しにくい。
【0019】
老朽化等による既設の鋼床版交換の場合は、工期の短縮が最も重要である。夜間に工事を行い、速度制限つきでも昼間は交通を確保することが社会的損失を最小とする。
本発明は、上記の状況に鑑み、鋼床版構造において、前記(A)のルート溶接部と前記(B)の止端溶接部の双方の疲労強度を向上させ、過大な重量増加およびコストの増加とならない耐疲労鋼床版を提供することを目的とする。
【課題を解決するための手段】
【0020】
前記の課題を有利に解決するために、第1発明の耐疲労鋼床版においては、桁構造物に載置される鋼床版であって、デッキプレートと、当該デッキプレートの下側に複数並べて配置されると共にウェブ及びフランジを有する断面逆T字状縦リブまたは断面L字状縦リブとを備え、前記縦リブのウェブが溶接でデッキプレートの下面に固定されていると共に、前記縦リブのフランジには、前記桁構造物の桁にボルトで固定するためのボルト挿通孔を備えており、前記溶接により形成されるウェブ長手方向の溶接ビードに対して、前記溶接部における断面逆T字状縦リブまたは断面L字状縦リブのウェブ平面中心軸線と横桁の平面中心軸線との交差部を中心とする範囲であって、少なくとも前記縦リブ高さ寸法の範囲に、超音波ピーニングを施していることを特徴とする。
第2発明では、第1発明の耐疲労鋼床版において、断面逆T字状縦リブまたは断面L字状縦リブと桁構造物の桁との交差部において、デッキプレートと縦リブのフランジとの間に、デッキプレートからの鉛直方向の力を受ける、断面溝形または断面L形状の支承金具を、デッキプレートに当接または近接するように配置すると共に、前記支承金具をボルトで断面逆T字状縦リブまたは断面L字状縦リブのウエブ部に固定することを特徴とする。
第3発明では、第1発明の耐疲労鋼床版において、間隔をおいて横方向に隣り合う断面逆T字状縦リブ間または断面L字状縦リブ間に、断面逆T字状縦リブまたは断面L字状縦リブの座屈耐荷力を向上させるために、横桁に支持鋼材を介してボルト接合が可能なスタッドをデッキプレートに設置したことを特徴とする。
第4発明では、第1発明の耐疲労鋼床版において、一端側をデッキプレートに溶接により固定し、他端側を断面逆T字状縦リブまたは断面L字状縦リブにボルト接合とした短尺横リブを配置し、デッキプレートと短尺横リブとの溶接部を超音波ピーニングしたことを特徴とする。
【0021】
第5発明の耐疲労鋼床版においては、既設の鉄筋コンクリート床版を架け替える場合に設置される第1発明〜第4発明のいずれかの耐疲労鋼床版であって、断面逆T字状縦リブまたは断面L字状縦リブとデッキプレートの合計厚さ寸法が、既設の鉄筋コンクリート床版の厚さ寸法以下とされていることを特徴とする。
【発明の効果】
【0022】
第1発明によると、次のような効果が得られる。
(1)鋼床版の重量およびコストの増加はほとんどなく、あるとしてもわずかで、前記(A)のルート溶接部と、前記(B)の止端溶接部の疲労の疲労寿命が向上し、鋼床版の耐久性を向上させることができる。また、超音波ピーニングを施す部分は、断面逆T字状縦リブまたは断面L字状縦リブのウェブとデッキプレートとの長い溶接ビードの内の短い範囲であるので、効率よく経済的に鋼床版の疲労寿命を向上させることができる。
(2)鋼床版に疲労損傷が生じた場合でも、桁下で交通を阻害することなく補修を行うことができる。
(3)架替用として用いた場合、コンクリート床版に比べて軽いので、重量の増加が無く、短い工期で床版の交換を行うことができる。
第2発明によると、デッキプレートを支承する支承金具を、断面逆T字状縦リブまたは断面L字状縦リブのウェブに固定したので、第1発明の効果に加えて、ウェブ先端部の応力負担を軽減して、疲労寿命を向上させることができる。
第3発明によると、横桁に支持鋼材を介してボルト接合が可能なスタッドをデッキプレートに設置したので、第1発明の効果に加えて、鋼床版が浮き上がるような引張力に支持鋼材を介してスタッドを抵抗させることができ、その結果、デッキプレートの橋軸方向圧縮力に対する座屈耐力を向上することができると同時に、縦リブのウェブ溶接部の発生応力を低減させることにより、さらに溶接部の疲労寿命を向上させ、鋼床版の疲労寿命を向上させることができる。
第4発明によると、第1発明の効果に加えて、鋼床版が浮き上がるような引張力と、鋼床版から交通荷重等を伝達するような圧縮力とに短尺横リブを抵抗させることができ、その結果、デッキプレートの橋軸方向圧縮力に対する座屈耐力を向上することができると同時に、縦リブのウェブ溶接部の発生応力を低減させることにより、さらに短尺横リブの溶接部の疲労寿命を向上させ、鋼床版の疲労寿命を向上させることができる。
第5発明の耐疲労鋼床版によると、既設の鉄筋コンクリート床版の厚さ寸法より、断面逆T字状縦リブまたは断面L字状縦リブとデッキプレートの合計厚さ寸法が大きくならないように、適宜高さ調整板を介在させて、調整既設の床版上面レベルと同じレベルとすることができ、道路設計により設定された線形を変えることがない。
【発明を実施するための最良の形態】
【0023】
次に、本発明を図示の実施形態に基づいて詳細に説明する。
【0024】
(第1実施形態)
図1から図7は、本発明の第1実施形態の耐疲労鋼床版1およびその耐疲労鋼床版1を横桁4に取り付けた状態を示すものであって、図1は斜視図、図2は正面図、図3はデッキプレート2の一部を切り欠いて示す平面図、図4は図1の一部を拡大して示す斜視図、図5は図4の裏面側から見て一部を切り欠いて示す一部切り欠き斜視図、図6(a)は図2におけるデッキプレート2の一部を切り欠いた部分を拡大して示す平面図、図6(b)は(a)の正面図、図7は超音波ピーニング部11を示す側面図である。
【0025】
図1〜図7に示す第1実施形態の耐疲労鋼床版1は、架替用鋼床版の場合に好適な形態で、鋼製のデッキプレート2に、複数の鋼製の断面逆T字状縦リブ5が間隔をおいて平行に配置されると共に、各断面逆T字状縦リブ5のウェブ6先端部の長手方向全長とデッキプレート2の接触部が、多電極で溶接されて、デッキプレート2の下面に固定されている。
前記溶接部の溶接ビード7(図7参照)のうち、断面逆T字状縦リブ5のウェブ平面中心軸線C1と横桁4の平面中心軸線C2との交差部を中心とする範囲であって、溶接ビード長手方向に、好ましい範囲として、例えば、前記縦リブ高さ寸法の2/(√3)の範囲の溶接ビード7に超音波ピーニングを施して、溶接ビード7の部分の疲労強度を向上させていると共に溶接止端部の疲労強度を向上させている。
また、各断面逆T字状縦リブ5のフランジ8には、横桁4のフランジ4bにボルト9により取り付けるために、横桁4のボルト挿通孔に対応した位置にボルト挿通孔12がフランジ長手方向(橋軸方向)に間隔をおくと共にフランジ幅方向(橋軸直角方向)に間隔をおいて設けられている。このように断面逆T字状縦リブ5のフランジ8を横桁4に、溶接ではなくボルト接合することにより、溶接による疲労強度の問題を解消している。
【0026】
前記第1実施形態の構造の耐疲労鋼床版1を製作する場合には、例えば、12mm〜16mmのデッキプレート2に、高さ200〜250mmの各断面逆T字状縦リブ5を300〜400mm間隔で配置し、多電極で溶接する。溶接の大きさは4〜9mm両スミ肉である。前記の溶接後の溶接ビードの一部分に、各断面逆T字状縦リブ5のウェブ6の中心軸線と横桁4との交点近傍を超音波ピーニングによるUIT(Ultrasonic impact treatment)処理を行う。
【0027】
前記の超音波ピーニングの処理範囲は広ければ広いほうがよいが、好ましくは、各断面逆T字状縦リブ5から横桁4への応力伝達において、荷重の伝達領域の広がりを30度程度で考えて、各断面逆T字状縦リブ5の高さの2/(√3)程度以上を処理することが好ましい。より好ましくは、少なくとも各断面逆T字状縦リブ5の高さ寸法の範囲(縦リブ5の高さ寸法が200mmなら、前記交点を中央として少なくとも200mmの範囲)を処理することである。超音波ピーニング(UITの処理)によって、溶接部に存在する応力集中と引張残留応力を低減し、これらによる疲労き裂発生の原因をなくした溶接ビード7の止端は、著しく疲労強度を向上する。
【0028】
また、ルートは両スミ肉溶接になっているために、高い応力が生じることはなく、トータルとして高い疲労強度をえることができる。そのため、条件や設計によっては、鋼床版3に各断面逆T字状縦リブ5に交差するように、横リブを設置しなくても、十分な疲労強度を確保することができる。
横リブが存在しない場合は、鋼床版部の補剛板としての圧縮耐荷力が低下するために、新設構造に用いることは困難である。一方、架替構造では死荷重を床版構造で負担しないでよいために、ほとんど橋軸方向の負担応力は発生しない。
【0029】
前記の超音波ピーニングをするための超音波ピーニング装置29としては、図8に示すように、トランスデューサー30と、このトランスデューサーの前面に設けられたウエーブガイド31と、ウエーブガイドの先端に設けられ、自由振動体34を支持するホルダー33と、このホルダーを支持する支持体35とから基本的に構成されており、後端にハンドル36を有するケース37に収納されている。電源38から供給された電気エネルギーはトランスデューサー30により超音波領域の機械振動に変換され、生じた超音波振動はこれに接続されたウエーブガイド31を伝播する。ウエーブガイドの径が前方に向かって絞られていることによって超音波振動の伝播速度が変性され、振動が増幅される。超音波振動はウエーブガイド31の先端からホルダー33に支持されている自由振動体34に伝わり、これを超音波振動させる。この自由振動体34の振動により処理対象を打撃し、ピーニング処理するものである。通常、ピーニング処理は、振幅20〜60μm、周波数15kHz〜60kHz、出力0.2〜1.5KWで処理するのが一般的である。
【0030】
なお、上記自由振動体34として、図8においては、凸状の先端を持つピンの例を示したが、処理対象物の状況に応じて、先端部が凸又は凹状であるピン、或いは球状のショット(超音波ショットピーニング)等も選択できる。
【0031】
この超音波ピーニング処理装置29は、100〜200Vの通常電源38により作動でき、重量が5kg程度で可搬であり、反動も少ないので、作業者がハンドル36を利用してこれを保持し、処理対象物の処理箇所に近接して処理作業をすることが可能である。
【0032】
横桁4の間隔は、2.5mが標準とするが、それ以上の間隔も設計的な検討をすればよい。横桁4と各断面逆T字状縦リブ5をボルト・ナット9で固定する。
【0033】
前記の各断面逆T字状縦リブ5以外にも、図示を省略するが、各断面逆T字状縦リブ5におけるウェブ6片側のフランジを省略するような断面L字状縦リブでもよく、その断面L字状縦リブのウェブをデッキプレート2に前記と同様な溶接により固定するようにしてもよい。
【0034】
したがって、本発明の実施形態では、デッキプレート2の下面に設置の縦リブは、断面逆T字状縦リブでも、あるいは断面L字状縦リブでもよく、いずれか一方の縦リブのウェブが、溶接でデッキプレート2の下面に設置され、前記断面逆T字状縦リブ5または断面L字状縦リブ5のフランジ8には、横桁4にボルト9で固定するためのボルト挿通孔12を備えており、断面逆T字状縦リブ5または断面L字状縦リブのウェブ平面中心軸線C1と横桁4の平面中心軸線C2の交差部を中心とする範囲であって、断面逆T字状縦リブ5または断面L字状縦リブのウェブ長手方向の溶接ビード7に、溶接ビード長手方向に、例えば、前記縦リブ高さ寸法の2/(√3)の範囲に、より好ましくは、少なくとも各断面逆T字状縦リブ5の高さ寸法の範囲(縦リブ5の高さ寸法が200mmなら、前記交点を中央として少なくとも200mmの範囲)に超音波ピーニングを施している耐疲労鋼床版である。
【0035】
(第2実施形態)
図9〜図16は、本発明の第2実施形態の耐疲労鋼床版3および横桁上に設置した構造を示したもので、前記第1実施形態の構造に、さらに各断面逆T字状縦リブ5(図示を省略するが各断面L字状縦リブ)のウェブ6の両側に、横断面C形等の横断面溝形の鋼製の支承金具13のウェブ13aを、縦リブ5のウェブ6を介して背中合わせとなるようにボルト9により固定し、各支承金具13の上端面によりデッキプレート2の下面を支承し、横桁直上のウェブ13aの応力負担を軽減すると共にウェブ6の剛性を高めるべく横桁直上に位置するように設置した形態である。
各支承金具13の上端面はデッキプレート2の下面に接触した状態または近接した状態でよく、デッキプレート2に輪重等の鉛直荷重(圧縮荷重)が作用した場合に支承金具13により支承するようにしている。支承金具13としては、横断面溝形の支承金具13における一方のフランジを省略した横断面L字状の支承金具13でもよく、すなわち、一片をフランジとし他辺をウェブとする横断面L字状の支承金具でもよく、このような横断面L字状の支承金具のウェブ13aを、縦リブ5のウェブ6の両側に当接させて対称に配置し、ボルト・ナットにより固定するようにしてもよい。
その他の構成は、前記実施形態と同様であるので、同様な部分には、同様な符号を付している。
【0036】
前記第2実施形態の構造の耐疲労鋼床版1を製作する場合には、前記第1実施形態と同様に、例えば、12mm〜16mmのデッキプレート2に、高さ200〜250mmの各断面逆T字状縦リブ5を300〜400mm間隔で配置し、多電極で溶接する。溶接の大きさは4〜9mm両スミ肉である。前記の溶接後の溶接ビードの一部分に、各断面逆T字状縦リブ5のウェブ6の中心軸線と横桁4との交点近傍を、少なくとも各断面逆T字状縦リブ5の高さ寸法の範囲(縦リブ5の高さ寸法が200mmなら、前記交点を中央として少なくとも200mmの範囲)を超音波ピーニングによるUIT処理を行うことが好ましい。
前記のように支承金具13を設置する場合は、支承金具13により縦リブ5のウェブ6を拘束するため、この拘束により、縦リブ5の応力が集中する範囲が狭くなるので、図15に示すように、各支承金具13におけるフランジ13bの両側におけるデッキプレート2と縦リブ5のウェブ6との表裏両側の溶接ビード7の部分で、デッキプレート2の板厚tの2倍程度の範囲(2t)の溶接ビード7を、超音波ピーニングを行えばよい。その後、支承金具13を設置する。
支承金具13としては、断面C形で高さ200mmのチャンネルや断面L形で高さ200mmのアングル材に加工した支承金具13を縦リブ5のウェブ6両側に配置し、これらのボルト挿通孔に渡ってボルト9を挿通してナットにより締め付け固定する。ボルト9としては、M20〜M24でF10Tの高力ボルトを使用して固定するとよく、支承金具13の下端部と縦リブ5のフランジ8との間は間隙があってもよく、図16に示すように、支承金具13下端部と縦リブ5のフランジ8との間に、楔式のスペーサー20を打ち込んだ状態でもよく、この場合、支承金具13の上端面をデッキプレート2の下面に当接してもよい。
縦リブ5が断面L字形の場合には、断面L字形の片側下部にはフランジがあるので、前記と同様に支承金具13を配置することができるが、反対側はフランジがないので、支承金具13と横桁との間は間隙がある状態、または前記間隙に楔式のスペーサ−20を打ち込んだ状態でもよい。
前記のように支承金具13とデッキプレート2は溶接されていないので、その間に引張力は生じないが、圧縮力は伝達することができる。トラックの輪荷重は圧縮応力を生じさせるため、交通荷重に対しては十分な効果を発揮することができる。支承金具13の高さは設計で決めることができるが、スペーサー20を打ち込めば、輪荷重の反作用で生じるわずかな負方向の曲げについても拘束し、縦リブ5のウェブ6に作用する発生応力を低下させることができる。支承金具13は、縦リブ5の高さの1/2以上であるのが、十分なデッキプレートの補剛効果を得るためにはよい。
横桁4の間隔は、2.5mを標準とするが、それ以上の間隔でも適宜、設計により設定すればよい。横桁4と縦リブ5のフランジ8をボルト9で固定する点は前記の実施形態の場合と同様である。
【0037】
(第3実施形態)
図17〜図24は、本発明の第3実施形態の鋼床版3およびこれを横桁4に設置した状態を示すものであって、この形態では、前記の第2実施形態に、さらに、間隔をおいて横方向に隣り合う断面逆T字状縦リブ5間(または図示省略の断面L字状縦リブ間)に、断面逆T字状縦リブ5(または図示省略の断面L字状縦リブ)の座屈耐荷力を向上させるために、横桁4にボルト接合が可能なスタッド21をデッキプレート2に設置した形態の鋼床版3である。
【0038】
中間部にボルト挿通孔を有するスタッド21の上端部をデッキプレート2に溶接(フルペネトレーション)により固定され、その溶接部は超音波ピーニングによるUIT処理(超音波衝撃処理)されて疲労寿命を高めている。また、断面逆T字状縦リブ5間において、横桁4のフランジ8上面で、例えば、前記横桁4のウェブ4aの垂直面上において、断面L形(図示の場合)または板状で中間部にボルト挿通孔を有する支持鋼材15の下端部が溶接により固定され、前記支持鋼材15とスタッド21のボルト挿通孔にボルト9が挿通されると共にナットがねじ込まれて、支持鋼材15とスタッド14が連結され、鋼床版3に作用する引張力および圧縮力に対して連結された支持鋼材15とスタッド21により抵抗し、縦リブ5の座屈耐荷力を向上させるようにしている。前記のように支持鋼材15の上フランジによりデッキプレート2の下面を支承するようにしてもよく、前記上フランジ15aを省略して版状の支持鋼材15としてもよい。
【0039】
前記第3実施形態の鋼床版3を製作する場合は、前記の第2実施形態における支承金具13を設置する前に、ボルト挿通孔を有するスタッド21をデッキプレート2に固着する。
また、スタッド21の溶接部にもUITを処理してもよい、スタッド14の固着は、完全溶け込み溶接であるので、非常に効率よくUITによって疲労強度が向上する。
【0040】
その後、前記の支承金具13を設置する。また、横桁4には、ボルト孔を有する断面L形または平鋼からなる支持鋼材15を溶接で固定して設置しておく。断面逆T字状縦リブ5を横桁4とボルトで固定し、さらに横桁4に設置した支持鋼材15をデッキプレート2から下向きに突き出したスタッド21と接合する。
【0041】
前記第3実施形態では、デッキプレート2からの圧縮力は支承金具13を介して伝達され、また、引張力は、デッキプレート2→スタッド14→支持鋼材15→横桁4と順に伝達される。そのため、デッキプレート2の上下方向の変位を拘束し、補剛版としての座屈耐荷力を確保することができる。
【0042】
その他の構成は、前記実施形態と同様であるので、同様な部分には、同様な符号を付して説明を省略する。
【0043】
(第4実施形態)
図25は、本発明の第4実施形態の鋼床版3の一部を示したもので、この形態では、前記第1実施形態の鋼床版3における横方向に隣り合う各断面逆T字状縦リブ5間で、横桁4直上に位置するように、横断面L形(図25(a)および(b)の場合)または横断面C形等の横断面溝形あるいは横断面H形の等の短尺横リブ16(図25(c、dの場合)のウェブ16a上端部をデッキプレート2の下面に当接して、その当接部全周を全周すみ肉溶接で溶接し、その全周を超音波ピーニングしている形態である。
図25(c)(d)に示す形態では、横方向に隣り合う断面逆T字状縦リブ5における各ウェブ6に、断面溝形の短尺横リブ16のフランジ16bを当接し、断面逆T字状縦リブ5のウェブ6とその両側の短尺横リブ16のボルト挿通孔に渡って、ボルト9が挿通されている共にナットにより固定されている構造であるので、橋軸直角方向に連続した横リブ構造とすることができる。
【0044】
また、前記短尺横リブ16の横方向の縦板を縦リブ5におけるウェブ6にボルトにより固定している。前記のような短尺横リブ16を設置する場合は、短尺横リブ16による縦リブ6の拘束により、縦リブ5におけるウェブ6への応力が集中する範囲が狭くなるので、短尺横リブ16を設置する場合には、短尺横リブ16におけるウェブ16aのデッキプレート2への設置点を中心に、デッキプレート2と断面逆T字状縦リブ5におけるウェブ6との溶接ビード7に、デッキプレート2の板厚の2倍程度の範囲について、超音波ピーニングを、断面逆T字状縦リブ5のウェブ6の両面側の溶接ビードに行うようにすればよい。
また、前記の超音波ピーニングをした後に、断面逆T字状縦リブ5と短尺横リブ16とのボルト挿通孔に渡って、ボルト9を挿通し、ナットをねじ込んで、ボルト接合を行う。短尺横リブ16は、溶接でデッキプレート2と接合されるために、デッキプレート2の座屈を拘束し、デッキプレート2の座屈耐力を確保することができる。
【0045】
前記の第1実施形態あるいは第4実施形態の鋼床版3を、損傷したRC床版に代わって架け替える場合について、図26から図29を参照して説明する。
【0046】
図26に示す既存の状態から図27に示すように、I型断面を有する複数の主桁18に渡って、主桁18のウェブ18aを挟んで連結するように、RC床版17の下側に増設するように横桁4(以下、増設横桁とも言う)を設置する。増設された横桁14と主桁18のウェブ18aとは、必要に応じウェブ18aを補強して、ボルトあるいは溶接等により取り付ける。前記横桁4の設置後、RC床版17の一部を除去する。主桁18と増設した横桁4の上面を同レベルとするために、その除去したRC床版17の部分の増設横桁4に、ライナープレート18(図29参照)を置いて、レベルを出した後、前記第1〜第4実施形態等の耐疲労鋼床版3を架替用鋼床版として、これを3m×10m程度のブロックで、主桁18と増設横桁4に設置する。耐疲労鋼床版3の設置後、増設横桁4のフランジ8と耐疲労鋼床版3における断面逆T字状縦リブ5のフランジ8を、高力ボルト等のボルト9で接合する。前記のような損傷したRC床版の除去と、本発明の耐疲労鋼床版3の設置のプロセスを繰り返して、新しい耐疲労鋼床版3を徐々に橋軸方向あるいは橋軸直角方向に形成してゆく。耐疲労鋼床版3を形成した後は、デッキプレート2上に、防水工などの一次覆工22と、アスファルト舗装等の2次覆工23を実施して作業は終わる。
【0047】
前記の作業中、ボルトで耐疲労鋼床版3を固定し、既設RC床版17とのアスファルト舗装分の段差を、縞鋼板を置いて養生すれば、車線を封鎖する時間は最小限で済むことができる。
【0048】
図30〜図35は、新設用の鋼床版箱桁1に適用する場合の概略説明図であって、デッキプレート2の下面側を上にして配置し、そのデッキプレート2に、図31に示すように断面逆T字状縦リブ5のウェブ6を溶接により固定し、次いで図32に示すように、断面逆T字状縦リブ5間あるいは断面逆T字状縦リブ5に渡って、短尺横リブ16のフランジ16bを固定し、短尺横リブ16のウェブ16aをデッキプレート2に溶接により固定した状態としておく。
【0049】
一方、箱桁本体1aについては、図33に示すように、箱桁における下フランジとなる2点鎖線で示す底版19上に主桁(ウェブ)18を固定して、底部と両側部の3面状態とした後、隣り合う主桁(ウェブ)18にわたる横桁4を仮付けしてブロックとした状態で反転し、図34に示すように、断面逆T字状縦リブ5のフランジ8上に、前記ブロックの横桁4を載置して、デッキプレート2と主桁(ウェブ)18を溶接により固定し、それから断面逆T字状縦リブ5のフランジ8と横桁4のフランジ8をボルトにより本締めして一体化した後、横桁4と断面逆T字状縦リブ5のフランジを高力ボルトで締め付け、断面逆T字状縦リブ5と短尺横リブ16のボルトを本締めする。その後、箱桁1全体を反転して、橋脚上の支承装置等に前記2点鎖線とした底版19を載置するように設置される。
【0050】
図35には、図30から図34の概略図を、箱桁製作工程と鋼床版の製作工程とを系統別に製作して合体化するまでを、系統別に図示されている。
(実施例)
【0051】
図36から図40は、従来技術の断面U字状縦リブ40と横リブ41を備えた鋼床版49の場合と、本発明の断面逆T字状縦リブ構造を有する耐疲労鋼床版1の場合とで、載荷試験を行って両者を比較した際の説明図である。
図36は、比較例である従来技術の鋼床版49における載荷荷重の移動方向を示した図であり、横リブ41を基点として、橋軸方向に載荷荷重が移動するものとした。実際の条件としては、図37(a)、(b)に示すように、載荷荷重走行試験機を用いて、一点の輪荷重(15t)を断面U字状縦リブ40の真上におけるデッキプレート2上に載荷して、橋軸方向に移動するようにした。その際、図37(a)に示した部位A1および部位A2に2軸のひずみゲージを貼って、輪荷重移動の際の発生応力を測定した。部位A1の位置としては、下部に横リブ41が存在するデッキプレート2上であって、且つ断面U字状縦リブ40とデッキプレート2との接触部から30mm離れた位置とした。部位A2の位置としては、部位A1のデッキプレート2を挟んで反対側のデッキプレート2の裏面位置とした。尚、本載荷試験では、被労性能も評価するため、輪荷重はデッキプレート2上を橋軸方向に往復移動させるようにした。
また、図38は、比較例にて、輪荷重がA1点を通る橋軸直角方向の線(荷重の中央線と呼ぶ)において橋軸方向に移動した際の、A1点及びA2点における発生応力を示し(横軸は輪荷重をかけている位置の荷重の中央線からの距離(mm)を表し、縦軸は発生応力(MPa)を表す)、そのうち左図は、発生応力のうち橋軸直角方向成分の応力(デッキプレート2の上面A1と下面A2)、右図は、発生応力のうち橋軸方向成分の応力(デッキプレート2の上面A1と下面A2)である。
【0052】
図39(a)、(b)、(C)は、実施例における輪荷重載荷試験機を用いた載荷試験の際の、試験体の構造を示した図である。輪荷重条件は上述した比較例での条件と同様であるが、荷重は断面逆T字状縦リブ5のウェブ6が配置されている位置におけるデッキプレート2上に載荷している。試験体は、デッキプレート2の下部に断面逆T字状縦リブ5を溶接接合し、横桁4上に載置してボルト接合した構造としている。図39(b)は橋軸方向の側面図で、そのC−C矢視図が図39(a)、D−D矢視図が図39(c)である。発生応力を調べるため、2軸のひずみゲージを、横桁4が存在する橋軸直角方向断面における、デッキプレート2と断面逆T字状縦リブ5との接合部から30mm離れた位置のデッキプレート2の上面A3と下面A4(図39(a)参照)に貼りつけている。
また、図40のグラフは、輪荷重が荷重の中央線から橋軸方向に移動した際の、A3点及びA4点における発生応力を示し(横軸は輪荷重をかけている位置の荷重の中央線からの距離(mm)を表し、縦軸は発生応力(MPa)を表す)、そのうち左図は、発生応力のうち橋軸直角方向成分の応力(デッキプレート2の上面A3と下面A4)を示し、右図は、発生応力のうち橋軸方向成分の応力(デッキプレート2の上面A3と下面A4)を示す。
試験した結果を表1に示す。尚、比較例、実施例共に、輪荷重試験の往復運動回数は、溶接部にき裂が生じるまで行い、き裂が生じない場合は、400万回迄行った。
【0053】
【表1】

【0054】
表1で示した発生応力振幅Δとは、A1〜A4点それぞれにおける最大発生応力と最小発生方力の差を絶対値表示したものであり(応力差が大きい橋軸直角方向の応力差を記載)、疲労強度に影響するパラメータである。
表1からわかるように、比較例では、部位A1及び部位A2での発生応力振幅Δが共に140MPaであり、溶接部のき裂は、デッキプレートと断面U字状横リブの溶接部では1,500,000回で発生し、縦リブと横リブとの交差部(表中では、縦横リブ交差部と記載)では1,000,000回で発生している。
それに対して、実施例における部位A3及び部位A4での発生応力振幅Δは、共に150MPaと、比較例に比べて僅かに大きい値となったが、疲労き裂は発生しなかった。
これは、実施例では、デッキプレート2と断面逆T字状縦リブ5との溶接部を超音波ピーニングによるUIT処理をしており、断面逆T字状縦リブ5といるため、疲労的な弱点が押さえられたためと考えられる。
【0055】
次に、FEM解析により、上述した比較例と実施例で使用した試験材の構造と、更に、実施例の断面逆T字状縦リブ構造に図12に示す支承金具13を入れた構造の3種類の構造で、上述の試験体にひずみゲージを取り付けた位置に相当する解析モデル上の位置での発生応力振幅Δを計算した。尚、FEM解析では、トラックの輪荷重に相当した荷重を、面荷重で与え、その荷重を移動させて作用させている。計算結果を表2に示す.
【0056】
【表2】

【0057】
前記の表2に示す結果から、FEM解析による発生応力振幅Δの値は、上述した比較例及び実施例の載荷試験結果の値と略一致しており、解析結果は確からしいことが判る。
ここで、実施例の試験体構造に支承金具を入れた構造におけるFEM解析結果を見ると、発生応力振幅Δは40MPaであり、支承金具を入れたことにより、デッキプレート2と断面逆T字状縦リブ5との溶接部での応力は劇的に低下していることが判る。
実施例の構造では、発生応力振幅Δが160MPaであっても、疲労き裂が発生していないことから、支承金具を入れた構造においては、疲労によるき裂発生は、更に生じにくくなるものと考えられる。
【0058】
以上より、従来技術においては、E等級程度であった鋼床版の被労強度が、本発明の耐疲労鋼床版とすることにより、少なくともD等級程度の疲労強度が得られることが判る。このように疲労寿命が格段に向上する耐疲労鋼床版となる。
【図面の簡単な説明】
【0059】
【図1】本発明の第1実施形態の耐疲労鋼床版を示す斜視図である。
【図2】図1の正面図である。
【図3】図1に示す耐疲労鋼床版におけるデッキプレートの一部を切り欠いて示す平面図である。
【図4】図1の一部を拡大して示す斜視図である。
【図5】図4の裏面側から見て一部を切り欠いて示す一部切り欠き斜視図である。
【図6】(a)は図3におけるデッキプレートの一部を切り欠いた部分を拡大して示す平面図、(b)は(a)の正面図である。
【図7】デッキプレートと断面逆T字状縦リブにおけるウェブとの溶接部の溶接ビードに超音波ピーニングを施す部分を示す側面図である。
【図8】超音波ピーニング装置を示す概略正面図である。
【図9】本発明の第2実施形態の耐疲労鋼床版を示す斜視図である。
【図10】図9の正面図である。
【図11】図9に示す耐疲労鋼床版におけるデッキプレートの一部を切り欠いて示す平面図である。
【図12】図9の一部を拡大して示す斜視図である。
【図13】図12の裏面側から見て一部を切り欠いて示す一部切り欠き斜視図である。
【図14】(a)は図11におけるデッキプレートの一部を切り欠いた部分を拡大して示す平面図、(b)は(a)の正面図である。
【図15】デッキプレートと断面逆T字状縦リブにおけるウェブとの溶接部の溶接ビードに超音波ピーニングを施す部分を示すものであって、(a)は正面図、(b)は側面図である。
【図16】支承金具の下側に楔を配置する形態を示すものであって、(a)は側面図、(b)は正面図である。
【図17】本発明の第3実施形態の耐疲労鋼床版を示す斜視図である。
【図18】図17の正面図である。
【図19】図17に示す耐疲労鋼床版におけるデッキプレートの一部を切り欠いて示す平面図である。
【図20】図17の一部を拡大して示す斜視図である。
【図21】図17の裏面側から見て一部を切り欠いて示す一部切り欠き斜視図である。
【図22】(a)は図19におけるデッキプレートの一部を切り欠いた部分を拡大して示す平面図、(b)は(a)の正面図である。
【図23】(a)は図22(a)のA−A線断面図、(b)はB−B線断面図である。
【図24】(a)は中間部にボルト挿通孔を有するスタッドの基端側溶接部を反転して示す斜視図、(b)は横桁上に連結鋼材を設置している状態を示す斜視図である。
【図25】本発明の第4実施形態の耐疲労鋼床版を説明するための説明図であって、(a)および(b)は、横方向に隣り合う断面逆T字状縦リブ間に短尺横リブを片側の断面逆T字状縦リブから張り出すように設けた形態を示す一部縦断正面図、(b)はその矢視断面図、(c)は横方向に隣り合う断面逆T字状縦リブに接続するように短尺横リブを設けた形態を示す一部縦断正面図、(d)は(c)の矢視断面図である。
【図26】損傷した鉄筋コンクリート床版を撤去している状態を示す斜視図である。
【図27】既設の主桁に渡って横桁を増設している状態を示す斜視図である。
【図28】本発明の耐疲労鋼床版を架け替え用に設置している状態を示す斜視図である。
【図29】増設された横桁上に調整プレートを介在させて、本発明の耐疲労鋼床版を設置した状態を示す正面図である。
【図30】デッキプレートを反転は位置した状態を示す概略斜視図である。
【図31】デッキプレートに断面逆T字状縦リブを設置した状態を示す概略斜視図である。
【図32】横方向に隣り合う断面逆T字状縦リブに短尺横リブを設置している状態を示す概略斜視図である。
【図33】箱桁本体を示す斜視図である。
【図34】耐疲労鋼床版に箱桁本体部を載置して一体化している状態を示す斜視図である。
【図35】耐疲労鋼床版と箱桁本体とを一体化するまでの工程説明図である。
【図36】載荷試験を説明するための説明図である。
【図37】(a)は鋼床版に載荷している状況を示す正面図、(b)は斜視図である。
【図38】比較例におけるデッキプレート部分の発生応力を示す図である。
【図39】実施例の耐疲労鋼床版の構造を示す説明図である。
【図40】実施例におけるデッキプレート部分の発生応力を示す図である。
【図41】従来技術の鋼床版を設置した箱桁を示す斜視図である。
【図42】(a)〜(c)は従来技術の断面U字状縦リブの溶接部の疲労き裂を説明するための説明図である。
【図43】従来の疲労き裂の対策を説明するための説明図である。
【図44】従来の疲労き裂の対策を説明するための説明図である。
【図45】(a)従来の鋼床版を設置した状態を示す正面図、(b)は(a)の一部を拡大して示す重症面図である。
【図46】従来の他の鋼床版を設置した状態を示す正面図である。
【図47】鉄筋コンクリート床版の損傷工程を説明するための説明図である。
【符号の説明】
【0060】
1 鋼床版箱桁
2 デッキプレート
3 耐疲労鋼床版
4 横桁
4a ウェブ
4b フランジ
5 断面逆T字状縦リブ
6 ウェブ
7 溶接ビード
8 フランジ
9 ボルト
10 フランジ
11 超音波ピーニング
12 ボルト挿通孔
13 支承金具
13a ウェブ
13b フランジ
14 スタッド
15 支持鋼材
16 短尺横リブ
16a ウェブ
16b フランジ
17 RC床版
18 主桁
19 底版
20 スペーサー
21 スタッド
22 一次覆工
23 2次覆工
29 超音波ピーニング装置
30 トランスデューサー
31 ウエーブガイド
33 ホルダー
34 自由振動体
35 支持体
36 ハンドル
37 ケース
38 電源
40 断面U字状縦リブ
41 横リブ
42 横桁
43 主桁
44 側板
45 溶接ビード
46 ルートき裂
47 U字状スリット部
48 止端き裂
49 鋼床版
50 グラインダー
51 回し溶接部
52 のど厚
53 断面I字状縦リブ
54 上フランジ
55 断面逆T字状縦リブ
56 スカーラップ
57 ウエブ

【特許請求の範囲】
【請求項1】
桁構造物に載置される鋼床版であって、
デッキプレートと、当該デッキプレートの下側に複数並べて配置されると共にウェブ及びフランジを有する断面逆T字状縦リブまたは断面L字状縦リブとを備え、
前記縦リブのウェブが溶接でデッキプレートの下面に固定されていると共に、前記縦リブのフランジには、前記桁構造物の桁にボルトで固定するためのボルト挿通孔を備えており、
前記溶接により形成されるウェブ長手方向の溶接ビードに対して、前記溶接部における断面逆T字状縦リブまたは断面L字状縦リブのウェブ平面中心軸線と横桁の平面中心軸線との交差部を中心とする範囲であって、少なくとも前記縦リブ高さ寸法の範囲に、超音波ピーニングを施していることを特徴とする耐疲労鋼床版。
【請求項2】
請求項1の耐疲労鋼床版において、断面逆T字状縦リブまたは断面L字状縦リブと桁構造物の桁との交差部において、デッキプレートと縦リブのフランジとの間に、デッキプレートからの鉛直方向の力を受ける、断面溝形または断面L形状の支承金具を、デッキプレートに当接または近接するように配置すると共に、前記支承金具をボルトで断面逆T字状縦リブまたは断面L字状縦リブのウエブ部に固定することを特徴とする耐疲労鋼床版。
【請求項3】
請求項1の耐疲労鋼床版において、間隔をおいて横方向に隣り合う断面逆T字状縦リブ間または断面L字状縦リブ間に、断面逆T字状縦リブまたは断面L字状縦リブの座屈耐荷力を向上させるために、横桁に支持鋼材を介してボルト接合が可能なスタッドをデッキプレートに設置したことを特徴とする耐疲労鋼床版。
【請求項4】
請求項1の耐疲労鋼床版において、一端側をデッキプレートに溶接により固定し、他端側を断面逆T字状縦リブまたは断面L字状縦リブにボルト接合とした短尺横リブを配置し、デッキプレートと短尺横リブとの溶接部を超音波ピーニングしたことを特徴とする耐疲労鋼床版。
【請求項5】
既設の鉄筋コンクリート床版を架け替える場合に設置される請求項1〜4のいずれかに記載の耐疲労鋼床版であって、断面逆T字状縦リブまたは断面L字状縦リブとデッキプレートの合計厚さ寸法が、既設の鉄筋コンクリート床版の厚さ寸法以下とされていることを特徴とする耐疲労鋼床版。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図44】
image rotate

【図45】
image rotate

【図46】
image rotate

【図47】
image rotate


【公開番号】特開2007−327256(P2007−327256A)
【公開日】平成19年12月20日(2007.12.20)
【国際特許分類】
【出願番号】特願2006−159515(P2006−159515)
【出願日】平成18年6月8日(2006.6.8)
【出願人】(000006655)新日本製鐵株式会社 (6,474)
【Fターム(参考)】