説明

複数の光源を用いたパイロメータの校正

【課題】温度プローブ(パイロメータ等)を校正するための校正機器を提供する。
【解決手段】校正機器は、安定な光源(発光ダイオード等)を2個備え、既知の温度において黒体に擬似するようになっている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱処理システムで用いられるパイロメータの校正に関する。
【背景技術】
【0002】
高速熱処理法(RTP:rapid thermal processing)においては、アニール、クリーニング、CVD、酸化や窒化のような処理ステップの実行のために、基板は高温(例えば1200℃)に高速で加熱される。特に、現在のデバイスにおけるサブミクロンサイズに対し、高い歩留まりと処理加工の信頼性を得るためには、これら熱処理ステップの間、基板の温度を精密に制御する必要がある。例えば、現在のデバイス構造において要求されるように、誘電体層60〜80オングストローム厚の誘電層を±2オングストロームの均一性で作製するためには、連続処理運転中の温度は、ターゲットとする温度から数℃を越えて変化してはならない。このようなレベルの温度制御を実現するためには、基板の温度をリアルタイム且つインシチュウに測定する。
【0003】
光パイロメトリーは、RPTシステムにおいて基板温度の測定のために用いられる技術である。光プローブを用いる光パイロメータにより、基板から発せられた放射光の強度をサンプリングし、基板のスペクトル放射率及び理想黒体放射と温度の関係に基いて、基板の温度を算出する。
【0004】
このようなシステムの初期設定を行う際は、被加熱基板からの放射に対して適正な温度の読み出しを与えるように、光プローブの調整を行う必要がある。加えて、反復使用中に、プローブによって感知された温度は経時的に変化することがあり、そのため、プローブの再校正をする必要が生じることがあり、あるいは少なくとも修正動作がとれるよう、生じた変化を検出する必要が生じる。例えば、加熱されるべき基板から発せられる放射光のサンプリングに用いられる光パイプは汚染や汚損されることがあり、また、このサンプリング光をパイロメータに伝送する光カラムの接続部が緩くなることがあり、あるいは、パイロメータの電子部品が「ドリフト」することもある。
【0005】
パイロメータの校正に一般に用いられる方法は、チャンバ内で特殊な基板ないしウエハを用いることである。市販品で購入可能なこの特殊な基板は、その放射率が測定済みで既知となっており、また、基板にセラミック材料で取り付けられた「埋め込み」熱電対を有している。基板の加熱の際、実際の温度が熱電対によって示される。基板の放射率がわかっているため、基板により実際に発される放射は、所定の温度で理想黒体に対して予想される放射の強度に基板の放射率を乗ずることによって容易に計算することができる。これは、パイロメータの光プローブによってサンプリングされる放射のレベルである。実際の温度に対応する温度読み取りを与えるように、パイロメータは調節される。
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、この方法は、欠点を有している。基板の実際の温度が熱電対で測定された温度とは異なる場合が実際に生じている。第1に、埋め込み電極及びセラミック材料により、熱電対を有する領域がウエハ以外の部分とは異なる温度となる場合があり、これが基板温度プロファイルを妨害する。第2に、高温(例えば、RTPプロセスで一般的に用いられる1000℃)では、ウエハと熱電対の間のジョイントは劣化し易く、そのため、熱電対を4〜5回用いた後には、読み取りの信頼性がなくなってしまう。これらの短所のため、この校正の技術では、パイロメータの精度を10〜15℃よりも優秀となるよう実際保証することはできない。
【0007】
更に、チャンバ内に熱電対を有する基板を配置することと、熱電対に電気的接続を与えることについて、困難性がある。このため、熱電対付きのウエハを用いずに光プローブを正確に校正することができれば有用であろう。
【課題を解決するための手段】
【0008】
本発明は、一側面としては、温度プローブを校正するための装置に関する。この装置は、第1のバンド幅の光を発する第1の光源と、第2のバンド幅の光を発する第2の光源とを有する。第2のバンド幅は第1のバンド幅とは異なっている。この第1の光源と第2の光源には発光領域が光学的に接続され、この発光領域から発せられる全放射光をもって所定の波長範囲に対し所定の温度における黒体とほぼ疑似できるよう、第1の光源と第2の光源の相対的な光強度が選択される。
【0009】
本発明の実施態様には、以下を含んでもよい。すなわち、この装置はアラインメント機構を有していてもよく、例えば、熱処置チャンバの対応するアラインメント部に係合したり温度プローブの入力端に係合することで、発光領域を温度プローブの入力端にアラインメントするようなアラインメント機構であってもよい。第1の光源からの光と第2の光源からの光を受容しその合成光を発光領域へと指向させる光合成器を有していてもよい。第1の光源と第2の光源はそれぞれ、強度がおよそガウス分布となる光を発してもよく、その強度ピークが別々の波長にあってもよい。第1の光源と第2の光源は、LEDであってもよく、上記の所定の波長範囲は赤外域にあってもよい。発光領域は、光ファイバの表面であってもよく、あるいは、第1の光源と第2の光源を取り囲む構造の中のアパーチャであってもよい。
【0010】
本発明は、別の側面としては、温度プローブを校正する方法に関する。第1の光源が、第1のバンド幅の光を発し、第2の光源が、第2のバンド幅の光を発する。第2のバンド幅は第1のバンド幅とは異なっている。第1の光源からの光と第2の光源からの光は合成され、これは発光領域へと指向される。第1の光源と第2の光源の相対的な光強度を選択して、発光領域から発せられる放射光のスペクトルが、所定の波長範囲に対し所定の温度における黒体の放射光のスペクトルにほぼ疑似する。
【0011】
本発明は、一側面としては、校正機器を校正するための方法に関する。校正機器の第1の光源が、第1のバンド幅の光を発し、校正機器の第2の光源が、第2のバンド幅の光を発する。第2のバンド幅は第1のバンド幅とは異なっている。第1の光源からの光と第2の光源からの光は合成され、この合成光の強度の測定が、第1の波長及び第2の波長で行われる。第1の光源と第2の光源の相対的な強度を調節することにより、第1の波長における強度と第2の波長における強度との比を、所定の温度で黒体について予想される強度比にほぼ等しくする。
【0012】
本発明の実施形態は、以下を含んでいてもよい。すなわち、第1のバンド幅が第2のバンド幅の一部とオーバーラップしている場合は、第1のバンド幅をこのオーバーラップしている部分の範囲内とし、第2のバンド幅を第1のバンド幅の外側とすることもできる。第1のバンド幅が第2のバンド幅とオーバーラップしていない場合は、第1の光源と第2の光源とで、第1の波長における規格化光強度がほぼ等しくなるように、第1の波長を選択してもよい。
【発明の効果】
【0013】
本発明の利点の中でも、とりわけ以下の利点が挙げられる。すなわち、校正機器の出力スペクトルが特定の温度において黒体に非常に疑似する。校正フィルタを用いずに、黒体放射を疑似することができる。埋め込み熱電対を有するウエハを用いずとも、パイロメータを正確に(例えば誤差1℃未満で)校正することができる。校正の操作を更に容易に且つエネルギー消費が少なく行うことができる。校正は、絶対的な規格にトレースできる。パイロメータの校正が、チャンバから光パイプを取り出さずにできる。校正機器をポータブルとすることができ、また、丈夫な装置とすることができる。
【発明を実施するための最良の形態】
【0014】
以下の本発明の説明では、異なる図面間で同じ構成部には同じ符号を付した。RTPシステム内のパイロメータを校正するために用いられるパイロメータ校正ツールの詳細を説明する前に、校正されるべきパイロメータを有するRTPシステムについて説明する。図1及び2に示されるように、RTPシステムは、ディスク形状の直径8インチ(200mm)シリコン基板10の処理のための処理チャンバ60を有している。基板10は、基板支持構造体62によりチャンバ60の内部に保持され、基板の真上に配置される加熱要素70(例えばタングステンハロゲンランプアレイ)により加熱される。加熱要素70により放射光が生じ、これが基板10の上約10インチに配置されるクオーツウインドウ72を介してチャンバ60の中に進入する。基板10の下には、ステンレスのベース65の上に設置されている反射板20がある。反射板20はアルミニウム製であり、反射性の高い表面コーティング24(例えば金合金)を有している。基板10の下側と反射板20の頂部とが、反射キャビティ30を形成し、これにより基板がより理想黒体に近づくようになり、すなわち基板に対する有効放射率を増加させる。
【0015】
ベース65の後方から反射板20の頂部まで延びている導管35は、パイロメータ50を有する温度プローブ15の入力プローブとして機能するサファイヤ光パイプ40を保持している。光パイプ40の入力端22が、反射板20の上面の近くに(例えば同じ高さで)配置され、反射キャビティ30からの放射を収集する。サンプリングされた放射光は、光パイプ40を通過し、フレキシブルなオプティカルファイバを介してパイロメータ50へと到達する。オプティカルファイバ45の端部とサファイヤ光パイプ40の端部は結合して緊密な光学的な接触状態を維持しつつ、ねじコネクタ42によって相互に保持される。複数の温度プローブ15(例えば8本)が、基板の異なる半径で放射をサンプリングするために反射板20に配置される。
【0016】
ここに記載された具体例では、サファイヤ光パイプ40は直径0.05〜0.125インチ(例えば0.080インチ)であってもよく、パイロメータ50は、米国カリフォルニア州サンタクララのLuxtron Corporationから入手可能なLuxtron Accufiber Model 100であってもよい。反射キャビティが仮想的な黒体を生み出す仕組みの説明と共にRTPシステムの詳しい説明が、1994年12月19日提出の米国特許出願No.08/359302に記載されている。
【0017】
パイロメータ50の内側では、図3に示されるように、光ファイバー45からの放射光はシリコン検波器54(例えばフォトダイオード)に至る前にまず、光パイロメータフィルタ52を通過する。検出器54からの信号は制御電子回路56へ入力され、そこで、ランプのための電源制御装置回路(示されない)に用いられる温度読み出しToutに変換される。制御電子回路56は、測定電力を出力温度読み出し信号Toutに変換するために用いられるルックアップテーブル(図示せず)を有している。ルックアップテーブルは、測定出力信号を対応する黒体温度マッピングするものであり、当業者によく知られる方法でプランクの法則から用意に導き出すことができる。また、制御電子回路56はゲイン制御端子を有し、これによって校正中に、制御電子回路のゲインを調節し、パイロメータが正確な温度読み取りを出力するようにできる。
【0018】
図3に示されるように、通常操作においては、ランプアレイ等の加熱要素70は放射を基板10に向ける。放射の一部(例えば放射74)が基板に吸収され、またその一部(例えば放射75)が基板を介してキャビティ30へと伝達される。また、基板も放射76を発し、その強度は基板の温度の関数である。典型的には、シリコンウエハはおよそ1.0ミクロンより長い波長の放射を伝達し、シリコン検波器54は、最高1.5ミクロンまでの波長の放射に応答する。この伝達された放射がシリコン検波器54に届く場合は、誤っている温度読み取りを生じさせる。したがって、この伝達放射が検出器54に到達して温度測定を妨げることを防止するためには、パイロメータフィルタ52のバンドパス特性は、ランプからの放射の透過が検出器に到達しないように選ばれる。ここに記載される具体例では、パイロメータフィルタ52は、光スタック、例えばクオータウエーブスタックでコーティングされたガラスであり、これは狭い範囲の波長(例えば0.89〜0.93ミクロン)の光しか通さず、また、1.0ミクロン以上の非常に高い阻止帯域を有している。波長の関数としてのパイロメータフィルタ52の透過は、一点鎖線52aによって図4の中で示される。
【0019】
パイロメータを校正するために、特殊な校正機器が用いられる(図9A〜C、11及び12参照)。この校正機器は、パイロメータフィルタ52によって与えられた狭いスペクトルで放射を発する、発光ダイオード(LED)等の安定な光源を有している。この安定な光源は、所定の温度で完全黒体に疑似する。すなわち、所定の波長範囲に対し、着目するスペクトル全体の放射量について、所定の温度に加熱された黒体からの量と同じ量を発する。この所定の波長範囲は、赤外域であってもよい。この校正機器についての具体例をいくつか以下に記載するが、この装置は、校正中に既知且つ反復的な量の放射がサファイア光パイプに入るように、光源をサファイア光パイプの入力端部にアラインメントする。
【0020】
この光源は、パイロメータフィルタ52に適合するように構成され且つ/あるいは選択される。すなわち、その最大出力及びスペクトル範囲は、パイロメータフィルタ52のバンドパス領域と一致する。図4に示されるように、前述のパイロメータフィルタ52と共に用いられるLEDの特性は、実線115aによって示される。このLEDは、幅約0.2ミクロンで最大強度を0.88〜0.90ミクロンに有するガウス分光分布を有している。
【0021】
図14に示されるように、校正機器100が黒体に疑似するよう、校正フィルタ220をLED115とアパーチャー110の間に配置してもよい。すなわち、この校正フィルタ220によって、校正機器から発された光が波長の関数として、所定の温度の黒体と同じ相対強度を有するようになる。校正フィルタは、LEDのシェル222の内側に、例えばレンズ224とダイオード要素115の間に配置されてもよい。あるいは、校正フィルタ220は、校正機器100の中のキャビティー104の中でレンズ224とアパーチャー110の間に配置してもよい。
【0022】
校正フィルタ220の透過特性は、以下に記載される如く、LED115と理想黒体の間の差を補償するように選択される。図15に示されるように、校正フィルタ220の透過曲線、すなわち波長の関数としての透過が、実線230によって示される。校正フィルタ220のうちの伝送曲線230はほぼ放物線であり、約0.87ミクロンの波長での最小の透過率(例えば、約0.15)を有している。特定の伝達曲線を有する校正フィルタをフィルタ製造者に注文してもよい。LED115からの光が校正フィルタ220を通過する場は、通過後の光強度は、LEDのスペクトル発光範囲の大部分、例えば0.80〜0.94ミクロンの範囲で、所定の温度、例えば950℃における黒体に疑似する。
【0023】
校正フィルタ220の透過曲線は、黒体とLEDの発光曲線、すなわち波長の関数としての光の強度に由来する。特に、校正フィルタ220の透過曲線は、LED115の放射カーブで黒体の放射カーブを除することによって計算される。所定の温度での黒体の放射カーブは、プランクの法則に由来してもよい。図16では、950℃の温度での黒体の放射曲線は実線232によって示され、1050℃の温度での黒体の放射曲線は実線234によって示される。発光曲線232と234は、約0.94ミクロンで規格化された。すなわち、0.94ミクロンより小さい波長での光の強度は、0.94ミクロンでの光の強度の百分率として示される。LED115の発光曲線は、分光器によって測定されてもよい。図17に示されるように、一つのLED、具体的には30ワットで駆動するOD88FHTの発光曲線が、実線236によって示される。校正機器100内の校正フィルタ220の透過曲線230を所定の温度950℃に疑似させるため、黒体発光曲線232をLED発光曲線236で除す。
【0024】
この校正フィルタ220により、異なるパイロメータ、特に、異なるパイロメータフィルタ52を有するパイロメータを同じ校正機器で正確に校正することが可能になる。パイロメータフィルタ52の透過曲線は、パイロメータ間で異なる。例えば、一つのパイロメータフィルタが0.92〜0.93ミクロンの波長を有する光を透過してもよく、他方のパイロメータフィルタが0.87〜0.88ミクロンの波長を有する光を透過してもよい。校正フィルタ220によって、着目する波長すべてにわたり、すなわちLEDの発光範囲の大部分にわたって同じ温度を疑似できるようになる。
【0025】
校正フィルタ220を有しない校正機器では、光の全ての波長において一つの温度を疑似することができない。図17によって示されるように、光源115の発光曲線は黒体曲線に適合しない。具体的には、2つの異なる波長範囲での光源115の相対的な強度は、黒体の相対的な強度に適合しない。例えば、図16の中で示されるように、黒体は、0.925ミクロンの波長では0.875ミクロンの波長でよりも高い強度を有し、他方、図17に示されるように、光源115は、0.925ミクロンの波長では0.875ミクロンの波長でよりも低い強度を有する。したがって、ある波長範囲(例えば0.87〜0.88ミクロン)で所定の温度(例えば950℃)で黒体を疑似するための適正な量ないし放射量を光源115が発する場合は、光源は、これとは異なる波長範囲(例えば0.92〜0.93ミクロン)では、同じ温度で黒体の疑似をすることができない。
【0026】
パイロメータフィルタ52が異なる透過範囲を有するので、一方のパイロメータのために所定の温度で黒体を疑似する光源は、パイロメータフィルタを有するパイロメータに対して同じ温度を疑似しない。しかし、校正フィルタ220を加えることによって、着目するすべての波長で単一の温度の黒体を疑似するための適正な相対的な強度の光を校正機器100が生じることが可能になり、そのため、疑似温度がパイロメータフィルタ52の透過範囲から独立するようになる。これによって、別々のパイロメータフィルタを用いるパイロメータに対して同じ校正機器を用いて適正に校正できるようになる。
【0027】
図5A〜5Bに示されるように、黒体を既知の温度で疑似する校正機器100は内部キャビティー10を有する略円筒状の本体102を有する。光がキャビティー104から通過することができるアパーチャーを画成している小さいみぞ110を除いて、円筒状の本体102の一つの端部は閉じている。キャビティー104の中に配置した発光ダイオード(LED)115は光を発し、この光はチャンネル110を通過して外へと出ていく。
【0028】
ここに記載された具体例では、本体102は、直径0.3745インチ、長さ2.0インチの機械加工されたアルミニウムの円筒状の管である。本体102の表面130とキャビティー104の間に延びているチャンネル110は、長さ約0.02インチで直径が約0.02インチであり、円筒本体102の軸上で中心合わせがされる。本体102のチャンネル110が配置する方の端部には、直径約0.30インチ、長さ約0.10インチの更に狭い円筒状の領域が存在する。円筒本体102の円形外側エッジ134は、リセスのついた環状リム136を取り囲む。この外側エッジ134は45°の角で斜角がつけられているため、校正機器をアラインメントツールに容易に挿入できるようになる。
【0029】
LED115の光出力が温度の関数として変化するので、LEDの温度を安定させるための手段も提供される。特に、校正機器100も、50Ω抵抗器等の小型の加熱抵抗器122と、LED115に近接して配置されるK−タイプ熱電対等の熱電対124とを有している。すなわち、抵抗器122は、LEDを約80°Fに、すなわち予想される雰囲気温度に加熱するために用いられる。あるいは、LEDは雰囲気温度よりも低くなるように冷却されてもよい。しかし、冷却はより困難で且つ高価な選択肢である。
【0030】
3つの構成要素(すなわちLED115、熱電対124、抵抗器122)の全てが、「Azemco ceramiccast 583」などの熱伝導性を有するセラミック117で適所に固定されている。このセラミック117は、加熱器122からの熱が能率的にLED115と熱電対124に送られることを確保する。セラミック117はまた、キャビティー104の内側でLED115がシフトまたは回転することによるLED115の光強度の変化が生じないよう、チャンネル110に対して一定の位置を保持する。
【0031】
図6に示されるように、電源装置120はLED115に一定の電流を供給する。ここに記載された具体例においては、電源装置120は、当業者に周知のレーザーダイオード(図示せず)を用いて、LED115を安定させて、それによって光出力を安定させる。あるいは、LED115の出力パワーは、LED115の光出力をサンプリングするように配置されたフォトダイオード(図示せず)を用いることによって安定化させることができる。その場合、LED115から一定の光出力を生じさせるために、フォトダイオードが帰還回路を介して電流源120に接続される。
【0032】
熱電対124とヒーター122は比例積分デバイス(PID)制御装置126に接続され、帰還回路を形成し、LED115の温度を安定させる。LED115の温度とLED115を通る電流を一定に保持することによって、LED115は非常に安定な強度で放射を生じる。
【0033】
あるいは、図14に示されるように、LED115の光出力は、フォトダイオード242と熱電対244と共にレーザドライバー240を用いることによって安定させることができる。レーザドライバー240の駆動電力出力は、LED115の電力入力に接続される。フォトダイオード242はLEDのケーシングの内側に配置され、その光の強さをサンプリングして、強度信号を発生する。校正機器100の光出力が非常に安定するように、フォトダイオードからの強度信号はレーザドライバー240に帰還され、フィードバックループを形成する。
【0034】
上記に指摘の如く、LEDの光出力は温度の関数として変化する。特に、LED115の温度が増加すれば、その光出力は降下する。熱電対244からの出力信号は、カップラー246を介してレーザドライバー240の変調入力に接続されてもよい。カップラー246は強度yの信号に対し方程式y=a−bxの式に従って、強度xの信号を変化させる。LED温度か低下しレーザードライバー240の出力電力が上昇しLEDの光出力が一定に維持されるように、カップラー246の勾配bと切片aを、当業者に既知の方法により設定する。
【0035】
別の具体例では、校正機器は2つ以上の光源を備えている。これら光源からの光は合成され、所定の波長範囲に対し所定の温度において黒体に疑似する。所定の波長範囲は、赤外にあってもよい。双方の光源は、およそガウス分布のスペクトルを有する放射光を発する。しかし、これら光源のバンド幅は同じでなく、また、強度のピークも別々の周波数にある。これら2つの光源の全スペクトル出力R(τ)は、次の関数で定義でき、
R(τ)=R1(τ)+K*R2(τ)
ここでR1(τ)及びR2(τ)はそれぞれ、2つの光源の一方のスペクトル応答であり、τは波長であり、Kは強度係数である。Kの値を適切に選ぶことにより、校正機器のスペクトル出力を所定の温度で黒体に疑似させることができる。
【0036】
図19に示されるように、光源を2個用いる校正機器300は、図5A〜5Bや図14に例示した校正機器と同様の手法で構成される。校正機器300は、内側キャビティを有する略円筒状の本体302を有している。円筒本体の一端には、光を通過させることができるアパーチャ306がある。
【0037】
2つのダイ312a及び312bを自身に有するチップ310が、内側キャビティ304内に懸架している。ダイ312aはLED315a及びフォトダイオード318aを、ダイ312bはLED315b及びフォトダイオード318bを、それぞれ有している。温度センサ320(米国カリフォルニア州サンタクララのNational Semiconductor Corporationから入手可能な「LM-34」センサ等)がチップ310に埋め込まれている。LED315a、315bとフォトダイオード318a、318bを有するチップ310はおよそ、米国特許第5,525,539号及び第5,448,082号に記載されるように構成されてもよい。このようなチップは、米国カリフォルニア州ニューベリーパークのOpto Diode Corporationに注文して入手することもできる。チップ310及び温度センサ312は、止めねじ(図示せず)によりキャビティ304内の適所に保持されてもよい。
【0038】
LED315a及び315bは光を発し、その光は合成器322及び拡散器(ディフューザ)324を通って、アパーチャ306から出る。合成器322は、LEDから発せられた光を合成し、その光をアパーチャへと指向させる。合成器322は、アパーチャを通る光の波長分布が空間的に均一となるようLED315a及び315bからの光をミックスするミキサーであってもよい。このミキサーは、クォーツオプティカルファイバのツイストバンドル(ねじられた束)であってもよい。また、この合成器は部分鏡、レンズ、あるいはビームスプリッタであってもよい。ディフューザ324は合成器322からの光を、透過性をもって散乱させる。ディフューザ324は、デュフューズドグラスフィルタであってもよい。
【0039】
図20には、LED315aの模式的且つ理想的な発光カーブが実線330で、LED315bのそれは実線332で、それぞれ示される。発光カーブ330及び332は規格化されたものであり、すなわち、波長の関数としての光強度が、ピーク強度のパーセンテージとして示されている。LED315aは、スムーズで標準的なガウススペクトル分布を有する光を発し、その最大強度は880ナノメートルに現れ、バンド幅(本ケースでは規格化強度が0.5を越える波長の幅)は約80ナノメートルでありこれは約840〜920ナノメートルにわたっている。また、LED315bもスムーズで標準的なガウススペクトル分布を有する光を発しているが、その最大強度は930ナノメートルに現れ、バンド幅は約50ナノメートルでありこれは約905〜955ナノメートルにわたっている。
【0040】
図21には、温度1000℃における波長範囲約0.870〜0.930ミクロンの黒体の放射光のカーブが実線334に示されている。LED315aの発光カーブが実線330で、LED315bのそれは実線332で、それぞれ示される。校正機器の発光カーブが、LED315a及び315bの出力の合成光として、実線336に示される。図示の如く、発光カーブ336は、図示の波長範囲において黒体の放射光カーブ334にほぼ疑似している。
【0041】
図19に戻り、LED315a及びフォトダイオード318aが、レーザーダイオードドライバ340aに接続される。同様に、LED315b及びフォトダイオード318bが、レーザーダイオードドライバ340bに接続される。それぞれのフォトダイオードはフィードバックループを形成し、関係するLEDの光出力を安定させている。また、温度センサ320がカプラ342により、レーザードライバ340a及び340bのモジュレーション入力部に接続されてもよい。
【0042】
レーザーダイオードドライバ340a及び340bを用いて、これらLEDに流れる電流を調節することにより、これら2つのLEDの相対強度(すなわち、強度係数K)を制御してもよい。Kを適切な値に選択することにより、黒体のカーブ334にほぼ疑似する発光カーブ336をつくることができる。
【0043】
Kの適切な値を選択するために、校正機器をスペクトロメータに接続し、2つの光源からの合成光の相対強度を、異なる2つの波長において測定する。この波長の一方は、LEDの一方のバンド幅のほぼ外にあるように選択されるべきである。バンド幅同士がオーバーラップしている場合は、これらLEDのバンド幅のオーバーラップ領域内になるよう別の波長を選択すべきである。バンド幅同士がオーバーラップしていない場合は、2つのLEDの規格化強度がほぼ等しくなるような別の波長を選択すべきである。例えば、一方の波長が870nm、他方が910nmの如きである。レーザーダイオードドライバのゲインを調節して、2つの波長でそれぞれ測定した強度の比が、所定の温度で黒体に予想される比と等しくなるようにする。その後に強度係数Kを設定する。そのようにして得られたスペクトル分布は、黒体からの放射に疑似する。
【0044】
光源を2個用いる利点は、校正フィルタを用いずに黒体を疑似することができる点にある。校正フィルタはそれぞれが僅かに異なった透過カーブを有しており、LEDの発光カーブとは必ずしも正確にマッチしない。対称的に、光源の強度係数Kは校正機器の構築の間に選択することができるので、黒体の疑似を確実にすることができる。
【0045】
校正の間、アラインメント装置を用いて、校正機器100又は300を、校正しようとする温度プローブの光パイプにアラインメントする。このアラインメント装置のために2つのタイプのデザインの例を与える。デザインタイプの一方は、インシチュウで用いるものである。すなわち、システムから光パイプ40を取り除く必要なく、校正機器100を光パイプ40にアラインメントする。他方のデザインタイプは、遠隔的に校正を行なうために用いるものである。すなわち、光パイプ40はRTPチャンバから取り出され、アラインメント装置に挿入される。図7、8A、8B、9A〜9Cに示されるように、インシチュウ校正のために用いられる具体例に従ったアラインメントツール149は、RTPチャンバ内で反射板の上方にフィットすることに適している。RTPチャンバに挿入された場合は、アラインメントツール149は光パイプと相対的な固定位置で校正プローブを保持する。より具体的には、アラインメントツール149は、ホール(穴)154の配列を有する円形ディスク150であり、これらホールに個々の校正機器100が挿入される。ホール154の数は、反射板にある熱プローブの数と一致する。これらホール154は、円板150の中心からのそれぞれ異なる半径の場所に配置され、アラインメントツール149がチャンバ内部に適所に挿入されているときに、これらが一致して反射板20の導管35にアラインメントされるような位置が与えられる。図8D及び9Cに更に明確に示されるように、それぞれの小さいホール154の底部には小さい直径のホール155を自身に有する環状リップ158が存在している。ホール155は、校正機器100の底の円筒状の領域132の直径よりわずかに大きい直径を有しており、リップ158は、ある厚さをよりせまいものの長さに校正機器100の上の円筒状の領域132の長さに等しい厚さを有している。このように、校正機器100は、ホール154に挿入される際、リップ158に対して載置され、その底表面130がディスク150の底面と同高(すなわち、校正中にRTPチャンバの内部に設置された際に反射板に近接する円板150の表面に同高である)になる。
【0046】
ここに記載した具体例では、アラインメントツール149は、プラスチックまたはナイロン(例えばDelrine)製であってもよい。それは、厚さ約1.0インチ、直径8.9インチであってもよい。ホール154の各々は、約0.375インチの校正プローブ100をホールに容易に挿入できるよう、内径約0.375インチ、すなわち、円筒状の本体102の外径よりわずかに大きい内径を有する。環状のリップ158は厚さ約0.11インチであってもよく、中へ0.047インチだけ突出してもよく、環状のリップ158によって画成される小さいホールの内径は約0.328インチであってもよい。
【0047】
図8A〜8Dに戻り、3つの突起156はディスク150の下側に配置される。これらの突起156は、互いに間隔をおいて、ディスク150の中心と一致する中心を有する円の周囲を互いから等距離の間隔で配置され、アラインメントツール149がRTPチャンバに挿入されるときは、それらは、RTPチャンバ内の反射板内に配置されるリフトピンホールにアラインメントするように配置される。リフトピン(図示せず)がリフトピンホールの中を通行するように操作され、支持構造体62上に基板を昇降させてもよい。
【0048】
図8Cに示されるように、それぞれの突起156は、第1の直径を有する円筒下側の部分161と、底面163とを有している。また、各突起部156は、大きな第2の直径を有する円筒上側部分165を有しているため、下側部分161から上側部分165へ移行する地点で環状のステップが形成される。この第1の直径は、反射板の対応するリフトピンホールの直径よりもわずかに小さく、第2の直径はリフトピンホールの直径よりも大きい。この環状のステップは、ディスク150の底面から約0.01〜0.04インチ(例えば0.03インチ)離れていてもよい。このように、アラインメントツール149がRTPチャンバに挿入されるとき、下側の部分161は反射板の対応するリフトピンホール内にスライドし、環状のステップ162は反射板の表面の上方約0.03インチの距離に、ディスク150の底面を保持する。
【0049】
図8Aに示されるように、ディスク150はまた、3つのより大きなホール152を有しており、これらのそれぞれは、対応する1つの突起156から放射方向内向きに短い距離をもって配置される。これらのホール152は直径約0.75インチであってもよく、アラインメント装置がRTPチャンバに挿入されている際に、反射板の中でのリフトピンホールの配置をユーザーが見ることができるようになる。ディスク150の上側では、ディスクがRTPチャンバに挿入中に技術者がディスクを上昇及び操作することができるハンドル160が、RTPチャンバに与えられている。
【0050】
図9A〜9Cに示されるように、校正機器100は小型のホール154に挿入される。アラインメント装置がRTPチャンバに完全に組上がったとき、内包される小型のホール154のそれぞれと校正機器100は、サファイヤ光パイプ40の対応するものにアラインメントされる。8つのホール154の各々に、校正機器100を挿入することによって、8つのパイロメータ50を同時に校正してもよい。あるいは、校正機器100を1つだけ用いて、これを、ホールからホールへとそれぞれ校正するように移動させてもよい。
【0051】
校正機器100がアラインメント装置によって光プローブの上方に配置される場合は、校正機器100の底部130と光パイプ40の頂部の間に、典型に約0.03のインチのクリアランスが存在する。光パイプ40は、図10の中で2つのポジションで示される。一方のポジション(破線で示す)は、校正機器100に近接してその頂部表面41を有し、そして、他方のポジションは、校正機器100からより離れてその頂部表面41を有する。光は、約90°の展開角αで、ビーム140としてチャンネル110から発せられる。無論、正確な角αは、チャンネル又はアパーチャ110の長さと直径並びにキャビティー104の内側のLED115の位置に依存する。光パイプ40に到達する時点までに光パイプの頂部表面より大きい区域にビーム140のカバーする範囲が広がらないように、校正機器100の底部130が表面位置41'に十分近接することが望ましい。換言すれば、光パイプ40が校正機器100からの光の実質的に全てを捕捉するためには、校正機器100が光パイプ40に十分近接すべきである。その状態が満たされるならば、温度プローブは校正機器100のチャンネルと光パイプ40の間の距離やアラインメントの小さな変化に対してに比較的敏感ではなくなる。これとは対称的に、表面40によって示されるように、校正機器100が光パイプ40から非常に遠すぎる(例えばここに記載の具体例では約0.1インチ以上)場合は、ビーム140のカバーする範囲は光パイプ40の直径より大きくなり、従って、ビーム140の一部しか捕捉しないだろう。捕捉される部分は、校正機器100と反射板の間の距離とアラインメントに非常に敏感である。
【0052】
パイロメータ50を校正するために、突起156がリフトピンホール67にフィットするように、ディスク150はハンドル160で上昇し、チャンバ60に置かれる。校正機器100は小型のホール154にフィットし、LED115にはエネルギーが与えられ、そして、パイロメータ50でサンプリングされた温度が記録される。校正を行わない測定を行い、機器100が疑似することがわかっている黒体温度と比較する。
【0053】
また、インシチュウ校正のために用いられるアラインメント装置のまた別の具体例が、図11に示される。アラインメント装置200が、校正機器180で部分的に一体になっておりされ、これは前述の校正機器とはわずかに異なるデザインである。この場合、校正機器180は、どこでも直径が均一である円筒状の管である(すなわち、図5の中で示された狭い円筒状の領域132を有していない)。2つのアラインメントピン185は、校正機器の表面183から離れるように突き出している。ピン185は、光パイプ40の両面の上で反射板20の表面に位置する対応するホール187にスライドする。ピン185がマッチングホール187に挿入されるとき、チャンネル110は光パイプ40にアラインメントされる。この具体例では、例えば、校正機器180は長さ約1.5インチで直径は0.5インチであり、ピン185はそれぞれ、長さ0.30で直径0.024インチである。
【0054】
RTPシステムから取りはずされた温度プローブを校正するために用いられる具体例が、図12の中で示される。この具体例の中では、校正機器は、LED115が載置されるキャビティー191を有する器具190と交換される。装置190はまた、キャビティー191の軸に沿ってアラインメントして、校正のために光パイプ40を受容する導管192を有している。狭いアパーチャー197を有する壁195は、キャビティー191を導管192から分離させる。アパーチャー197は、前述の具体例におけるチャンネル110の如く、校正されている光パイプが位置するところを通過するLED115からの光が、校正される光パイプが内部に配置される導管192の中を通過できるようにする。電子回路及び温度安定化回路を含めた校正機器のその他の事項は、前述の通りである。
【0055】
校正機器のまた別の具体例が、図18に示される。この具体例の中で、校正機器250は、光装置252と、アラインメント装置254及び光装置をアラインメント装置に接続する光ファイバーガイド256とを有している。光装置252は、内部キャビティ262を有する略円筒状の本体260である。ケーシング222内のLED115等の光源が、キャビティ262の中に配置される。入力面266がLEDから光を受けるように配置されるよう、光ファイバーガイド256の入力端部は円筒本体の開口264に挿入される。光ファイバーガイド256は、止めねじ267または何らかの機械的コネクタや粘着コネクタにより、キャビティに取り付けられる。その他の光学部品、例えば校正フィルタ220やレンズ224を、LEDと光ファイバーガイドの間に配置してもよい。それに加えて、光を透過的に散乱させるディフューズドグラスフィルタ269を、LED115と面266の間に挿入してもよい。LED115の電子制御は、図14について前述した如きである。
【0056】
LED115によって放射された光は入力面266を通して光ファイバガイド256に進入し、光ファイバガイドを通して出力面268へと移動する。光ファイバガイド256は、クォーツオプティカルファイバのツイストバンドル(ねじられた束)である。このツイストバンドルは全体として、直径約3〜4ミリメートルであってよく、また、個々のクォーツオプティカルファイバは直径約50ミクロンであってもよい。ファイバのツイストバンドルにおいては、個々のクォーツファイバはもつれ合っており、そのため、入力面266でのファイバの相対位置が出力面268で同じクォーツファイバの相対的な位置に適合する必要はない。このように、出力面268では、入力面266を介してバンドルに進入した光はランダム化され、すなわち再分散する。従って、LED115から非均一に分配された光が光ファイバガイド256を通過した後、出力面268全体の光の強度は均一に分配される。
【0057】
光ファイバガイド256の出力端部は、アラインメント器具254に止めねじ270によって固定されてもよいが、他の機械的または粘着的な接続手段を用いてもよい。アラインメント器具254は、長さ約2インチ、直径1/3インチの機械加工されたアルミニウム円筒管255であってもよい。円筒管255の両方の端部は開いており、また、出力面268がディスク150の底面と同高となるように、光ファイバガイド256は管の中を伸びる。その他の点では、アラインメント器具の外側の物理的な構成は、図5A〜5Bについて説明した校正機器と同様である。具体例には、アラインメント器具254の外側面の下側端部は、せまい円筒状領域272と環状のステップ274としている。
【0058】
環状のアラインメント器具のステップ274がアラインメント装置のリップ158に対して載置され且つ光ファイバガイドの出力面268が実質的にディスク150の底部と同高となるように、アラインメント器具254はアラインメントツール149の小さなホール154に挿入される。この構成では、光ファイバガイドの出口面は、サファイヤ光パイプ40の上に配置されこれにアラインメントされる。LED115からの光は、光ファイバガイドを通過し、光パイプ40によってサンプリングされる。
【0059】
光ファイバガイド256の出力面268は、光パイプの前に配置される黒体基板を疑似する。黒体基板は、光パイプ40のサンプリング領域と比較して大きい表面積を有し、また、この基板の表面は全ての方向に光を放射する。同じように、光ファイバーガイド256の出力面268は、光パイプのサンプリング領域と比べて比較的広い領域にわたって放射を発し、また、出力面268から放出される放射は広角の拡がりを有する。更に、校正機器250が所定の温度に加熱された黒体が放射すると同じ量の放射を発するように、LED115の強度を設定する。したがって、この校正機器250は、黒体基板を所定の温度で疑似する。
【0060】
上記の具体例を用いているパイロメータ50を校正するための方法が、図13に示される。第一に、参照パイロメータが、黒体温度を読みとるために正しく校正される(ステップ200)。これは、例えば所定の温度に対して正確にわかっている黒体放射スペクトルを発生する入手可能な校正ソースを有している米国国立規格技術研究所(NIST:National Institute of Standards and Technology)などの規格団体の助力を得て行うことができる。参照パイロメータは、黒体標準ゲージから正確な温度読み取りを生じるように校正される。
【0061】
正確に校正された参照パイロメータを用い、校正機器によって発生する有効黒体温度Teffを正確に計測する(ステップ205)。校正機器のそれぞれが、電子回路、やチャンバ104内のLED115の位置等にしたがってわずかに黒体温度が異なっている可能性があることに注意すべきである。このように、各校正機器は、各個に測定されるべきであり、それぞれ疑似する温度によってラベリングするべきである。例えば、一つの校正機器100は、843℃を疑似し;他方の量プローブは、852℃を疑似してもよい。
【0062】
校正機器のラベリングは、様々な方法で行うことが可能である。疑似温度を付けたラベルを、直接にプローブに取り付けてもよい。あるいは、プローブは部品番号、コードやその他の識別標識で特定してもよい。この場合、部品番号、コードや識別標識により、別のリストで疑似温度を割り出してもよい。
【0063】
次いで、校正機器を用いて、未校正の熱プローブを校正する(ステップ210)。具体的には、アラインメント装置を用いて、校正機器を光パイプにアラインメントし、LED115にエネルギーを与え、パイロメータ50によって生じる温度Tmを読みとる。最後に、パイロメータのゲインを調節し、測定温度TmをTeff(すなわち、校正機器により疑似される黒体温度)と等しくなるようにする(ステップ215)。
【0064】
以上をまとめれば、参照パイロメータを前出のNISTでの規格で校正し、校正機器を参照パイロメータで校正し、パイロメータを校正機器で校正する。したがって、パイロメータの校正は、規格にまでさかのぼることができる。ここで規格としているのが正確な黒体温度ソースであるので、パイロメータ温度の測定も正確になる。インシチュウ校正の場合、チャンバ内の熱プローブが粒子汚染や漂流電子により校正から外れる時を検出するためにも、校正機器を用いることができる。
【0065】
校正機器からの正確に計った温度Tmを、校正機器の既知の有効温度Teffと比較することができる。差(Teff−Tm)が所定の閾値を超えれば、熱プローブをクリーニングし、再校正し、あるいは交換すればよい。
【0066】
他の具体例についても本発明の範囲に含まれる。例えば、上記の具体例では光源としてLEDを用いているが、これとは別に、適切な安定化制御回路を有するレーザーダイオード等の安定な光源を用いてもよい。
【図面の簡単な説明】
【0067】
【図1】RTPチャンバを示す図である。
【図2】校正プローブを示す図である。
【図3】温度検知プローブを示す図である。
【図4】パイロメータフィルタの透過率とLEDの規格化光の強度を波長の関数として表すグラフである。
【図5】図5Aは、校正プローブの側断面を示し、図5Bは、図5Aの拡大図である。
【図6】校正プローブの回路線図である。
【図7】アラインメントツールの上面図である。
【図8】図8Aは、図7に示されるアラインメントツールのA−Aに沿った断面図、図8BはB−Bに沿った断面図であり、図8Cと図8Dは、図8Aの拡大図である。
【図9】図9Aは、校正プローブを装着した図8のアラインメントツールの図であり、図9B及び図9Cは、図9Aの拡大図である。
【図10】校正プローブからの光ビームを示す図である。
【図11】アラインメントツールを取り付けた校正プローブのまた別の具体例を示す図である。
【図12】校正機器の別の具体例を示す図である。
【図13】校正機器を用いる校正の手順のフローチャートである。
【図14】校正プローブのもう一つの具体例の図である。
【図15】波長の関数としての校正フィルタの透過率のグラフである。
【図16】0.94ミクロンで規格化した黒体の放射率を波長の関数として表すグラフである。
【図17】LEDの発光を波長の関数として表すグラフである。
【図18】校正プローブのまた別の具体例を示す図である。
【図19】LEDを2個用いた校正プローブを示す図である。
【図20】図19の校正プローブからの放射をLEDの波長の関数として表すグラフである。
【図21】図20の領域21の拡大図であり、2個のLEDの黒体及び校正プローブの発光のカーブを含む図である。
【符号の説明】
【0068】
300・・・校正機器、302・・・本体、304・・・内側キャビティ、306・・・アパーチャ、312a,b・・・ダイ、315a,b・・・LED,318a,b・・・フォトダイオード、322・・・合成器、324・・・拡散器。


【特許請求の範囲】
【請求項1】
基板の温度を測定する温度プローブを校正するための装置であって、
a)第1のバンド幅と第1の波長の強度ピークとを有する光を発する第1の光源と、
b)前記第1のバンド幅とは別の第2のバンド幅を有すると共に、前記第1の波長の強度ピークとは異なる第2の波長の強度ピークを有する光を発する第2の光源と、
c)前記第1の光源と前記第2の光源とに光学的に結合する発光領域と、を備え、
前記発光領域からの全放射光が所定の温度における黒体放射に所定の波長範囲で一致するように前記第2の光源からの光のスペクトル出力に乗じる強度係数が選択され、前記第1の光源からの光のスペクトル出力と前記強度係数を乗じた後の第2の光源からの光のスペクトル出力とを合成して前記発光領域に合成した光を指向させる光合成器を更に備えた装置。
【請求項2】
前記発光領域を温度プローブの入力端にアラインメントするためのアラインメント機構を更に備える請求項1に記載の装置。
【請求項3】
前記アラインメント機構が、アラインメント構造体を更に備え、前記アラインメント構造体は、対応する熱処理チャンバのアラインメント部に係合する請求項2に記載の装置。
【請求項4】
前記アラインメント機構が、温度プローブの入力端に係合するアラインメント構造体を更に備える請求項2に記載の装置。
【請求項5】
前記第1の光源と前記第2の光源がそれぞれ、ガウス分布の光強度分布を有する光を発する請求項1に記載の装置。
【請求項6】
前記第1の光源と前記第2の光源がLEDを備える請求項1に記載の装置。
【請求項7】
前記所定の波長範囲が赤外域にある請求項1に記載の装置。
【請求項8】
前記発光領域が、光ファイバの表面である請求項1に記載の装置。
【請求項9】
前記発光領域が、前記第1の光源と前記第2の光源を囲む構造にあるアパーチャである請求項1に記載の装置。
【請求項10】
基板の温度を測定する温度プローブを校正するための装置であって、
a)第1のバンド幅と第1の波長の強度ピークとを有する光を発する第1の光源と、
b)前記第1のバンド幅とは別の第2のバンド幅を有すると共に、前記第1の波長の強度ピークとは異なる第2の波長の強度ピークを有する光を発する第2の光源と、
c)前記第1の光源からの光と前記第2の光源からの光を合成し、合成光を発光領域に指向させる合成手段と、を備え、
前記発光領域からの放射光スペクトルが所定の温度における黒体の放射光スペクトルに所定の波長範囲で一致するように前記第2の光源からの光のスペクトル出力に乗じる強度係数が選択され、前記合成手段は前記第1の光源からの光のスペクトル出力と前記強度係数を乗じた後の第2の光源からの光のスペクトル出力とを合成して前記発光領域に前記合成光を指向させる装置。
【請求項11】
基板の温度を測定する温度プローブを校正する方法であって、
a)第1のバンド幅と第1の波長の強度ピークとを有する光を第1の光源から発し、
b)前記第1のバンド幅とは別の第2のバンド幅を有する共に、前記第1の波長の強度ピークとは異なる第2の波長の強度ピークを有する光を第2の光源から発し、
c)前記第1の光源からの光と前記第2の光源からの光を合成し、
d)合成光を発光領域に指向させ、
e)前記発光領域からの放射光スペクトルが所定の温度における黒体の放射光スペクトルに所定の波長範囲で一致するように前記第2の光源からの光のスペクトル出力に乗じる強度係数が選択され、前記第1の光源からの光のスペクトル出力と前記強度係数を乗じた後の第2の光源からの光のスペクトル出力とを合成して前記発光領域に前記合成光を指向させる方法。
【請求項12】
校正機器を校正する方法であって、
a)校正機器の第1の光源から、第1のバンド幅と第1の波長の強度ピークとを有する光を発し、
b)校正機器の第2の光源から、前記第1のバンド幅とは別の第2のバンド幅を有すると共に、前記第1の波長の強度ピークとは異なる第2の波長の強度ピークを有する光を発し、
c)前記第1の光源からの光と前記第2の光源からの光を合成し、
d)合成光の強度を、第1の波長で測定し、
e)合成光の強度を、第2の波長で測定し、
f)前記第1の波長における強度と前記第2の波長における強度との比が、所定の温度における黒体の放射光スペクトルで予想される強度比に等しくなるように、前記第2の光源からの光のスペクトル出力に乗ずる強度係数が選択され、前記第1の光源からの光のスペクトル出力と前記強度係数を乗じた後の第2の光源からの光のスペクトル出力とを合成する方法。
【請求項13】
前記第1のバンド幅が前記第2のバンド幅の一部とオーバーラップする場合に、前記第1の波長をこのオーバーラップする部分の範囲内とし、前記第2の波長を第1のバンド幅の外側とする請求項12に記載の方法。
【請求項14】
前記第1のバンド幅と前記第2のバンド幅がオーバーラップしない場合に、前記第1の光源と前記第2の光源とが、前記第1の波長及び前記第2の波長において互いに等しい強度を有するように、前記第1の波長及び前記第2の波長を選択する請求項12に記載の方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公開番号】特開2009−42248(P2009−42248A)
【公開日】平成21年2月26日(2009.2.26)
【国際特許分類】
【出願番号】特願2008−288168(P2008−288168)
【出願日】平成20年11月10日(2008.11.10)
【分割の表示】特願平10−550397の分割
【原出願日】平成10年5月7日(1998.5.7)
【出願人】(390040660)アプライド マテリアルズ インコーポレイテッド (1,346)
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
【Fターム(参考)】