説明

訓練用生体モデル

【課題】訓練用生体モデルを用いて術者の技術向上を目的とする訓練を行う際に、訓練用生体モデルを実際の狭窄部の物理的性質に近似して訓練することができる訓練用生体モデルを提供すること。
【解決手段】訓練用生体モデル1は、管状体で構成され、その長手方向の途中が縮径した縮径部44を有し、管状組織を模した右冠動脈4と、縮径部44の外周側に設けられ、縮径部44を補強する補強部材7とを備え、縮径部44および補強部材7で、管状組織に生じた狭窄部を模した疑似病変部21が構成され、疑似病変部21を、狭窄部に対し拡張を行なう拡張訓練に用いる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、訓練用生体モデルに関する。
【背景技術】
【0002】
経皮的冠動脈形成術の一つとして、例えば、PTCA術(Percutaneous Transluminal Coronary Angioplasty:経皮的冠状動脈形成術)が知られている。
【0003】
このPTCA術では、経大腿動脈法を適用した場合、次のような手技を経て、血管内の血流を回復させる。すなわち、I.まず、大腿動脈にシースカテーテルを挿入、次いで、これにガイドカテーテル用ガイドワイヤを挿入し、その先端を冠動脈入口付近まで進めた状態で、ガイドカテーテル用ガイドワイヤに沿わせてガイドカテーテルを進め、その先端を冠動脈口に位置させる。II.次に、ガイドカテーテル用ガイドワイヤを抜去し、バルーンカテーテル用ガイドワイヤをガイドカテーテル内に挿入して、ガイドカテーテルの先端からバルーンカテーテル用ガイドワイヤを突出させ、さらに冠動脈に生じている狭窄部位(病変部位)を越えた位置にまで進める。III.次に、バルーンカテーテル用ガイドワイヤを介してバルーンカテーテルを狭窄部位まで進め、バルーン部を狭窄部位に位置させた後、バルーンを膨張することにより狭窄部位すなわち血管壁を押し広げ、血液の通路を再形成して血流を回復させる。
【0004】
以上のように、バルーンカテーテルを狭窄部位に位置させるには、複雑な工程を有し、術者には、極めて高度な技術が求められる。
【0005】
そのため、近年、患者に対する手術の他に、術者の技術を向上さるための訓練に用いる生体モデルの開発が求められている。
【0006】
かかる生体モデルとして、血管やリンパ管のような管をモデルとした管モデルの製造方法が、例えば、特許文献1で提案されている。
【0007】
すなわち、特許文献1では、まず、CTスキャナやMRIスキャナ等の画像診断装置により得られた被検体の断層像データに基づき、この被検体の腔所領域を抽出してこの腔所領域に相当する内腔モデルを積層造形する。次に、この内腔モデルの周囲を立体モデル成形材料で囲繞した状態で立体モデル成形材料を硬化させた後、内腔モデルを除去することにより管モデル(立体モデル)を形成する。
【0008】
かかる構成の立体モデルでは、立体モデル成形材料としてシリコーンゴムやポリウレタンエラストマー等が用いられ、管モデルは、血管やリンパ管の物理的性質に近似させて形成される。そして、この立体モデルは、内腔モデルを囲繞するようにして形成されるため、病変部位である狭窄部位も前記管と一体的に形成され、管と同様の物理的性質、すなわち、弾性を示すこととなる。しかしながら、例えば、血管に形成される狭窄部位は、主としてコレステロールが沈着したプラーク(沈着物)で構成されているため、その物理的性質は、血管とは大きく異なる。
【0009】
そのため、特許文献1に記載の立体モデルでは、狭窄部位に生じた実際のプラークの物理的性質に対応した訓練を実施できず、バルーンを狭窄部位で膨らませた後のプラークの状態が確認できないため、血液の流路の再構築がどのようになされているかを知ることができないという問題がある。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特許第3613568号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明の目的は、訓練用生体モデルを用いて術者の技術向上を目的とする訓練を行う際に、訓練用生体モデルを実際の狭窄部の物理的性質に近似して訓練することができる訓練用生体モデルを提供することにある。
【課題を解決するための手段】
【0012】
このような目的は、下記(1)〜(12)の本発明により達成される。
(1) 管状体で構成され、その長手方向の途中が縮径した縮径部を有し、管状組織を模した疑似管状組織と、
前記縮径部の外周側に設けられ、該縮径部を補強する補強部材とを備え、
前記縮径部および前記補強部材で、管状組織に生じた狭窄部を模した疑似狭窄部が構成され、該疑似狭窄部を、前記狭窄部に対し拡張を行なう拡張訓練に用いることを特徴とする訓練用生体モデル。
【0013】
(2) 前記疑似狭窄部は、前記拡張訓練を行なったとき、その拡張により、拡張前の形状に戻らない程度に塑性変形するものである上記(1)に記載の訓練用生体モデル。
【0014】
(3) 前記縮径部および前記補強部材のうちの少なくとも一方は、塑性変形可能な材料で構成されている上記(1)または(2)に記載の訓練用生体モデル。
【0015】
(4) 前記縮径部および前記補強部材のうちの一方は、塑性変形可能な材料で構成され、他方は、弾性材料で構成されている上記(1)ないし(3)のいずれかに記載の訓練用生体モデル。
【0016】
(5) 前記疑似管状組織は、その少なくとも前記縮径部が熱可塑性樹脂で構成されている上記(1)ないし(4)のいずれかに記載の訓練用生体モデル。
【0017】
(6) 前記疑似管状組織は、該疑似管状組織となる前記管状体を短冊にしたものを、常温で、伸びが1分間で100%となるように前記管状体の周方向に引張ったときの初期引張り応力をfとし、そのまま前記100%の伸びを保持して5分後の引張り応力をfとし、応力緩和率を((f−f)/f)×100としたとき、該応力緩和率が20〜60%となる材料で構成されている上記(5)に記載の訓練用生体モデル。
【0018】
(7) 前記補強部材は、塑性変形可能な材料で構成されており、該塑性変形可能な材料は、シリコーン粘土、ゴム粘土、樹脂粘土および油粘土のうちの少なくとも1種を含む材料である上記(1)ないし(6)のいずれかに記載の訓練用生体モデル。
【0019】
(8) 前記縮径部には、その一端部または両端部に前記縮径部の内径がその内部側から端部側に向かって漸増するテーパ部が形成されている上記(1)ないし(7)のいずれかに記載の訓練用生体モデル。
【0020】
(9) 前記補強部材は、その形状が前記縮径部の周方向に沿ったリング状をなすものである上記(1)ないし(8)のいずれかに記載の訓練用生体モデル。
【0021】
(10) 前記補強部材の外周側に設置され、該補強部材が変形した際にその変形を規制する規制部材をさらに備える上記(1)ないし(9)のいずれかに記載の訓練用生体モデル。
【0022】
(11) 前記規制部材は、塑性変形可能な材料または弾性材料で構成されたリング状をなす帯体である上記(10)に記載の訓練用生体モデル。
【0023】
(12) 1種または2種以上の医療器具を、前記疑似管状組織内を挿通させて前記疑似狭窄部に到達させた後、前記拡張訓練が行われる上記(1)ないし(11)のいずれかに記載の訓練用生体モデル。
【0024】
また、本発明の訓練用生体モデルでは、前記医療器具は、経皮的冠動脈形成術に用いられるバルーンカテーテルおよび/またはステントであるのが好ましい。
【発明の効果】
【0025】
本発明によれば、管状組織に生じる狭窄部の物理的性質に近似した疑似狭窄部を、任意の位置に任意の大きさ(形状)で配置することができる。そのため、この疑似狭窄部を備える訓練用生体モデルを用いて、さまざまな患者の病態に対応した訓練を実施できることから、術者は、患者に施す手術以外の場で、より高度な技術を習得することができる。
【図面の簡単な説明】
【0026】
【図1】人体全身における動脈(心臓を含む)を示す模式図である。
【図2】図1に示す動脈を立体モデルに適用したものの全体写真である。
【図3】本発明の訓練用生体モデルが右冠動脈に配置された場合の実施形態(第1実施形態)を示す模式図である。
【図4】右冠動脈に配置された訓練用生体モデルに対してPTCA術の訓練(拡張訓練)を行う手順を示す図である。
【図5】本発明の訓練用生体モデル(第1実施形態)に対しPTCA術の訓練を行なっているときの状態を順に示す縦断面図である。
【図6】図5に示す訓練用生体モデルを製造する方法を説明するための図である。
【図7】本発明の訓練用生体モデルに対する接続方法を説明するための図である。
【図8】本発明の訓練用生体モデルに対する接続方法を説明するための図である。
【図9】本発明の訓練用生体モデル(第2実施形態)に対しPTCA術の訓練を行なっているときの状態を順に示す縦断面図である。
【図10】本発明の訓練用生体モデル(第3実施形態)を示す縦断面図である。
【図11】本発明の訓練用生体モデル(第4実施形態)を示す縦断面図である。
【図12】本発明の訓練用生体モデルが左冠動脈に配置された場合の実施形態(第5実施形態)を示す模式図である。
【図13】本発明の訓練用生体モデル(第5実施形態)を示す縦断面図である。
【図14】本発明の訓練用生体モデルが配置される、病変の好発部位を示すための図である。
【図15】疑似管状組織の材料特性を試験する試験方法を示す図である。
【図16】図15に示す試験方法で試験された疑似管状組織の材料特性(応力の経時的変化)を示すグラフである。
【発明を実施するための形態】
【0027】
以下、本発明の訓練用生体モデルを添付図面に示す好適な実施形態に基づいて詳細に説明する。
図1は、人体全身における動脈(心臓を含む)を示す模式図、図2は、図1に示す動脈を立体モデルに適用したものの全体写真、図3は、本発明の訓練用生体モデルが右冠動脈に配置された場合の実施形態(第1実施形態)を示す模式図、図4は、右冠動脈に配置された訓練用生体モデルに対してPTCA術の訓練(拡張訓練)を行う手順を示す図、図5は、本発明の訓練用生体モデル(第1実施形態)に対しPTCA術の訓練を行なっているときの状態を順に示す縦断面図、図6は、図5に示す訓練用生体モデルを製造する方法を説明するための図、図7および図8は、それぞれ、本発明の訓練用生体モデルに対する接続方法を説明するための図、図9は、本発明の訓練用生体モデル(第2実施形態)に対しPTCA術の訓練を行なっているときの状態を順に示す縦断面図、図10は、本発明の訓練用生体モデル(第3実施形態)を示す縦断面図、図11は、本発明の訓練用生体モデル(第4実施形態)を示す縦断面図、図12は、本発明の訓練用生体モデルが左冠動脈に配置された場合の実施形態(第5実施形態)を示す模式図、図13は、本発明の訓練用生体モデル(第5実施形態)を示す縦断面図、図14は、本発明の訓練用生体モデルが配置される、病変の好発部位を示すための図、図15は、疑似管状組織の材料特性を試験する試験方法を示す図、図16は、図15に示す試験方法で試験された疑似管状組織の材料特性(応力の経時的変化)を示すグラフである。なお、以下の説明では、図1〜図14中の上側を「上」、下側を「下」と言う。また、図3、図12および図14には、冠動脈の形状および位置等が分かり易くなるように、心臓の形状についても併せて図示している。
【0028】
図2に示す立体モデルは、例えば、血管(動脈、静脈)、リンパ管、胆管、尿管、卵管等の管状組織を備えるヒトの生体の前記各種管状組織を再現して人工的に製造されたものである。この立体モデルを用いて、疑似病変部(疑似狭窄部)にバルーンカテーテル等の医療器具を到達させ、その後、疑似病変部を拡張することにより流路を確保したり、拡張した疑似病変部にステントを留置するための訓練等が実施される。以下では、動脈の形状に対応して形成された(管状組織を模した)疑似管状組織に、当該動脈に生じた病変部(狭窄部)を模した疑似病変部を配置した(設けた)場合を一例に説明する。
【0029】
ヒトの全身における動脈(心臓を含む)は、図1の模式図に示すような形状をなしている。この動脈の形状に対応した立体モデルは、例えば、特許第3613568号公報の記載に基づいて、次のようにして製造される。
【0030】
まず、動脈が備える腔部(血液の流路)の断層像データをCTスキャナ、MRIスキャナのような画像診断装置を用いて得た後、この動脈の内腔部に対応する断層像データに基づいて動脈の内腔部の形状をなす内腔モデルを積層造形する。
【0031】
次に、内腔モデルの周囲を立体モデル成形材料で囲繞した状態で立体モデル成形材料を硬化させた後、内腔モデルを除去することにより、図2の全体写真に示すような、動脈の形状に対応した動脈モデル(立体モデル)が形成される。
【0032】
上記のような動脈モデルが備える各部の動脈(モデル)、例えば、冠動脈、脳動脈、頸動脈、腎動脈、上腕動脈等の任意の位置に、疑似病変部を配置することにより、バルーンカテーテル等の医療器具を疑似病変部(狭窄モデル)に位置させた後、この疑似病変部を拡張することにより流路を確保する拡張訓練を行うことができる。本実施形態では、訓練用生体モデル1は、動脈モデルが備える冠動脈(疑似管状組織)10に疑似病変部(疑似狭窄部)21を配置したものとなっている。
【0033】
冠動脈10は、大動脈5のバルサルバ洞において、左右に分岐する左冠動脈3および右冠動脈4からなる。
【0034】
右冠動脈4は、バルサルバ洞の1つである右冠動脈洞の上部より前方に出た後、右心耳に覆われて右心房と肺動脈の間を走行し、右房室間溝に沿って鋭縁部41を回り後下行枝42に向かい、後室間溝で左心室後壁および中隔の下側を養う血管を派生する。
【0035】
なお、この右冠動脈4において、右冠動脈4の入口から鋭縁部41までを半分にした上半分をSegment1(#1:Proximal)といい、その下半分をSegment2(#2:Middle)といい、鋭縁部41から後下行枝42で分岐するまでをSegment3(#3:distal)という。また、後下行枝42の分岐以降をSegment4といい、このSegment4は、#4AV・#4PD・#4PLの3つに分けられる。
【0036】
また、左冠動脈3は、バルサルバ洞の1つである左冠動脈洞の上部より左前方に出て、前室間溝に入る左前下行枝31と、左回旋枝32とに分岐する。
【0037】
なお、大動脈5から左前下行枝31と左回旋枝32とに分岐するまでの間の部位を左主幹部33(Segment5)という。また、左前下行枝31は、Segment6〜10まで細分化されており、このうち左前下行枝31の本幹は、Segment6(#6:Proximal)、Segment7(#7:Middle)、Segment8(#8:distal)の3つに分類され、Segment6とSegment7との間からSegment9(#9:第1対角枝)が分岐し、Segment7とSegment8との間からSegment10(#10:第2対角枝)が分岐している。さらに、左回旋枝32は、Segment11〜15まで細分化されており、このうち左回旋枝32の本幹は、Segment11(#11:Proximal)、Segment13(#13:distal)の2つに分類され、Segment11とSegment13との接続部からSegment12(#12:obtuse marginal branch;OM)が分岐している。
【0038】
<<第1実施形態>>
図4、図5に示す第1実施形態の訓練用生体モデル1は、冠動脈10の右冠動脈4(Segment2)と、右冠動脈4の双方の端部にそれぞれ設けられた接続部11とを備えている。右冠動脈4では、各接続部11を介して、Segment2の端部がそれぞれSegment1、Segment3と接続されている。この場合、各接続部11は、それぞれ、Segment1およびSegment3に対し着脱自在に構成されているのが好ましい。
【0039】
また、右冠動脈4に配置された疑似病変部21に対して、PTCA術の訓練が行われるが、かかる訓練は、以下に示すような手順で実施される。
【0040】
[1] まず、大腿動脈にシースカテーテル(図示せず)を挿入、次いで、これにガイドカテーテル用ガイドワイヤ(図示せず)を挿入し、その先端を右冠動脈4の入口付近にまで進めた状態で、ガイドカテーテル用ガイドワイヤに沿わせてガイドカテーテル61を進め、その先端を右冠動脈4の入口に位置させる(図4(a)参照。)。
【0041】
[2] 次に、ガイドカテーテル用ガイドワイヤを抜去し、バルーンカテーテル用ガイドワイヤ62をガイドカテーテル61内に挿入してガイドカテーテル61の先端からバルーンカテーテル用ガイドワイヤ62を突出させ、さらに右冠動脈4に配置した疑似病変部21を越えた位置にまでバルーンカテーテル用ガイドワイヤ62を進める(図4(b)参照。)。
【0042】
[3] 次に、バルーンカテーテル用ガイドワイヤ62の基端(大腿動脈)側から挿通されたバルーンカテーテル63の先端部をガイドカテーテル61の先端から突出させ、さらにバルーンカテーテル用ガイドワイヤ62に沿って進め、バルーンカテーテル63のバルーン64を疑似病変部21に位置させた後、バルーン64に、バルーンカテーテル63の基端側からバルーン膨張用の流体を注入することにより、バルーン64が膨張される(図4(c)参照。)。これにより、疑似病変部21が押し広げられる。
【0043】
[4] 次に、バルーンカテーテル63の基端側からバルーン膨張用の流体を排出し、図4(d)に示すようにバルーン64を収縮させる。その後、バルーンカテーテル用ガイドワイヤ62、バルーンカテーテル63、ガイドカテーテル61およびシースカテーテルを大腿動脈側から抜去する。これにより、疑似病変部21に血流路が形成される。
【0044】
図5(a)に示すように、右冠動脈4は、内腔部43を有する管状体で構成されたものである。右冠動脈4の長手方向の途中には、その内径および外径が縮径した縮径部44が形成されている。これにより、右冠動脈4の外周部45には、凹部451が形成される。そして、凹部451には、縮径部44を補強する補強部材7が配置されて(収納されて)いる。訓練用生体モデル1では、右冠動脈4の縮径部44と補強部材7とで疑似病変部21が構成される。そして、疑似病変部21に対し拡張訓練(PTCA術の訓練)を行なうことができる。
【0045】
また、右冠動脈4では、縮径部44が形成されている以外の部分は、その内径φdおよび外径φdがそれぞれ長手方向に沿って一定となっている。このような右冠動脈4は、比d/dが1.01〜2なる関係を満足するものが好ましく、比d/dが1.01〜1.2なる関係を満足するものがより好ましい。さらに、右冠動脈4(Segment2)の内径φdを0.5〜10mm程度に設定し、外径φdを0.51〜12.0mm程度に設定するのが好ましい。
【0046】
縮径部44の最小内径φdは、特に限定されないが、(φd−φd)/φdが50〜100%となるようにφdを設定するのが好ましい。縮径部44の最小内径φdをかかる範囲内に設定することにより、実際の狭窄部位の狭窄度に適した訓練を確実に実施することができ、術者の技術向上が的確に図られる。さらに、最小内径φdを0.1〜2.0mm程度とするのが好ましく、0.3〜1.0mm程度とするのがより好ましい。
【0047】
また、縮径部44の長さは、特に限定されないが、1〜100mm程度であるのが好ましく、5〜50mm程度であるのがより好ましい。縮径部44の長さをかかる範囲内に設定することにより、より実際の病変部位(狭窄部位)の大きさに適した訓練を実施することができる。
【0048】
縮径部44の両端部には、それぞれ、その内面が傾斜した、すなわち、その内径が内部側から端部側に向かって漸増した傾斜面(テーパ面(テーパ部))441が形成されている。これにより、前記工程[3]において、バルーン64を疑似病変部21に到達させる際に、縮径部44(疑似病変部21)の傾斜面441にバルーンカテーテル63を沿わせることができ、よって、その操作を容易かつ確実に行なうことができる。なお、傾斜面441は、特に限定されないが、右冠動脈4の中心軸に対して、15〜65°程度の角度で傾斜しているのが好ましく、22〜55°程度の角度で傾斜しているのがより好ましい。これにより、実際の狭窄部位の形状により適した訓練を確実に実施することができる。また、傾斜面441は、図5に示す構成では縮径部44の両端側に形成されているが、これに限定されず、例えば、縮径部44の一端側にのみ形成されていてもよい。傾斜面441が縮径部44の一端側にのみ形成されていている場合、その傾斜面441は、バルーンカテーテル63が挿入される側(図3、図4中での上側)に形成されているのが好ましい。
【0049】
図5(a)に示すように、右冠動脈4の縮径部44の外周側には、補強部材7が配置されている。補強部材7は、縮径部44を補強して、全体として疑似病変部21に実際の病変部に近似した特性(硬さ(バルーンカテーテル63のバルーン64が拡張するときのラジアルフォースに抗する力))を発揮させるものである。例えば仮に補強部材7が省略され、疑似病変部21が縮径部44のみで構成されている場合、拡張訓練を行なうと、補強部材7が省略されている分、疑似病変部21が容易に拡張し過ぎてしまうおそれがある。このため、拡張訓練が実際の拡張に近似したものとはならない。しかしながら、訓練用生体モデル1では、補強部材7がある分だけ、縮径部44が補強されるため、疑似病変部21が実際の病変部に近似した特性を有するものとなり、よって、拡張訓練が実際の拡張に近似したものとなる。
【0050】
補強部材7の形状は、縮径部44の周方向に沿ったリング状をなしている。これにより、縮径部44全体を外側から覆うことができ、よって、縮径部44に対する補強の程度が周方向に沿って均一となる。また、バルーン拡張時に周方向に沿って均一に拡張することが可能、さらに、補強部材7が脱落することが防止されるため、確実な拡張訓練を実施することができると言う利点がある。
【0051】
なお、補強部材7は、その最大厚さtmaxが0.1〜5mmのものであるのが好ましく、0.25〜4mmのものであるのがより好ましい。
【0052】
このような疑似病変部21では、当該疑似病変部21を構成する縮径部44および補強部材7のうちの少なくとも一方が塑性変形可能な材料で構成されている。すなわち、疑似病変部21では、縮径部44および補強部材7がそれぞれ塑性変形可能な材料で構成されている場合(以下この場合を「第1の構成材料形態」と言う)と、縮径部44が塑性変形可能な材料で構成され、補強部材7が弾性材料で構成されている場合(以下この場合を「第2の構成材料形態」と言う)と、補強部材7が塑性変形可能な材料で構成され、縮径部44が弾性材料で構成されている場合(以下この場合を「第3の構成材料形態」と言う)とを取り得る。そして、第1〜第3の構成材料形態のいずれの場合でも、疑似病変部21は、塑性変形するものとなる。
【0053】
<第1の構成材料形態>
縮径部44を含む右冠動脈4の全体は、塑性変形可能な材料で構成されており、その材料としては、特に限定されず、ポリエチレン、ポリプロピレン、エチレン・酢酸ビニル共重合体、ナイロンエラストマー、軟質ポリ塩化ビニル、エチレン・プロピレン共重合体のような熱可塑性樹脂等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。また、これらの熱可塑性樹脂のなかでも、特に、ポリエチレンを用いるのが好ましい。この場合、低密度ポリエチレン、高密度ポリエチレンのように、密度すなわち結晶化度が異なるもの同士を混合した樹脂も用いることができる。なお、右冠動脈4は、その全体が塑性変形可能な材料で構成されているものに限定されず、例えば、縮径部44が塑性変形可能な材料で構成され、縮径部44以外の部分が弾性材料で構成されたものであってもよい。
【0054】
また、ポリエチレンで構成される右冠動脈4の硬度は、ショアA(JIS K6253に規定)が20〜80であるのが好ましく、25〜35であるのがより好ましい。破断強度は、5〜30MPaであるのが好ましく、8〜12MPaであるのがより好ましい。破断伸びは、100〜600%程度であるのが好ましく、100〜200%程度であるのがより好ましい。
【0055】
このようなポリエチレンを用いることにより、当該右冠動脈4が確実に塑性変形可能なものとなる。これにより、補強部材7と相まって、拡張訓練をした際、縮径部44および補強部材7が一括して変形して、その変形状態(拡張状態)が確実に維持される(図5(b)参照)。また、右冠動脈4を製造する際、右冠動脈4の母材となる管状体(チューブ)40を押出成形によって成形することができる。そして、管状体成形後、当該管状体に加工(例えば、加熱や圧縮等)を施すことにより、所望の大きさの縮径部44を製造することができる(図6参照)。
【0056】
また、右冠動脈4を構成する塑性変形可能な材料、すなわち、熱可塑性樹脂は、応力緩和率が好ましくは20〜60%、より好ましくは20〜30%となる材料特性を有するものである。
【0057】
ここで、「応力緩和率」とは、管状体40を、常温で、図15に示す試験方法で試験することにより得られた(定義された)ものである。
【0058】
まず、図15(a)に示すように、管状体40を短冊403にして、当該短冊403は、その一端(図中左側)が固定されて固定端401となり、他端(図中右側)が自由端402となっている。また、このときの短冊403は、全長がLとなっている。
【0059】
次に、図15(a)に示す状態から、短冊403の自由端402を所定の速度(引張り速度)で図中右側(長手方向)へ引張る(図15(b)参照)。このときの条件は、1分間で全長が2Lとなるように引張る。全長が2Lとなったときの初期引張り応力をfとする(図16参照)。
【0060】
次に、図15(b)に示す状態から速度(引張り速度)を零にして全長2Lを保持する。そして、前記速度を零にしてから5分後の引張り応力をfとする(図15(c)参照)。
【0061】
そこで、「応力緩和率」を((f−f)/f)×100で表すことができるものとする。
【0062】
応力緩和率がこのような数値範囲内にあることにより、拡張訓練をした際に、疑似病変部21(縮径部44)は、より確実に変形し、よって、実際のヒトの動脈に近似したものとなる。これにより、拡張訓練を行なうと、その訓練があたかも実際の手技(PTCA術)を行なっているのと同様の感覚を得る。なお、応力緩和率の大きさの調整は、例えば、構成材料を適宜選択したり、分子量や分子構造(結晶化度)を変えたりすること等により、行なうことができる。
【0063】
また、右冠動脈4の周方向の引張弾性率は、0.5〜50MPaであるのが好ましく、0.5〜5.0MPaであるのがより好ましい。
【0064】
補強部材7は、塑性変形可能な材料で構成されており、その材料としては、右冠動脈4の構成材料と異なるものが好ましい。具体的には、シリコーン粘土、ゴム粘土、樹脂粘土および油粘土等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
【0065】
上記のうち、例えば、シリコーン粘土としては、シリコーンゴムとして、粘度が5000〜20万cSt(25℃)程度のポリオルガノシロキサンと、粘度が100万cSt(25℃)以上のポリオルガノシロキサンとを重量比で80:20〜40:60で混合したもの100重量部、無機充填材として、石英粉末、珪藻土、珪酸マグネシウム、炭酸カルシウム、タルクおよび雲母粉末等のうち1種または2種以上組み合わせたもの20〜100重量部、その他必要に応じて流動パラフィンとして10重量部を含有するものが挙げられる。また、かかる構成のシリコーン粘土は、上記のシリコーンゴム、無機充填材および必要に応じて流動パラフィンをそれぞれ用意し、これらを、ロールおよびニーダー等の通常のゴム混練に使用される混練機を使用して均一に混練りすることにより得ることができる。
【0066】
なお、無機充填材の平均粒径は、特に限定されないが、0.1〜50μm程度であるのが好ましく、0.5〜30μm程度であるのがより好ましい。平均粒径が0.1μm未満であると、無機充填材の種類によっては、シリコーン粘土が硬すぎたり粘性が乏しくなるおそれがある。また、平均粒径が50μmを超えると、無機充填材の種類によっては、伸びのある物性が得にくくなるおそれがある。無機充填材の配合量は、少なすぎると好ましい粘土状物が得にくく、多すぎると硬くなりすぎるおそれがある。
【0067】
また、流動パラフィンは、粘土の粘性を向上させる機能を有するが、この含有量を多くしすぎるとブリードし、手に付着したりすることがある。
【0068】
ゴム粘土としては、上記のシリコーンゴムの代わりに天然ゴムやブチルゴムを含有するものが挙げられる。
【0069】
樹脂粘土としては、一般に、澱粉および/または穀粉と、酢酸ビニルエマルジョン系接着剤とを主材料として構成される粘土が挙げられる。澱粉ならびに穀粉としては、それぞれ、例えば、コーンスターチ、馬鈴薯澱粉、小麦澱粉、米澱粉、タピオカ澱粉および甘薯澱粉等、ならびに、小麦粉、とうもろこし粉、米粉およびそば粉等が挙げられる。酢酸ビニルエマルジョン系接着剤としては、例えば、酢酸ビニル樹脂エマルジョン、エチレン−酢酸ビニル共重合体エマルジョンおよびアクリル−酢酸ビニル共重合体エマルジョン等が挙げられる。
【0070】
なお、これらの配合量は、澱粉や穀粉100重量部に対し、酢酸ビニルエマルジョン系接着剤が100〜150重量部程度であるのが好ましい。また、これらの材料の他、樹脂粘土には、無機物粉末、ロウおよび石鹸等が含まれていてもよい。無機物粉末としては、例えば、石英、カオリン、ゼオライト、珪藻土、タルク、ベントナイト、ホウ砂および岩石粉等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。また、ロウとしては、蜜蝋等が挙げられる。石鹸としては、脂肪酸塩石鹸等が挙げられる。ただし、これらは、いずれもその配合量が10重量部未満となっているのが好ましい。
【0071】
油粘土としては、通常、クレー、炭酸カルシウム、セリサイト系粘土のような無機質充填剤と、石鹸および油成分とを練り合わせたものが用いられる。より詳しくは、油成分として、流動パラフィンおよび/またはマイクロクリスタリンワックスを、無機質充填剤100重量部に対し15〜45重量部程度含有し、石鹸として、アルカリ金属石鹸、アルカリ土類金属石鹸、アルミニウム石鹸のうちの1種または2種以上を組み合わせたものを、0.2〜15重量部程度含有し、さらにグリセリンを0.2〜10重量部程度含有するものが好ましく用いられる。
【0072】
なお、上述したシリコーン粘土の具体例としては、透明粘土(日清アソシエイツ社製)が挙げられ、樹脂粘土の具体例としては、エクセレント(日清アソシエイツ社製)が挙げられる。
【0073】
また、補強部材7の構成材料の圧縮弾性率は、0.001〜0.5MPa程度であるのが好ましく、0.01〜0.3MPa程度であるのがより好ましい。補強部材7の物性値をかかる範囲内のもとのすることにより、疑似病変部21は、その物理的性質が実際の病変部位により近似した状態で塑性変形するものとなり、より質の高い訓練を実施することができる。
【0074】
このような材料で補強部材7を構成することにより、当該補強部材7は、縮径部44が変形した際、その変形に追従して変形することができる(図5(b)参照)。
【0075】
また、右冠動脈4および補強部材7は、それぞれ、拡張訓練により変形するものであるが、その変形後の戻りにくさは、補強部材7の方が右冠動脈4よりも戻り難くなっている。これにより、疑似病変部21は、全体として、その変形後の状態が維持される。すなわち、疑似病変部21は、拡張訓練を行なったとき、その拡張により、拡張前の形状に戻らない程度に塑性変形する。これは、実際にヒトの右冠動脈に生じた狭窄部に対しPTCA術を施した場合に、狭窄物が変形後でもその状態が維持されるのとほぼ同じ現象である。従って、訓練者は、実際の手技に近い訓練を行なうことができる。
【0076】
以上のような構成の訓練用生体モデル1は、例えば、次のようにして製造することができる。ここでは、訓練用生体モデル1を製造する方法の一例について説明する。
【0077】
まず、図6(a)に示すように、右冠動脈4となる母材としての管状体40を用意する。この管状体40は、ポリエチレンで構成され、熱収縮性を有している。
【0078】
次に、図6(b)に示すように、例えばヘアドライヤ等のようなヒートガン100を用いて、管状体40(右冠動脈4)の病変部形成領域20に対し、例えば80〜120度の熱風を当てて当該病変部形成領域20を加熱する。そして、病変部形成領域20が縮径して、その大きさが所望の大きさとなったときに、加熱を停止する。これにより、疑似病変部21が形成された右冠動脈4を得る。なお、加熱の時間や温度によって、疑似病変部21の狭窄の程度を適宜変更することができる。
【0079】
次に、図6(c)に示すように、粘土で構成された補強部材7を用意する。補強部材7は、予め横断面形状が「C」字状をなすものである。この補強部材7の欠損部71を介して、右冠動脈4の縮径部44を補強部材7に挿入する。
【0080】
次に、補強部材7を凹部451に沿うように変形させ、凹部451に位置決めさせる。また、補強部材7を変形させることより、欠損部71を埋める(消失させる)。これにより、図6(d)に示す状態の訓練用生体モデル1を得る。
【0081】
なお、縮径部44を形成する際に、ヒートガン100に代えて、半田こてを用いることができる。
【0082】
また、縮径部44を形成する際に、管状体40を加熱する方法に代えて、管状体40をその長手方向に沿って引張る方法を用いることができる。
【0083】
また、縮径部44を形成する際に、その縮径の程度を規制する規制部材を用いてもよい。この規制部材としては、例えば、棒状をなし、管状体40に挿入して用いることができるものが挙げられる。
【0084】
<第2の構成材料形態>
第2の構成材料形態では、右冠動脈4(縮径部44)は、前述したような塑性変形可能な材料(熱可塑性樹脂)で構成されている。一方、補強部材7は、弾性材料で構成されている。
【0085】
補強部材7を構成する弾性材料としては、特に限定されないが、例えば、ポリスチレン−ポリ(エチレン/プロピレン)ブロックの共重合体、ポリスチレン−ポリ(エチレン/プロピレン)ブロック−ポリスチレンの共重合体、ポリスチレン−ポリ(エチレン/ブチレン)ブロック−ポリスチレンの共重合体、ポリスチレン−ポリ(エチレン−エチレン/プロピレン)ブロック−ポリスチレンの共重合体からなる群から選択される1種または2種以上の共重合体の混合物からなるポリマーと、前記ポリマーを軟化させる軟化剤とを含有するものが挙げられる。
【0086】
また、前記共重合体の具体例としては、例えば、セプトンシリーズ(クラレプラスチック社製、熱可塑性エラストマー)、エスポレックスSBシリーズ(住友化学社製)等が挙げられる。
【0087】
軟化剤としては、特に、プロセスオイルが好適に用いられ、プロセスオイルとしては、特に限定されず、パラフィン系、ナフテン系および芳香族系のうちの何れを用いてもよく、これらのうちの1種または2種以上を組み合わせて用いることができる。また、プロセスオイルの具体例としては、例えば、ダイアナプロセスオイルシリーズ(出光興産社製)、JOMOプロセスP(ジャパンエナジー社製)等が挙げられる。
【0088】
前記共重合体と軟化剤との重量比は、1:3〜1:10程度であるのが好ましく、1:5〜1:7程度であるのがより好ましい。
【0089】
さらに、弾性変形する補強部材7には、上記の構成材料の他、必要に応じて他の添加剤が添加されていてもよく、かかる添加剤としては、例えば、疑似病変部21の老化を防止するための老化防止剤(酸化防止剤)等が挙げられる。
【0090】
老化防止剤としては、特に限定されず、例えば、アミン系またはフェノール系のものが挙げられ、アミン系の老化防止剤としては、N−イソプロピル−N’−フェニル−p−フェニレンジアミン、N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン、6−エトキシ−2,2,4−トリメチル−1,2−ジハイドロキノリンのようなアミン誘導体が挙げられ、フェノール系の老化防止剤としては、2,6−ジ−tert−ブチル−p−クレゾール、2,5−ジ−tert−アミルハイドロキノン、2,5−ジ−tert−ブチル−ハイドロキノン、4,4’−ブチリデン−ビス(3−メチル−6−tert−ブチルフェノール)、2,2’−メチレン−ビス(4−メチル−6−tert−ブチルフェノール)等が挙げられる。
【0091】
このような構成材料で構成された疑似病変部21は、前記第1の構成材料形態の場合と同様に変形後の状態がほぼ維持されるものであるが、その維持の程度が前記第1の構成材料形態のものよりも低減されている、すなわち、拡張前の形状に若干戻り易い。
【0092】
疑似病変部21では、構成材料を適宜選択することにより、その硬さを変更することができる。これにより、硬さが異なる種々狭窄物に近似した疑似病変部21を得、当該疑似病変部21に対応した、すなわち、拡張力が比較的小さい場合から拡張力が比較的大きい場合までの拡張訓練を確実に行なうことができる。
【0093】
<第3の構成材料形態>
第3の構成材料形態では、補強部材7は、前述したような塑性変形可能な材料(粘土)で構成されている。一方、右冠動脈4(縮径部44)は、弾性材料で構成されている。
【0094】
右冠動脈4を構成する弾性材料としては、特に限定されないが、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、ニトリルゴム、クロロプレンゴム、ブチルゴム、アクリルゴム、エチレン−プロピレンゴム、ヒドリンゴム、ウレタンゴム、シリコーンゴム、フッ素ゴムのような各種ゴム材料(特に加硫処理したもの)や、スチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、トランスポリイソプレン系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマーが挙げられ、これらのうちの1種または2種以上を混合して用いることができる。
【0095】
このような構成材料で構成された疑似病変部21は、前記第1の構成材料形態の場合と同様に変形後の状態がほぼ維持されるものであるが、その維持の程度が前記第1の構成材料形態のものよりも低減されている。
【0096】
第3の構成材料形態でも、疑似病変部21の構成材料を適宜選択することにより、その硬さを変更することができる。これにより、硬さが異なる種々の狭窄物に近似した疑似病変部21を得る。
【0097】
次に、訓練用生体モデル1(立体モデル)を用いてPTCA術の訓練を行なった際の、当該訓練用生体モデル1の状態について詳細に説明する。
【0098】
訓練用生体モデル1を用いてPTCA術の訓練を行なうと、図4(c)に示す前記工程[3]では、膨張したバルーン64により、縮径部44が外方に向かって押圧される。また、補強部材7も縮径部44を介して外方に向かって押圧される。これにより、縮径部44および補強部材7が一括して拡張して変形する。
【0099】
そして、図4(d)に示す前記工程[4]で、バルーンカテーテル用ガイドワイヤ62およびバルーンカテーテル63を疑似病変部21から取り外した後は、疑似病変部21は、前述したように塑性変形するものであるため、拡張前の形状に戻らずに、前記拡張して変形した状態、すなわち、バルーン64で押し広げた形状を維持していることとなる。これは、実際にヒトの右冠動脈に生じた狭窄部に対しPTCA術を施した場合に、右冠動脈および狭窄部が拡張した状態となるのとほぼ同じ現象となっている。
【0100】
このように、訓練用生体モデル1を用いることにより、術者の技術向上を目的とする訓練を行う際、訓練用生体モデル1が実際の病変部の物理的性質に近似したものとなっているため、実地の手技に則した訓練を確実に行なうことができる。
【0101】
また、前記工程[3]におけるバルーン64の拡張を、目視やX線造影像で観察しながら訓練を実施でき、疑似病変部21の拡張の度合いを確認することができるので、かかる観点からも、より質の高い訓練を実施することができる。
【0102】
なお、前記工程[4]により血流が回復された後の疑似病変部21、すなわちPTCA術が施術された後の疑似病変部21に対して、図5(c)に示すように、ステント81を留置することにより、疑似病変部21の再狭窄をより確実に抑止することができる。このようなステント81を留置する治療の訓練にも訓練用生体モデル1を用いることができ、かかる訓練に訓練用生体モデル1を用いれば、再狭窄が好適に抑止されているか否かの評価をより確実に実施することができる。
【0103】
また、前述したように、接続部11は、Segment2である右冠動脈4をその両端部でそれぞれ着脱可能とするため、当該両端部にそれぞれ設けられている(図3参照)。すなわち、Segment2は、一端がSegment1の端部と、他端がSegment3の端部と、それぞれ、接続部11で接続され、これにより、右冠動脈4から着脱可能な構成となっている。
【0104】
このような接続部11は、Segment2の部分で着脱可能で、かつ接続すべき各端部同士を液密に接続し得る構成であれば、いかなる構成のものであってもよいが、例えば、以下に示すような接続形態により、液密に接続することができる。各接続部11は、互いに同じ構成であるため、以下、一方(Segment1側)の接続部11にいて説明する。
【0105】
<第1の接続形態>
図7に示すように、接続具12は、その中心部に軸方向(長手方向)に貫通する貫通孔14を有し、その全体形状がほぼ筒状をなす本体13と、本体13の長手方向のほぼ中央に設けられたフランジ15とを有するものである。
【0106】
本体13は、その両端部で外径が縮径する縮径部を有しており、この縮径部の外径が右冠動脈4の内径よりも小さく設定され、縮径部よりもフランジ15側(内側)ではその外径が右冠動脈4の内径よりも大きく設定される。
【0107】
かかる構成の接続具12に対して、右冠動脈4の先端(切断面)から右冠動脈4を、前記先端部からフランジ15側に向かって挿入すると、右冠動脈4の内径が拡径する。これにより、本体13の外周面と右冠動脈4の内周面とが互いに密着することとなるため、接続具12により、右冠動脈4の端部同士が液密に接続される。
【0108】
接続具12の構成材料としては、特に限定されないが、各種樹脂材料が好適に用いられ、具体的には、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体(EVA)等のポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリアミド、ポリイミド、ポリアミドイミド、ポリカーボネート、ポリ−(4−メチルペンテン−1)、アイオノマー、アクリル系樹脂、ポリメチルメタクリレート、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、アクリロニトリル−スチレン共重合体(AS樹脂)、ブタジエン−スチレン共重合体、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリシクロヘキサンテレフタレート(PCT)等のポリエステル、ポリエーテル、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド、ポリアセタール(POM)、ポリフェニレンオキシド、変性ポリフェニレンオキシド、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリアリレート、芳香族ポリエステル(液晶ポリマー)、ポリテトラフルオロエチレンおよびポリフッ化ビニリデン等の各種樹脂材料が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
【0109】
<第2の接続形態>
図8に示すように、接続機構16は、切断された右冠動脈4の各先端(切断面)に設けられたフランジ17と、一方の右冠動脈4に回転可能に支持されたリング状部材(第1のリング状部材)18と、他方の右冠動脈4にフランジ17と接触するように固着されたリング状部材(第2のリング状部材)19とを有するものである。
【0110】
リング状部材18には、フランジ17側に開放する開放部が形成されており、この開放部の内面には雌ネジ181が形成されている。
【0111】
また、リング状部材19には、その外周面に雄ネジ191が形成され、さらに、このリング状部材19がリング状部材18に形成された開放部に挿入可能な大きさに設定されることにより、リング状部材19がリング状部材18の開放部に挿入(螺入)し得るようになっている。
【0112】
かかる構成の接続機構16において、2つのフランジ17の端面同士を接触させた状態で、リング状部材18、19にそれぞれ形成された雌ネジ181と雄ネジ191とを螺合することにより、2つのフランジ17の端面同士が互いに密着することとなるため、接続機構16により、右冠動脈4の端部同士が液密に接続される。
【0113】
接続機構16の各種構成部材の構成材料としては、前述した接続具12の構成材料と同様のものが好適に用いられる。
【0114】
なお、冠動脈10の右冠動脈4のSegment2を除く部分の構成材料としては、特に限定されないが、例えば、Segment2と同様の材料を用いることができる。また、この他、例えば、シリコーンエラストマー、シリコーンゲルのようなシリコーンゴム、ポリウレタンエラストマー、シリコーン樹脂、エポキシ樹脂、フェノール樹脂のような熱硬化性樹脂、ポリメタクリル酸メチル、ポリ塩化ビニル、ポリエチレンのような熱可塑性樹脂等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらの中でも、特に、シリコーンゴムを用いるのが好ましい。
【0115】
具体的には、シリコーンゴムで構成される冠動脈10の破断強度は、0.5〜3.0MPa程度であるのが好ましく、1.0〜2.0MPa程度であるのがより好ましい。
【0116】
また、冠動脈10の破断伸びは、50〜300%程度であるのが好ましく、100〜200%程度であるのがより好ましい。
【0117】
さらに、冠動脈10のショアA硬度(JIS K6253に規定)は、10〜40程度であるのが好ましく、25〜35程度であるのがより好ましい。
【0118】
さらに、冠動脈10の引張弾性率は、0.01〜5.0MPa程度であるのが好ましく、0.1〜3.0MPa程度であるのがより好ましい。
【0119】
また、冠動脈10の内径は、特に限定されないが、0.5〜10.0mm程度に設定されるのが好ましく、1.0〜5.0mm程度に設定されるのがより好ましい。
【0120】
<<第2実施形態>>
ここでは、第2実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
【0121】
図9(a)に示す訓練用生体モデル1Aは、補強部材7の外周側にさらに規制部材9が設置されたものとなっている。規制部材9は、拡張訓練を行なって補強部材7が変形した際に、その変形を規制する(抑制する)部材である。また、規制部材9は、帯体で構成され、当該帯体を補強部材7の外周に沿ってリング状に巻回したものである。規制部材9は、その内周部91が右冠動脈4の外周部45に固着されていないのが好ましい。
【0122】
このような規制部材9が設置されている訓練用生体モデル1Aでは、拡張訓練を行なった際、補強部材7は、縮径部44を介して外側に向かって押圧されて変形しようとするが、規制部材9によって外側への変形が規制されている(図9(b)参照)。その結果、縮径部44に対する補強の程度が増大し、よって、疑似病変部21が前記第1実施形態の疑似病変部21よりも硬い疑似病変部21を得る。また、この疑似病変部21も変形後の形状が維持されるものであるため、実地の手技に則した、バルーンカテーテル63による拡張訓練を確実に行なうことができる。また、図9(c)に示すようなステント81の留置訓練も行なうことができる。
【0123】
なお、規制部材9も、補強部材7と同様に、補強部材7を介して外側に向かって押圧されるため、周方向に若干伸長する。これにより、規制部材9の内周部91と右冠動脈4の外周部45との間に間隙92が形成され、当該間隙92に補強部材7の一部が入り込むことができる(図9(b)参照)。
【0124】
また、規制部材9は、塑性変形可能な材料または弾性材料で構成されているのが好ましい。塑性変形可能な材料としては、特に限定されず、例えば、前記第1の構成材料形態で右冠動脈4の構成材料として挙げたような材料を用いることができる。弾性材料としては、特に限定されず、例えば、前記第2の構成材料形態で補強部材7の構成材料として挙げたような材料や、前記第3の構成材料形態で右冠動脈4の構成材料として挙げたような材料を用いることができる。このような材料を用いることにより、補強部材7の変形を確実に規制することができる。
【0125】
<<第3実施形態>>
ここでは、第3実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
【0126】
図10に示す訓練用生体モデル1Bでは、補強部材7Bは、複数本(図示の構成では7本)のリング状ゴム(輪ゴム)72で構成されている。各リング状ゴム72は、外力を付与しない自然状態での内径が縮径部44の外径とほぼ同等またはそれよりも若干小さいものである。このような構成の補強部材7Bは、リング状ゴム72の設置数に応じて、縮径部44に対する補強の程度を調整することができる。
【0127】
<<第4実施形態>>
ここでは、第4実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
【0128】
図11に示す訓練用生体モデル1Cでは、補強部材7Cは、発泡弾性体(スポンジ)で構成されている。この補強部材7Cは、円筒状をなし、その自然状態での内径が縮径部44の外径とほぼ同等またはそれよりも若干小さいものである。このような構成の補強部材7Cでは、当該補強部材7Cが比較的柔軟なものであるため、縮径部44に対する補強の程度を抑制することができる。
【0129】
<<第5実施形態>>
前記第1〜第4実施形態は、それぞれ、訓練用生体モデル1を右冠動脈4側に適用した場合であったが、第5実施形態は、訓練用生体モデル1を左冠動脈3側に適用した場合となっている。以下、この第5実施形態について、前記第1実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
【0130】
すなわち、本実施形態(第5実施形態)では、図12に示すように、左冠動脈3のSegment6がSegment7とSegment9とに分岐し、その分岐部(バイファケーション)34に疑似病変部21が形成されている。また、疑似病変部21を介してSegment6、Segment7およびSegment9の途中にそれぞれ接続部11が設けられていること以外は、前記第1実施形態と同様の構成となっている。
【0131】
このような構成の訓練用生体モデル1では、通常、まず、バルーンカテーテル用ガイドワイヤ62をSegment6からSegment7側に挿通し、このバルーンカテーテル用ガイドワイヤ62に沿ってバルーンカテーテル63を進めることにより、バルーン64を疑似病変部21の位置に到達させ、さらにこの位置でバルーン64を膨らませて、疑似病変部21のSegment7側を拡張させる。次いで、バルーンカテーテル用ガイドワイヤ62をSegment6からSegment9側に挿通し、上記と同様にしてバルーン64を疑似病変部21の位置に到達させた後、膨らませて、疑似病変部21のSegment9側を拡張することにより、流路を確保する訓練が実施される。
【0132】
なお、本実施形態では、接続部11は、前述の通り、疑似病変部21を分岐部34に配置し得るように、Segment6、Segment7およびSegment9の途中にそれぞれ設けられ、これにより、接続部11において、分岐部34を含むSegment6、Segment7およびSegment9の一部が左冠動脈3から着脱可能な構成となっている(図13参照。)。
【0133】
また、本実施形態で説明した疑似病変部21も、前記第1実施形態で説明した疑似病変部21とほぼ同様にして製造することができる。
【0134】
なお、前記第1実施形態では、疑似病変部21が右冠動脈4のSegment2(#2:Middle)に配置されている場合について説明し、前記第5実施形態では、疑似病変部21が左冠動脈3のSegment6(#6)がSegment7(#7)とSegment9(#9)とに分岐する分岐部34に配置されている場合について説明したが、疑似病変部21を配置する位置はかかる位置に限定されず、冠動脈の狭窄または閉塞が高確率で生じる好発部位に疑似病変部21を配置して、好発部位に応じた訓練を実施すれば良い。なお、このような疑似病変部21が配置される好発部位としては、例えば、図14に示す●印の位置が挙げられる。
【0135】
以上のように、訓練用生体モデル1では、病変部位の物理的性質に近似した疑似病変部21を、右冠動脈4や左冠動脈3の任意の位置に任意の形状で配置することができる。そして、この訓練用生体モデル1を用いて、さまざまな患者の病態に対応した訓練を実施できることから、術者は、患者に施す手術以外の場で、より高度な技術を習得することができる。
【0136】
以上、本発明の訓練用生体モデルを図示の実施形態について説明したが、本発明は、これに限定されるものではなく、訓練用生体モデルを構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。
【0137】
また、本発明の訓練用生体モデルは、前記各実施形態のうちの、任意の2以上の構成(特徴)を組み合わせたものであってもよい。
【0138】
また、疑似管状組織については、代表的に冠動脈(血管)を模したもので説明したが、これに限定されず、例えば、食道、大腸、小腸、膵管、胆管、尿管、卵管、気管、気管支等を模したものであってもよい。
【0139】
また、疑似管状組織は、単層のものに限定されず、複数の層が積層されたもの(積層体)であってもよい。
【0140】
また、疑似管状組織の形状は、直線状をなしていてもよいし、一部または全体が湾曲していてもよい。
【0141】
また、疑似管状組織は、その縮径部が形成されている部分と、それ以外の部分とでは、前記実施形態ではその壁厚が互いに同じであるが、これに限定されず、例えば、壁厚が互いに異なっていてもよい。
【0142】
また、疑似管状組織は、単層もののであってもよいし、複数の層が積層された積層体であってもよい。
【符号の説明】
【0143】
1、1A、1B、1C 訓練用生体モデル
10 冠動脈(疑似管状組織)
11 接続部
12 接続具
13 本体
14 貫通孔
15 フランジ
16 接続機構
17 フランジ
18、19 リング状部材
181 雌ネジ
191 雄ネジ
20 病変部形成領域
21 疑似病変部(疑似狭窄部)
3 左冠動脈
31 左前下行枝
32 左回旋枝
33 左主幹部
34 分岐部(バイファケーション)
4 右冠動脈
40 管状体
401 固定端
402 自由端
403 短冊
41 鋭縁部
42 後下行枝
43 内腔部
44 縮径部
441 傾斜面(テーパ面)
45 外周部
451 凹部
5 大動脈
61 ガイドカテーテル
62 バルーンカテーテル用ガイドワイヤ
63 バルーンカテーテル
64 バルーン
7、7B、7C 補強部材
71 欠損部
72 リング状ゴム(輪ゴム)
81 ステント
9 規制部材
91 内周部
92 間隙
100 ヒートガン
初期引張り応力
5分後の引張り応力
φd 内径
φd 外径
φd 最小内径
max 最大厚さ
L、2L 全長

【特許請求の範囲】
【請求項1】
管状体で構成され、その長手方向の途中が縮径した縮径部を有し、管状組織を模した疑似管状組織と、
前記縮径部の外周側に設けられ、該縮径部を補強する補強部材とを備え、
前記縮径部および前記補強部材で、管状組織に生じた狭窄部を模した疑似狭窄部が構成され、該疑似狭窄部を、前記狭窄部に対し拡張を行なう拡張訓練に用いることを特徴とする訓練用生体モデル。
【請求項2】
前記疑似狭窄部は、前記拡張訓練を行なったとき、その拡張により、拡張前の形状に戻らない程度に塑性変形するものである請求項1に記載の訓練用生体モデル。
【請求項3】
前記縮径部および前記補強部材のうちの少なくとも一方は、塑性変形可能な材料で構成されている請求項1または2に記載の訓練用生体モデル。
【請求項4】
前記縮径部および前記補強部材のうちの一方は、塑性変形可能な材料で構成され、他方は、弾性材料で構成されている請求項1ないし3のいずれかに記載の訓練用生体モデル。
【請求項5】
前記疑似管状組織は、その少なくとも前記縮径部が熱可塑性樹脂で構成されている請求項1ないし4のいずれかに記載の訓練用生体モデル。
【請求項6】
前記疑似管状組織は、該疑似管状組織となる前記管状体を短冊にしたものを、常温で、伸びが1分間で100%となるように前記管状体の周方向に引張ったときの初期引張り応力をfとし、そのまま前記100%の伸びを保持して5分後の引張り応力をfとし、応力緩和率を((f−f)/f)×100としたとき、該応力緩和率が20〜60%となる材料で構成されている請求項5に記載の訓練用生体モデル。
【請求項7】
前記補強部材は、塑性変形可能な材料で構成されており、該塑性変形可能な材料は、シリコーン粘土、ゴム粘土、樹脂粘土および油粘土のうちの少なくとも1種を含む材料である請求項1ないし6のいずれかに記載の訓練用生体モデル。
【請求項8】
前記縮径部には、その一端部または両端部に前記縮径部の内径がその内部側から端部側に向かって漸増するテーパ部が形成されている請求項1ないし7のいずれかに記載の訓練用生体モデル。
【請求項9】
前記補強部材は、その形状が前記縮径部の周方向に沿ったリング状をなすものである請求項1ないし8のいずれかに記載の訓練用生体モデル。
【請求項10】
前記補強部材の外周側に設置され、該補強部材が変形した際にその変形を規制する規制部材をさらに備える請求項1ないし9のいずれかに記載の訓練用生体モデル。
【請求項11】
前記規制部材は、塑性変形可能な材料または弾性材料で構成されたリング状をなす帯体である請求項10に記載の訓練用生体モデル。
【請求項12】
1種または2種以上の医療器具を、前記疑似管状組織内を挿通させて前記疑似狭窄部に到達させた後、前記拡張訓練が行われる請求項1ないし11のいずれかに記載の訓練用生体モデル。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2011−64918(P2011−64918A)
【公開日】平成23年3月31日(2011.3.31)
【国際特許分類】
【出願番号】特願2009−215058(P2009−215058)
【出願日】平成21年9月16日(2009.9.16)
【出願人】(000109543)テルモ株式会社 (2,232)
【Fターム(参考)】