説明

貯液装置及びその圧力制御方法

【課題】 ニッケル酸化鉱石の湿式製錬における硫化反応が行われる硫化設備のうち、特に貯液槽における設備的な改善を図ることにより、硫化工程での硫化水素ガスの使用量や排ガス処理に用いるアルカリ使用量を削減し、操業コストを低減させる。
【解決手段】 硫酸塩溶液を硫化させて硫化物を生成させる硫化設備に用いられる貯液装置であって、スラリー又は固液分離後のろ液を貯液する複数の貯液槽11と、各貯液槽11への不活性ガス又は各貯液槽11からの排ガスを集合させる集合管12と、不活性ガス及び排ガスを流通させて複数の貯液槽11の内部圧力を制御する圧力制御配管13とを備える。また、圧力制御配管13は、連結部30を介して集合管12と連結し、集合管12との連結部30を挟んだ前後に一対の圧力制御バルブ31,32が備えられている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ニッケル酸化鉱石の湿式製錬方法における硫化工程において、粗硫酸ニッケル溶液等の硫酸塩溶液を硫化させて硫化物を生成させる硫化設備に用いられる貯液装置及びその圧力制御方法に関する。
【背景技術】
【0002】
近年、ニッケル酸化鉱石の湿式製錬法として、硫酸を用いた高温加圧酸浸出法(High Pressure Acid Leach)が注目されている。この方法は、乾燥及び焙焼工程等の乾式処理工程を含まず、一貫した湿式工程からなるので、エネルギー的及びコスト的に有利であるとともに、ニッケル品位を50重量%程度まで向上させたニッケル・コバルト混合硫化物を得ることができるという利点を有している。
【0003】
具体的に、ニッケル・コバルト混合硫化物を得るための高温加圧酸浸出法としては、例えばニッケル酸化鉱石を高温加圧酸浸出し、ニッケル及びコバルトのほか、不純物元素として亜鉛を含有する粗硫酸ニッケル水溶液を得る工程(1)と、粗硫酸ニッケル水溶液を硫化反応槽内に導入し、硫化水素ガスを添加して、粗硫酸ニッケル水溶液中に含有される亜鉛を硫化し、その後固液分離して形成された亜鉛硫化物と脱亜鉛終液を得る工程(2)と、脱亜鉛終液を硫化反応槽内に導入し、硫化水素ガスを添加して、脱亜鉛終液中に含有されるニッケル及びコバルトを硫化し、続いて形成されたスラリーを曝気設備に導入して硫化水素ガスを曝気し、その後固液分離してニッケル・コバルト混合硫化物と製錬廃液を得る工程(3)と、工程(2)及び工程(3)で発生する排ガス中の硫化水素ガスを除害処理する工程(4)とを含む。
【0004】
この高温加圧酸浸出法の工程(2)及び(3)における硫化工程において使用される硫化反応槽としては、通常、反応始液の供給口と、反応後のスラリーの排出口と、硫化水素ガスの装入口と、気相中のガスを排ガスとして排出する排ガス口とを備えた密閉型の反応槽からなる。
【0005】
また、通常、工程(2)及び(3)における硫化工程は、上述した硫化反応槽のほかに、硫化反応後のスラリーやろ液を貯液する貯液槽や中継槽(以下、単に貯液槽という)、固液分離槽等のタンク類、スラリー等の中間溶液や不活性ガス等をタンクへ供給する供給管及びタンクから排出する排出管、またタンク類を連結する配管等によって構成された硫化設備において行われる。
【0006】
このような硫化設備にて実行される工程(2)及び(3)では、効率的な処理を行うことによって高い回収率で硫化物を回収することが求められており、これまでも種々の技術が提案されている。
【0007】
例えば、特許文献1には、硫化剤として硫化水素ガスを用いて、気相中の硫化水素濃度を調整し、液中のORPやpHを正確に制御することにより金属の硫化反応を制御する方法が開示されている。また、特許文献2には、硫化反応の促進と同時に硫化反応槽内面への生成硫化物の付着を抑制するため、硫化物種晶を添加する方法が開示されている。さらに、特許文献3には、コバルト及び亜鉛を含有する硫酸ニッケル水溶液のpH及びORPを調整して、亜鉛を優先的に分離する方法等が開示されている。
【0008】
これらのような技術に基づいて、従来、例えば工程(3)の操業方法として、硫化反応槽内の気相部に、硫化水素濃度95容量%以上の硫化水素ガスを吹き込んで、その内圧力を所定値に制御しながら、硫化反応槽中に導入する反応始液のニッケル濃度、導入流量、温度、pH等の操業条件を所定値に管理するとともに、必要により硫化物種晶を添加する運転が行われている。これにより、95%以上のニッケル回収率を確保することが可能となっている。
【0009】
そして、これ以上に安定的にニッケル回収率を向上させるためには、硫化設備内の温度や圧力を高めた状態で行うことが考えられる。しかしこの場合、硫化水素ガス使用量並びに反応系からの排ガスの処理コスト、又は反応槽コストが問題となる。
【0010】
また、高温加圧酸浸出法の実操業プラントである湿式製錬プラントに工業上用いられる硫化水素ガス製造設備においては、硫化水素濃度が100容量%未満のガスを製造し使用することが、その製造効率上有利となる。そのため、硫化反応のために添加される硫化水素ガス中には、硫化水素ガス製造工程の原料である水素や硫化水素ガス製造工程で混入する窒素等の不活性成分が2〜3容量%程度含まれている。すなわち、硫化反応に使用される硫化水素ガスには、硫化反応に関与しない不活性成分である水素や窒素等が含まれている。そのため、工程(2)、(3)のような硫化工程の操業を継続して行う際には、その硫化水素ガスに含まれる不活性成分が、硫化反応槽や上述した硫化反応後のスラリー等を貯液する貯液槽内に蓄積されてしまい、硫化反応の効率を低下させる原因になっている。
【0011】
したがって、これらの課題の解決には、硫化反応に際して使用する硫化水素ガスの利用効率の向上が求められる。しかしながら、上述した従来技術には、硫化水素ガスの利用効率の向上については何ら言及されていない。
【0012】
その点に関して、例えば特許文献4には、装入するニッケル量によって硫化反応槽の容積を調整する方法や、硫化反応槽から排出される硫化水素ガスを回収して再利用する等の方法により硫化水素ガスの利用効率を向上させる技術が開示されている。この技術により、高いニッケル回収率を確保しながら、硫化水素の使用量及びアルカリの使用量を削減することが可能となっている。
【0013】
しかしながら、特許文献4に記載の技術においても、硫化工程(2)、(3)において用いられる複数の硫化反応槽における設備的な問題点については何ら言及されていない。したがって、より一層に効率的に、硫化水素ガスの利用効率を向上させるために、硫化設備の設備構成についての新たな技術が求められている。
【0014】
ところで、上記工程(2)や工程(3)が実行される硫化設備において、貯液槽は複数備えられており、硫化反応後のスラリーを受け入れて貯液し固液分離槽に向けて排出する、または固液分離後のろ液を受け入れて硫化反応槽に繰り返し供給する等が行われる。貯液槽が複数用いられる理由は、密閉型の容器という特徴を持たせる必要性から一定の制限があるとともに、上述のように多様な目的のために使用して被処理物の量を増加させて生産量を多くしたいという要請があるからである。
【0015】
図4は、従来の貯液槽50を模式的に示した構成図である。図4に示すように、貯液槽50は、硫化反応後のスラリーや固液分離後のろ液等を装入する装入管51と、貯液したスラリーやろ液等を排出する排出管52と、硫化反応には関与しない不活性ガス(例えば、窒素ガス等)を供給する不活性ガス供給管53と、貯液槽50の内部のガスを排出するガス排出管54とを備えている。
【0016】
また、図5は、上記工程(2)及び(3)における硫化工程が実行される、従来の硫化設備に備えられた複数の貯液槽50を模式的に示した構成図である。図5に示されるように、各貯液槽50は、それぞれ、不活性ガス供給管53とガス排出管54とを1本ずつ有している。また、各不活性ガス供給管53及び各ガス排出管54には、圧力制御バルブ55,56がそれぞれ設けられており、不活性ガス供給設備から供給される不活性ガス供給量又は排ガスの除害設備への排出を各個別に制御して、貯液槽50内の圧力を制御する。
【0017】
このような構成を有する複数の貯液槽50では、操業に伴ってスラリーやろ液等が出入りすることにより貯液槽50内の液面が上下し、その液面の上下に伴って気相部分の気圧が上下する。そのため、液面の上昇又は下降による圧力の変化に伴い、それぞれの貯液槽50において圧力制御バルブ55,56を調整することによって、貯液槽50内の圧力を一定に保つようにしている。すなわち、貯液槽50内のガスの一部を排ガスとして排出したり、不活性ガスを貯液槽50内に供給することによって、圧力を一定に保つようにしている。
【0018】
しかしながら、このとき、排ガスとしては、不活性成分だけでなく残留している硫化水素ガスも含有されており、排ガスの排出により硫化水素ガスのロスが生じてしまう。すなわち、貯液槽50に貯液されたスラリー等から硫化水素ガスが気化し、気化した硫化水素ガスが排ガスの一部として排出されることにより、生成する硫化物の生成量も減少してしまうこととなる。特に、硫化設備に複数備えられている貯液槽50では、各貯液槽50が各個別に独立して圧力を制御して排ガスの排出等の操作を行っているので、硫化水素ガスの排ガスとしての排出量の総量も必然的に多くなり、硫化水素ガスのロスはますます大きくなる。
【0019】
しかも、各貯液槽50内からの排ガスは、上記工程(4)において、例えばアルカリ処理液に接触させて排ガス中に含まれる硫化水素ガスを除害する処理が必須となる。したがって、硫化水素ガスが排ガスとして排出される量が多くなることによって、工程(4)において使用されるアルカリ処理液の使用量も増加してしまうことにつながる。
【0020】
このように、従来の硫化設備においては、硫化水素ガスのロスが多く、硫化水素ガスの利用効率をより一層向上させるために、硫化設備の設備構成についての新たな技術が求められている。特に、硫化反応後のスラリーや固液分離後のろ液を貯液する貯液槽50においては、残存している硫化水素ガスを繰り返し硫化反応に使用することが可能となるので、その貯液槽50からの硫化水素ガスの損失を効率的に抑えることが望まれている。
【先行技術文献】
【特許文献】
【0021】
【特許文献1】特開2003−313617号公報
【特許文献2】特開2005−350766号公報
【特許文献3】特開2002−454624号公報
【特許文献4】特開2010−031302号公報
【発明の概要】
【発明が解決しようとする課題】
【0022】
本発明は、このような実情に鑑みて提案されたものであり、ニッケル酸化鉱石の湿式製錬における硫化工程が行われる硫化設備のうち、貯液槽における設備的な改善を図ることにより、排ガス処理に用いるアルカリ使用量を削減し、操業コストを低減させる貯液装置及びその圧力制御方法を提供することを目的とする。
【課題を解決するための手段】
【0023】
本発明者らは、上記目的を達成するために、ニッケル酸化鉱石の湿式製錬方法の硫化設備における貯液装置に関して、硫化水素ガスの利用効率を向上させる方法について鋭意検討を重ねた。その結果、複数の貯液槽から構成される貯液装置において、不活性ガスの供給及び排ガスの排出を効率的に制御可能なように変更することにより、硫化工程における硫化水素ガスの利用効率を向上させるとともに、排出される硫化水素ガスを処理するためのアルカリ処理液の処理量を低減させることが可能であることを見出し、本発明を完成させた。
【0024】
すなわち、本発明に係る硫化反応装置は、ニッケル酸化鉱石の湿式製錬方法における硫化工程において、硫酸塩溶液を硫化させて硫化物を生成させる硫化設備に用いられる貯液装置であって、硫化反応後のスラリー又は固液分離後のろ液を装入する装入管と、不活性ガスを供給するとともに気相中のガスを排ガスとして排出する給排気管と、該スラリー又はろ液を排出する排出管とを有する複数の貯液槽と、一端が上記複数の貯液槽の各給排気管との接続部を並列に配置した分岐管となっており、該接続部を介して該各給排気管を接続させて、該複数の貯液槽に供給する上記不活性ガス及び該複数の貯液槽から排出される上記排ガスを集合させる集合管と、一端から上記複数の貯液槽へ供給する不活性ガスを流通させるとともに、他端へ上記複数の貯液槽から排出される上記排ガスを流通させ、該複数の貯液槽の内部の圧力を制御する圧力制御配管とを備え、上記圧力制御配管は、上記集合管の他端と連結部を介して連結しており、該連結部を挟んだ前後に一対の圧力制御バルブを有し、該圧力制御バルブによって、上記各貯液槽への上記不活性ガスの供給及び該各貯液槽からの排ガスの排出を制御することを特徴とする。
【0025】
また、本発明に係る圧力制御方法は、上記貯液装置を用いた圧力制御方法であって、上記圧力制御配管の一端に不活性ガス供給設備を接続して不活性ガスを供給可能とし、他端に上記排ガスを処理する除害設備を接続して該排ガスを排出可能とし、上記複数の貯液槽の内部の圧力が0.5kPa未満となった場合には、上記不活性ガス供給設備側の上記圧力制御バルブを調整して該複数の貯液槽に上記不活性ガスを供給し、上記複数の貯液槽の内部の圧力が1.0kPaより大きくなった場合には、上記除害設備側の上記圧力制御バルブを調整して該複数の貯液槽の気相部のガスを排ガスとして排出することを特徴とする。
【0026】
ここで、上記複数の貯液槽では、各貯液槽毎に個別に、スラリー又はろ液が上記装入管から装入されるとともに上記排出管から排出されることを特徴とする。
【発明の効果】
【0027】
本発明に係る貯液装置及びその圧力制御方法によれば、ニッケル酸化鉱石の湿式製錬方法において、硫化水素ガスの利用効率を向上させることが可能となり、硫化工程での硫化水素ガスの使用量並びに排ガス処理に用いるアルカリ処理液の使用量を削減して操業コストを大幅に低減させることができ、その工業的価値は極めて大きい。
【図面の簡単な説明】
【0028】
【図1】高温加圧酸浸出法によるニッケル酸化鉱石の湿式製錬方法の工程の一例を表す図である。
【図2】本発明に係る貯液装置を構成する貯液槽を模式的に示した図である。
【図3】本発明に係る貯液装置を模式的に示した図である。
【図4】従来の貯液槽を模式的に示した図である。
【図5】従来の硫化設備に備えられていた複数の貯液槽を模式的に示した図である。
【発明を実施するための形態】
【0029】
本実施の形態に係る貯液装置及びその圧力制御方法は、ニッケル酸化鉱石の湿式製錬方法における硫化工程において、粗硫酸ニッケル水溶液等の硫酸塩溶液を硫化させて硫化物を生成させる硫化設備に用いられる貯液装置及びその圧力制御方法である。
【0030】
以下、本実施の形態に係る貯液装置及びその圧力制御方法について、図面を参照して、以下に示す順序で詳細に説明する。
1.ニッケル酸化鉱石の湿式製錬方法(高温加圧酸浸出法)
1−1.第1の工程(硫酸塩溶液生成工程)
1−2.第2の工程(亜鉛硫化物生成工程)
1−3.第3の工程(ニッケル・コバルト混合硫化物生成工程)
1−4.第4の工程(排ガス処理工程)
2.硫化設備について
2−1.貯液装置
2−2.貯液装置の圧力制御反応
3.まとめ
4.実施例
【0031】
<1.ニッケル酸化鉱石の湿式製錬方法(高温加圧酸浸出法)>
先ず、本実施の形態に係る貯液装置及びその圧力制御方法について説明するに先立ち、それらが使用される硫化工程を一工程に含む、ニッケル酸化鉱石の湿式製錬方法について、高温加圧酸浸出法を一例として説明する。
【0032】
図1は、ニッケル酸化鉱石を高温加圧酸浸出法により製錬する製錬工程の概略を示す図である。図1に示すように、高温加圧酸浸出法による湿式製錬方法は、ニッケル酸化鉱石を高温加圧酸浸出し、ニッケル及びコバルトのほか、不純物元素として亜鉛を含有する粗硫酸ニッケル溶液等の硫酸塩溶液を得る工程(第1の工程)と、硫酸塩溶液を硫化反応槽(A)内に導入し、硫化水素ガスを添加して、硫酸塩溶液中に含有される亜鉛を硫化し、その後固液分離して形成された亜鉛硫化物と脱亜鉛終液を得る工程(第2の工程)と、脱亜鉛終液を硫化反応槽(B)内に導入し、硫化水素ガスを添加して、脱亜鉛終液中に含有されるニッケル及びコバルトを硫化し、続いて形成されたスラリーを曝気設備に導入して硫化水素ガスを曝気し、その後固液分離してニッケル・コバルト混合硫化物と製錬廃液を得る工程(第3の工程)と、第2の工程及び第3の工程において排出された排ガスを、除害塔へ導入し、アルカリ処理液と接触させて硫化水素ガスを吸収させ、除害された排ガスと除害塔廃液を得る工程(第4の工程)とを有する。
【0033】
なお、本実施の形態に係る貯液装置は、上述の第2の工程及び第3の工程において使用する硫化反応槽(A)及び(B)から排出されるスラリーを受け入れて貯液し固液分離装置に供給し、また固液分離して生成したろ液を硫化反応槽(A)及び(B)に繰り返し供給する等の処理を実行するものである。硫化反応槽の(A)、(B)の表示は、それぞれ各工程で個別の硫化反応槽を使用することを明示するものである。
【0034】
<1−1.第1の工程(硫酸塩溶液生成工程)>
第1の工程では、ニッケル酸化鉱石を高温加圧酸浸出し、ニッケル及びコバルトのほか、不純物元素として亜鉛を含有する硫酸塩溶液を得る。
【0035】
具体的には、この第1の工程は、ニッケル酸化鉱石のスラリーに硫酸を添加し、オートクレーブを用いた200℃以上の高温高圧下で浸出させて、浸出スラリーを得る浸出工程と、浸出スラリー中の浸出残渣とニッケル及びコバルトを含む浸出液を分離する固液分離工程と、ニッケル及びコバルトと共に不純物元素を含む浸出液のpHを調整し、鉄等の不純物元素を含む中和澱物スラリーと不純物元素の大部分を除去した硫化反応始液である硫酸塩溶液を生成する中和工程とを有する。
【0036】
(1)浸出工程
浸出工程では、ニッケル酸化鉱石のスラリーに硫酸を添加し、200℃以上の高温高圧下で浸出させて、浸出スラリーを得る。
【0037】
浸出工程における高温加圧酸浸出の方法としては、特に限定されるものではなく、例えば以下の方法で行われる。すなわち、先ず、ニッケル酸化鉱石をスラリー化し、鉱石スラリーを調製する。次に、移送された鉱石スラリーに硫酸を添加し、さらに酸化剤として高圧空気及び加熱源として高圧水蒸気を吹き込み、所定の圧力及び温度下に制御しながら撹拌して、浸出残渣と浸出液からなる浸出スラリーを形成し、ニッケル及びコバルトを含む浸出液を得る。
【0038】
ここで、浸出操作は、所定温度により形成される加圧下、例えば3〜6MPaGで行われるので、これらの条件に対応可能な高温加圧容器(オートクレーブ)が用いられる。これにより、ニッケルとコバルトの浸出率を、いずれも90%以上、好ましくは95%以上とすることができる。
【0039】
ニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱が用いられる。ラテライト鉱のニッケル含有量は、通常、0.5〜3.0質量%であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含有される。また、鉄の含有量は、10〜50質量%であり、主として3価の水酸化物(ゲーサイト、FeOOH)の形態であるが、一部2価の鉄がケイ苦土鉱物に含有される。
【0040】
スラリー濃度としては、処理されるニッケル酸化鉱の性質に大きく左右されるため、特に限定されるものではないが、浸出スラリーのスラリー濃度は高い方が好ましく、通常、概ね25〜45質量%に調製される。浸出スラリーのスラリー濃度が25質量%未満では、浸出に際して、同じ滞留時間を得るために大きな設備が必要となり、残留酸濃度を調整のために酸の添加量も増加する。また、得られる浸出液のニッケル濃度も低くなる。一方、スラリー濃度が45質量%を超えると、設備の規模は小さくできるものの、スラリー自体の粘性(降伏応力)が高くなり、搬送が困難(管内閉塞の頻発、エネルギーを要する等)という問題が生じることとなる。
【0041】
この浸出工程における操作では、下記の式(I)〜(V)で表される浸出反応と高温加水分解反応とによって、ニッケル、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われる。ただし、鉄イオンの固定化は、完全には進行しないため、通常、得られる浸出スラリーの液部分には、ニッケル、コバルト等のほかに2価と3価の鉄イオンが含まれる。
【0042】
《浸出反応》
MO+HSO ⇒ MSO+HO ・・・(I)
(式中Mは、Ni、Co、Fe、Zn、Cu、Mg、Cr、Mn等を表す。)
2FeOOH+3HSO ⇒ Fe(SO+4HO ・・・(II)
FeO+HSO ⇒ FeSO+HO ・・・(III)
《高温加水分解反応》
2FeSO+HSO+1/2O ⇒ Fe(SO+HO ・・(IV)
Fe(SO+3HO⇒ Fe+3HSO ・・・(V)
【0043】
浸出工程における操作温度は、特に限定されるものではないが、220〜280℃とすることが好ましく、240〜270℃とすることがより好ましい。温度を220〜280℃の範囲とすることにより、鉄はヘマタイトとして大部分が固定されることとなる。一方、温度を220℃未満とした場合には、高温熱加水分解反応の速度が遅いため反応溶液中に鉄が溶存して残り、鉄を除去するための後続の中和工程の負荷が増加し、ニッケルとの分離が非常に困難となる。また、温度を280℃より高くした場合には、高温熱加水分解反応自体は促進されるものの、高温加圧浸出に用いる容器の材質の選定が難しくなり、温度上昇にかかる蒸気コストが上昇する可能性があり好ましくない。
【0044】
また、浸出工程で用いる硫酸量は、特に限定されるものではなく、ニッケル酸化鉱石中の鉄が浸出されるように過剰量とすることが好ましい。例えば、鉱石1トン当り200〜500kgとすることが好ましい。鉱石1トンあたり硫酸添加量が500kgを超えると、硫酸コストが大きくなるため好ましくない。
【0045】
なお、得られる浸出液のpHは、固液分離工程で生成されたヘマタイトを含む浸出残渣のろ過性から、0.1〜1.0に調整することが好ましい。
【0046】
以上のようにして、浸出工程では、その残渣部分の大部分がヘマタイトである浸出スラリーが生成する。この浸出スラリーは、次に固液分離工程に送られる。
【0047】
(2)固液分離工程
固液分離工程では、上述した浸出工程で形成される浸出スラリーを多段洗浄し、ニッケル及びコバルトのほか、不純物元素として亜鉛を含有する浸出液と浸出残渣とを得る。
【0048】
この固液分離工程では、浸出スラリーを洗浄液と混合した後、シックナーで固液分離を行う。具体的には、先ず、スラリーを洗浄液により希釈し、次に浸出残渣をシックナーの沈降物として濃縮して、浸出残渣に付着するニッケル分をその希釈の度合に応じて減少させる。実操業では、このような機能を持つシックナーを多段に連結させて用いる。
【0049】
固液分離工程における多段洗浄としては、特に限定されるものではないが、ニッケルを含まない洗浄液で向流に接触させる連続交流洗浄法(CCD法:Counter Current Decantation)が好ましい。これによって、系内に新たに導入する洗浄液を削減するとともに、ニッケル及びコバルトの回収率を95%以上とすることができる。
【0050】
固液分離工程において用いる洗浄液としては、特に限定されるものではないが、ニッケルを含まず、この工程に影響を及ぼさないものが好ましく、その中でもpHが1〜3であるものが好ましい。また、洗浄液は、繰り返して使用することが好ましい。
【0051】
沈降後残渣の固体率は、特に限定されるものではなく、30〜50重量%が好ましい。すなわち、固体率が30重量%未満では、付着水分が多くニッケルのロスが大きくなる。一方、固体率が50重量%を超えると、攪拌や送液が困難になる。
【0052】
(3)中和工程
中和工程では、固液分離工程にて生成した、ニッケル及びコバルトとともに不純物元素を含有する浸出液の酸化を抑制しながらpHを調整し、3価の鉄を含む中和澱物スラリーと、不純物の大部分を除去した硫化反応始液である粗硫酸ニッケル溶液等の硫酸塩溶液を生成する。これによって、高温高圧酸浸出工程で用いた過剰の酸の中和を行うとともに、溶液中に残留する3価の鉄イオンの除去を行う。
【0053】
中和工程におけるpH条件は、4以下とすることが好ましく、3.2〜3.8とすることがより好ましい。pHが4を超えると、ニッケルの水酸化物の発生が多くなる。
【0054】
また、中和工程では、溶液中に残留する3価の鉄イオンを除去するに際し、溶液中に2価として存在する鉄イオンを酸化させないことが好ましく、空気の吹込み、巻き込み等による溶液の酸化を防止することが好ましい。
【0055】
中和工程における温度は、50〜80℃とすることが好ましい。温度条件を50℃未満とした場合には、澱物が微細となり、固液分離工程へ悪影響を及ぼす。一方、温度条件を80℃より高くした場合には、装置材料の耐食性の低下や加熱のためのエネルギーコストの増大を招く。
【0056】
<1−2.第2の工程(亜鉛硫化物生成工程)>
第2の工程では、第1の工程で得られた、ニッケル及びコバルトとともに不純物元素として亜鉛を含有する硫酸塩溶液に硫化水素ガスを添加して、亜鉛硫化物と脱亜鉛終液とを得る。
【0057】
具体的に、この第2の工程では、上述の第1の工程で得られた、ニッケル及びコバルトのほか、不純物元素として亜鉛を含有する硫酸塩溶液を硫化反応槽(A)内に導入する。次いで、硫化反応槽内に硫化水素ガスを添加して、硫酸塩溶液中に含有される亜鉛を硫化する(硫化反応)。その後、固液分離して形成された亜鉛硫化物と脱亜鉛終液とを得る。
【0058】
この第2の工程は、続く第3の工程により回収するニッケル・コバルト混合硫化物への亜鉛の混入を防止するために行われるものである。したがって、この第2の工程における硫化反応の条件としては、硫化反応によりニッケル及びコバルトに対して亜鉛が優先的に硫化される条件とすることが好ましい。なお、粗硫酸ニッケル水溶液中に含有される亜鉛量が、後工程で生成されるニッケル・コバルト混合硫化物への混入によりその品質に問題とならない程度に少ない場合には、この第2の工程をパスすることができる。
【0059】
この第2の工程における硫化反応は、具体的に下記の式(VI)〜(VIII)で表される。
【0060】
《硫化反応》
S(g)+HO ⇒ HS in aq ・・・(VI)
S⇒H+HS⇒2H+S2− ・・・(VII)
2++2H+S2−⇒2H+MS↓ ・・・(VIII)
(なお、式中Mは、Zn等を表す。)
【0061】
上記の式(VI)〜(VIII)で表されるように、硫化反応は、先ず、硫化反応槽(A)内に添加された硫化水素ガスの水への溶存反応と、硫化水素の水への溶解反応が必要となる。このとき、溶存硫化水素濃度は、一般的にヘンリー則により、硫化反応槽の気相部の硫化水素圧に比例することとなる。そのため、上記の気液反応速度を増加させるためには、気相部の硫化水素分圧を高めることが重要となる。しかしながら、添加される硫化水素ガス中には窒素ガス等の不活性成分が含有されるので、硫化反応槽(A)内に不活性成分が蓄積されると反応速度が低下する。
【0062】
そこで、複数設けられた硫化反応槽(A)の内部の圧力をそれぞれ制御することにより、不活性成分が蓄積されていた硫化反応槽(A)中の気体を定期的に排出する。具体的には、硫化反応槽(A)内に不活性成分が蓄積し、硫化反応槽(A)内の圧力が上昇して所定のコントロール圧力を超えたとき、その時点で硫化反応槽(A)の気相を形成する気体が圧力コントロール弁から排出されるようにする。なお、硫化水素ガスを硫化反応槽(A)内に供給する機構として、緩やかに亜鉛と硫化水素ガスを反応させるために硫化水素ガスの供給圧に比べて硫化反応槽(A)内の圧力を10%以下にコントロールするという方式をとっている。
【0063】
この第2の工程における硫化反応に際しての反応温度としては、特に限定されるものではないが、65〜90℃であることが好ましい。硫化反応自体は、一般的に高温ほど促進されるものの、90℃を超えると温度を上昇するためにコストがかかり、反応速度が速いため硫化反応槽(A)への硫化物の付着起こること等の問題が生じる可能性がある。
【0064】
また、硫化反応槽(A)内への硫化水素ガスの供給方法としては、特に限定されるものではないが、硫化反応槽(A)に導入された液を機械的に撹拌しながら、硫化反応槽(A)の上部空間部分(気相部)又は液中に吹き込むことにより行う。
【0065】
本実施の形態に係る貯液装置は、第2の工程において使用される硫化反応槽(A)とともに硫化設備を構成している。貯液装置は、複数の貯液槽を備えており、その内の一部の貯液槽は、硫化反応槽(A)おける硫化反応によって生成したスラリーを受け入れ、貯液する。その貯液槽は、貯液したスラリーを固液分離槽に供給し、固液分離されることとなる。この本実施の形態に係る貯液装置についての詳細は、後述する。
【0066】
<1−3.第3の工程(ニッケル・コバルト混合硫化物生成工程)>
第3の工程では、硫化水素ガスを添加して、第2の工程で得られた脱亜鉛終液中に含有されるニッケル及びコバルトを硫化し、ニッケル・コバルト混合硫化物と製錬廃液を得る。
【0067】
具体的に、第3の工程では、上述した第2の工程で得られた脱亜鉛終液を硫化反応装置(B)内に導入し、硫化水素ガスを添加して、脱亜鉛終液中に含有されるニッケル及びコバルトを硫化する。続いて、形成されたスラリーを曝気設備に導入して硫化水素ガスを曝気する。その後、固液分離してニッケル・コバルト混合硫化物と製錬廃液とを得る。なお、スラリーからの硫化水素ガスの曝気は、製錬廃液の除害処理のため行われるものである。
【0068】
この第3の工程においては、上述した第2の工程における硫化反応と同様に、上記式(VI)〜(VIII)の反応が行われる。なお、第3の工程における硫化反応の場合、式中Mは、Ni、Coを表す。
【0069】
また、この第3の工程の硫化反応においては、必要に応じて、製造されたニッケル及びコバルトを含む硫化物からなる種晶を、硫化反応槽(B)内に投入することができる。ここで、種晶の割合としては、特に限定されるものではないが、硫化反応槽(B)に投入するニッケル及びコバルト量に対し150〜400質量%に相当する量が好ましい。このように、種晶を投入することによって、硫化物の核生成を種晶表面で起こして析出が起こりやすい状態とすることができるので、より低温度で硫化反応を促進させることができる。また、硫化物の微細核が硫化反応槽内部で発生することを抑制することができるので、硫化反応槽内面への生成硫化物の付着を抑制することができる。さらに、投入する種晶の粒径を調整することによって得られる粒子径を制御することもできる。
【0070】
なお、硫化反応槽内の圧力制御や、硫化反応温度、硫化水素ガスの添加方法等は、上述した第2の工程における条件と同様の条件を適用することができる。また、硫化水素ガスを硫化反応槽(B)内に供給する機構として、硫化水素ガスの供給圧に比べて硫化反応槽(B)内の圧力を50〜80%にコントロールするという方式をとっている。
【0071】
本実施の形態に係る貯液装置は、第3の工程において使用される硫化反応槽(B)とともに硫化設備を構成している。貯液装置は、複数の貯液槽を備えており、その内の一部の貯液槽は、硫化反応槽(B)おける硫化反応によって生成したスラリーやニッケルやコバルトを回収した後の硫化水素ガスを含んだ液を受け入れ、貯液する。その貯液槽は、貯液したスラリーを固液分離槽に供給し、固液分離されることとなる。このような貯液装置についての詳細は、後述する。なお、この第3の工程において用いられる貯液装置は、第2の工程において硫化設備を構成する貯液装置とは別の貯液装置である。
【0072】
<1−4.第4の工程(排ガス処理工程)>
第4の工程では、第2の工程及び第3の工程にて排出された排ガスをアルカリ処理液によって処理する。
【0073】
具体的に、第4の工程では、上述した第2の工程にて使用された硫化反応槽(A)や貯液装置、第3の工程にて使用された硫化反応槽(B)や貯液装置、並びに曝気設備からの排ガスを、除害設備へ導入する。そして、除害設備に導入された排ガスを、アルカリ処理液に接触させて除害し、除害された排ガスと除害塔廃液とを得る。
【0074】
この第4の工程で用いる除害設備としては、特に限定されるものではなく、例えばスクラバー等、アルカリ処理液と排ガスの接触が効果的に行われる形式のものが好ましく用いられる。
【0075】
上述したように、第4の工程において処理する排ガスは、第2及び第3の工程において使用された硫化反応槽(A)(B)や貯液装置から排出されたものであり、その排ガスには硫化反応に用いられる硫化水素ガスが含有されている。この第4の工程では、排ガス中に含まれる硫化水素ガスを除害化するために、アルカリ処理液を用いて処理する。したがって、排ガス中に含まれる硫化水素ガスが多い場合には、硫化水素ガスを無駄に排出することになるとともに、除害化するためのアルカリ処理液の使用量も多くなることになる。
【0076】
<2.硫化設備について>
次に、上述したニッケル酸化鉱石の湿式製錬方法の第2の工程及び第3の工程において使用される硫化設備について説明する。硫化設備は、主に、硫化反応が行われる硫化反応槽と、硫化反応後のスラリーや固液分離後のろ液を貯液する貯液装置と、スラリー等の中間溶液や不活性ガス等をタンクへ供給する供給管及びタンクから排出する排出管と、また硫化反応槽と貯液装置とを連結する配管等によって構成されている。
【0077】
硫化反応槽としては、通常、硫酸塩溶液等の反応始液を供給する供給口と、反応後のスラリーを排出する排出口と、硫化水素ガスを装入する装入口と、硫化反応槽内のガスの一部を排ガスとして排出する排ガス口とを備えた密閉型の反応槽からなる。この硫化反応槽における硫化反応により生成したスラリーは、本実施の形態に係る貯液装置に装入されて貯液されることとなる。また、本実施の形態に係る貯液装置は、固液分離後のろ液が装入されて貯液されることとなる。以下、本実施の形態に係る貯液装置及びその圧力制御方法について詳述する。
【0078】
<2−1.貯液装置>
本実施の形態に係る貯液装置は、ニッケル酸化鉱石の湿式製錬方法における硫化工程において、硫酸塩溶液を硫化させて硫化物を生成させる硫化設備に用いられる貯液装置であって、硫化水素ガスの利用効率を向上させることが可能な貯液装置である。この貯液装置によれば、硫化水素ガスの使用量を減少させるとともに、上述した第4の工程における硫化水素ガスを含んだ排ガス処理に用いるアルカリ処理液の使用量を減少させることができる。
【0079】
図2は、本実施の形態に係る貯液装置を模式的に示した図である。図2に示されるように、この貯液装置10は、上述の第2及び第3の工程にて硫酸塩溶液が硫化されて生成したスラリー又は固液分離後のろ液を貯液する複数の貯液槽11(11,11,・・・11(以下、「11」とする。))と、各貯液槽11に供給される窒素ガス等の不活性ガス又は各貯液槽11から排出される排ガスを集合させる集合管12と、不活性ガスを流通させるとともに排ガスを流通させて複数の貯液槽11の内部の圧力を制御する圧力制御配管13を備える。
【0080】
(貯液槽)
貯液槽11は、硫酸塩溶液を硫化させることにより生成したスラリーを硫化反応槽から受け入れ、そのスラリーを貯液するとともに、貯液したスラリーを固液分離槽に供給する。また、固液分離槽から供給された固液分離後のろ液を受け入れて貯液し、繰り返し硫化反応槽に供給する。このように、本実施の形態に係る貯液装置10は、貯液槽11を複数備えており、各貯液槽11毎に多様な目的のために使用される。貯液装置10に備えられる貯液槽11の数は、特に限定されるものでなく、生産量等により適宜選択することができる。
【0081】
図3は、本実施の形態に係る貯液装置10を構成する貯液槽11を模式的に示した構成図である。より具体的に、貯液槽11は、硫化反応後のスラリー又は固液分離後のろ液を装入する装入管21と、不活性ガスを供給するとともに気相中のガスを排ガスとして排出する給排気管22と、貯液したスラリー又はろ液を排出する排出管23とからなる。
【0082】
装入管21は、硫酸塩溶液が硫化反応槽内において硫化された後に生成したスラリーを供給する。または、固液分離槽における固液分離後のろ液を供給する。この装入管21は、貯液槽11毎に個別に設けられており、装入管21を介して貯液槽11毎に個別にスラリーやろ液が供給される。
【0083】
給排気管22は、不活性ガス供給設備から供給される窒素ガス等の硫化反応に関与しない不活性ガスを貯液槽11に送流するとともに、貯液槽11の気相中のガスの一部を排ガスとして排出する。この給排気管22は、貯液槽11毎に個別に設けられており、給排気管22を介して貯液槽11毎に個別に、不活性ガスが供給されるとともに排ガスが排出される。
【0084】
このように、給排気管22を介して貯液槽11内への不活性ガスの供給及び貯液槽11内からの排ガスの排出を行うことにより、貯液槽11の内部の圧力を制御することができ、貯液槽11が損傷することを防止することができる。
【0085】
ここで、硫化反応のために硫化反応槽において供給した硫化水素ガスは、この貯液槽11内において、スラリー溶液からの気化とスラリーへの溶解が行われており、ほとんど平衡に達している。
【0086】
また、特に、本実施の形態に係る貯液装置10においては、各貯液槽11の給排気管22を後述する1本の集合管12にそれぞれ連結させることによって給排気するガスを集合させ、またその集合管12を後述する1本の圧力制御配管13に連結させている。そして、圧力制御配管13を介して、貯液槽11全体の内部圧力に基づき、不活性ガスの供給及び排ガスの排出を行っている。
【0087】
これにより、貯液装置10において複数の貯液槽11を備えていても、1つの貯液槽を備えてスラリーやろ液の貯液を行っているのと同様の状態とすることが可能となり、従来のように各貯液槽を個別に制御する場合に比べて、排出する排ガスの量を減少させることができる。そしてその結果、硫化反応に用いられるべき硫化水素ガスの損失を抑制することができ、硫化水素ガスを効率的に使用できる。また、硫化水素ガスの損失を抑制できることから、上述した第4の工程における硫化水素ガスの除害に用いるアルカリ処理液の使用量をも低減させることができる。
【0088】
排出管23は、貯液したスラリー又はろ液を排出する。例えば、貯液槽11に貯液されたスラリーは、固液分離処理を行うために固液分離装置に排出される。また、貯液槽11に貯液されたろ液は、溶解している硫化水素ガスを再利用するためのタンク等に排出される。この排出管23は、貯液槽11毎に個別に設けられており、排気管23を介して貯液槽11毎に個別に、スラリー又はろ液が排出される。
【0089】
(集合管)
集合管12は、後述する圧力制御配管13を介して供給され各貯液槽11に供給する不活性ガスの流通路になるとともに、各貯液槽11から排出され圧力制御配管13を介して除害設備に送られる排ガスの流通路になる。
【0090】
より具体的に、この集合管12は、一端が複数の貯液槽11の各給排気管22との接続部33を並列に配置した分岐管となっており、その並列に配置された接続部33を介して各貯液槽11の給排気管22をそれぞれ接続可能にしている。また、集合管12は、その他端において、連結部30を介して後述する圧力制御配管13と連結している。本実施の形態に係る貯液装置10においては、この集合管12を備えることにより、不活性ガス供給設備から圧力制御配管13を介して各貯液槽11に供給される不活性ガスが集合される。また、各貯液槽11から圧力制御配管13を介して除害設備へ排出される排ガスが集合される。
【0091】
(圧力制御配管)
圧力制御配管13は、一端が不活性ガス供給設備と接続され、不活性ガス供給設備から供給される不活性ガスを各貯液槽11に流通させる。また、圧力制御配管13は、他端が除害設備と接続され、上述した各貯液槽11の気相中のガスの一部を排ガスとして除害設備へと流通させ排出する。
【0092】
また、圧力制御配管13は、上述した集合管12を連結させる連結部30を有し、連結部30を介して集合管12を連結しており、またその連結部30を挟んだ前後に、ガスを封止可能な一対の圧力制御バルブ31,32を備えている。つまり、集合管12との連結部30を挟んで、不活性ガス供給設備側と除害設備側とにおいて、それぞれ圧力制御バルブ31,32を備えている。これにより、不活性ガス供給設備側の圧力制御バルブ31を調整することによって、不活性ガス供給設備から供給される不活性ガスの貯液槽11への供給を調整し、貯液槽11の圧力を制御する。また、除害設備側の圧力制御バルブ32を調整することによって、貯液槽11内の気相の一部を構成するガスの排出を調整し、貯液槽11の圧力を制御する。
【0093】
さらに、この圧力制御配管13は、本実施の形態に係る貯液装置10を構成する複数の貯液槽11の内部の圧力を測定する圧力計を備えている。この圧力計によって、複数の貯液槽11の内部の圧力を測定し、その測定結果に基づいて圧力制御配管13に設けられた一対の圧力制御バルブ31,32を調整することにより、正確に貯液槽11の内部の圧力を制御することができる。そしてこれにより、より一層に硫化水素ガスの利用効率を向上させることができる。
【0094】
以上のような構成を有する本実施の形態に係る貯液装置10によれば、各貯液槽11に対して供給される不活性ガスの供給量及び各貯液槽11から排出される排ガスの排出量に基づき貯液槽11内の圧力を制御するにあたって、複数の貯液槽11の圧力を総合的に管理することが可能となる。すなわち、各貯液槽11において、供給される不活性ガス及び各貯液槽11からの排ガスをそれぞれ1本の給排気管22によって行い、その各貯液槽11の給排気管22を集合管12によって集合させ、圧力制御配管13を介して供給及び排出の制御を行うことによって、複数の貯液槽11の内部の圧力を総合的に管理して制御することができる。
【0095】
これにより、複数備えられた貯液槽のそれぞれにおいて独立した不活性ガスの供給管及び排ガスの排出管を設けて、各貯液槽毎に独立した圧力制御に基づいて不活性ガスの供給及び排ガスの排出を行う場合に比べて、硫化水素ガスの排ガスとしての排出量を抑制することができる。
【0096】
具体的には、各貯液槽それぞれで独立して圧力制御した場合、貯液槽毎にその内部の圧力を検出し、所定の圧力よりも大きくなったときに、それぞれの貯液槽毎に気相中の一部のガスを排ガスとして排出し、各貯液槽の内部の圧力を低くする。このとき、その排ガス中には、例えばスラリー溶液中から気化した硫化水素ガスが含まれている。貯液槽毎の圧力制御に基づいて排ガスを排出した場合、複数の貯液槽それぞれから所定量の排ガスが排出されることとなるので、貯液装置全体から排出される排ガス中に含まれる硫化水素ガスの総量は必然的に多くなってしまう。
【0097】
これに対し、本実施の形態に係る貯液装置10によれば、不活性ガスの供給及び排ガスの排出を行う各貯液槽11の給排気管22を集合させて、圧力制御配管13を介して、複数の貯液槽11の圧力に基づき、圧力を制御するようにしているので、各貯液槽11からそれぞれ独立して排ガスが排出されることがなくなる。それにより、各貯液槽11から無駄に硫化水素ガスが排出されてしまうことなく、貯液装置10全体から排出される排ガス中の硫化水素ガスの総量を減少させることができる。このようにして各貯液槽11において硫化水素ガスが排出されずに保持される。
【0098】
また、それぞれ個別にスラリーやろ液を装入する装入管21や貯液したスラリーやろ液を排出する排出管23を備え、それぞれ貯液槽11毎に個別にスラリーやろ液の装入及び排出が行われる貯液装置10においては、特に硫化水素ガスの利用効率を高めることができる。
【0099】
具体的には、複数備えられた貯液槽11毎に、個別にスラリーやろ液の装入及び排出が行われることにより、各貯液槽11内の液面は上下して、各貯液槽11の内部の圧力は各貯液槽11間において異なり、一定ではなくなる。このとき、本実施の形態に係る貯液装置10によれば、各貯液槽11間で内部圧力に差が生じても、各貯液槽11間において、集合管12を介して排ガスを分散させることが可能となる。
【0100】
すなわち、複数の貯液槽11のうちの1つの貯液槽11において、例えばスラリーの装入に伴う液面上昇によって内部圧力が上昇した場合、その貯液槽11の気相中のガスの一部が集合管12を介して他の貯液槽11に移動することとなる。このようにして貯液槽11内のガスを他の貯液槽11に分散させることによって、排ガスを除害設備に移行させる量を効果的に減少させることができる。また、これにより、各貯液槽11においても内部圧力の上昇による損傷等を防止することができる。
【0101】
そして、このような本実施の形態に係る貯液装置10によれば、除害処理に用いるアルカリ処理液の使用量も効率的に低減させることができる。すなわち、上述した第4の工程においては、この貯液装置10から排出された排ガスも除害するが、排ガス中に硫化水素ガス量が多い場合には、除害処理に用いるアルカリ処理液の使用量も多くなる。本実施の形態に係る貯液装置10によれば、上述のように、排出される硫化水素ガスの量を減少させることができるので、除害処理に用いるアルカリ処理液の使用量を効果的に低減させることができる。
【0102】
さらに、貯液槽11毎に個別に、不活性ガス供給管と排ガスの排出管とを別々に備えるとともに圧力制御バルブを備え、貯液槽11毎に個別に貯液槽11内の圧力を制御する場合に比べて、配管やバルブ等の使用点数を削減することができる。これにより、操業コストを低くしながら、硫化水素ガスの利用効率を向上させるとともにアルカリ処理液の使用量を低減させ、操業効率を向上させることができる。
【0103】
<2−2.貯液装置の圧力制御方法>
具体的に、本実施の形態に係る貯液装置の圧力制御方法について説明する。上述のように、貯液装置10を構成する各貯液槽11では、各個別にスラリーやろ液等が装入され、また排出される。これにより、各貯液槽11において、スラリーやろ液の装入や排出に伴い、貯液槽11の内部の液面が上下し、貯液槽11内部の圧力も上下することとなる。
【0104】
このとき、貯液槽11からのスラリーやろ液の排出による液面下降により内部の圧力が低くなると、窒素ガス等の不活性ガスを貯液槽11内に供給することによって、圧力を上昇させる。
【0105】
また一方で、貯液槽11へのスラリーやろ液の供給による液面上昇により内部の圧力が高くなると、貯液槽11の気相を構成するガスの一部を排ガスとして排出することによって、圧力を低下させる。これにより、貯液槽11の損傷を防止する。特に、硫化反応槽や貯液槽11での不活性ガスの供給により、その不活性成分が貯液槽11内に蓄積してしまうこともあり、貯液槽11内の圧力低下処理は、適切に行われる。
【0106】
本実施の形態に係る貯液装置では、上述のように、圧力制御配管13の一端に不活性ガス供給設備を接続して不活性ガスを供給可能とし、他端に貯液槽11からの排ガスを処理する除害設備を接続して排ガスを排出可能としている。
【0107】
そして、本実施の形態に係る圧力制御方法は、この貯液装置10を用いて、複数の貯液槽11の内部の圧力が0.5kPa未満となった場合に、不活性ガス供給設備側の圧力制御バルブ31を調整して、圧力制御配管13を介して複数の貯液槽11に窒素ガス等の不活性ガスを供給する。これによって、複数の貯液槽11から構成される貯液装置10全体の圧力を上昇させる。
【0108】
一方で、複数の貯液槽11の内部の圧力が1.0kPaより大きくなった場合には、除害設備側の圧力制御バルブ32を調整して、圧力制御配管13を介して複数の貯液槽11の気相部のガスを排ガスとして排出する。排出された排ガスは、圧力制御配管13を流通して除害設備へと送流される。これによって、複数の貯液槽11から構成される貯液装置10全体の圧力を下降させる。
【0109】
このように、本実施の形態に係る貯液装置10による圧力制御方法は、各貯液槽11を流通するガスを集合管12によって集合させて各貯液槽11間においてガスを流通させるとともに、圧力制御配管13を介して貯液槽11の内部の圧力を上述した範囲に制御する。これにより、容易な構成で効率的に排ガスの排出量や排出回数を削減することができ、硫化水素ガスが排ガスとして排出されてしまうことを抑制することができる。
【0110】
なお、本実施の形態に係る貯液装置10では、各貯液槽11の圧力を検知する圧力検出部と、その圧力検出部に基づいて圧力制御配管13に備えられた一対の圧力制御バルブ31,32を制御する制御部とを設け、この貯液装置10の圧力制御を自動制御するようにしてもよい。
【0111】
具体的に、圧力検出部は、貯液装置10を構成する各貯液槽11の圧力が0.5kPa未満であるか否かを検出する。そして、検出した圧力が0.5kPa未満であった場合には、その検出信号を制御部に供給する。制御部は、受信した検出信号に応じて、不活性ガス供給設備側の圧力制御バルブ31を調整して不活性ガスを貯液槽11に流通させ、圧力が0.5kPa以上となるまで続ける。
【0112】
一方、圧力検出部は、各貯液槽11の圧力が1.0kPaより大きいか否かを検出する。そして、検出した圧力が1.0kPaより大きかった場合には、その検出信号を制御部に供給する。制御部は、受信した検出信号に応じて、除害設備側の圧力制御バルブ32を調整して貯液槽11から排ガスを排出させ、圧力が1.0kPa以下となるまで続ける。
【0113】
このように、圧力検出部の測定結果に基づく制御部による自動制御により貯液装置10の圧力を制御することによって、簡単な構成で、かつ容易に、硫化水素ガスの利用効率を向上させるとともに、アルカリ処理液の使用量を低減させることができる。
【0114】
4.まとめ
以上説明したように、本実施の形態に係る貯液装置10は、ニッケル酸化鉱石の湿式製錬方法における硫化工程において、硫酸塩溶液を硫化させて硫化物を生成させる硫化設備に用いられる貯液装置10であって、上述の第2及び第3の工程にて硫酸塩溶液が硫化されて生成したスラリー又は固液分離後のろ液を貯液する複数の貯液槽11と、各貯液槽11に供給される不活性ガス又は各貯液槽11から排出される排ガスを集合させる集合管12と、不活性ガスを流通させるとともに排ガスを流通させて複数の貯液槽11の内部の圧力を制御する圧力制御配管13とを備える。また、圧力制御配管13には、集合管12と連結部30を介して連結し、その連結部30を挟んだ前後に一対の圧力制御バルブ31,32が備えられている。そして、この貯液装置10においては、圧力制御配管13に備えられた一対の圧力制御バルブ31,32によって、各貯液槽11への不活性ガスの供給及び各貯液槽11からの排ガスの排出を制御する。
【0115】
また、本実施の形態に係る貯液装置の圧力制御方法は、その圧力制御配管13の一端に不活性ガス供給設備を接続して不活性ガスを供給可能とし、他端に排ガスを処理する除害設備を接続して排ガスを排出可能とし、複数の貯液槽11の内部の圧力が0.5kPa未満となった場合には、不活性ガス供給設備側の圧力制御バルブ31を調整して複数の貯液槽11に不活性ガスを供給し、複数の貯液槽11の内部の圧力が1.0kPaより大きくなった場合には、除害設備側の圧力制御バルブ32を調整して複数の貯液槽11の気相部のガスを排ガスとして排出する。
【0116】
このような貯液装置10及びその圧力制御方法によれば、必要以上に排気されていた硫化水素ガスの排出を低減させて、硫化水素ガスの利用効率を向上させることができる。そしてこれにより、硫化工程での硫化水素ガスの使用量並びに排ガス処理に用いるアルカリ処理液の使用量を削減して操業コストを大幅に低減させることができる。
【0117】
5.実施例
以下、本発明の具体的な実施例について説明する。なお、下記のいずれかの実施例に本発明の範囲が限定されるものではない。
【実施例】
【0118】
本実施例では、上述した第4の工程において使用したアルカリ処理液の使用量に基づいて、硫化水素ガスの利用効率を測定した。なお、貯液槽からの硫化水素ガスの排出が多い場合には、硫化水素ガスを除害するためのアルカリ処理液の使用量も多くなることから、アルカリ処理液の使用量の減少は、硫化水素ガスの排ガスとしての損失が低減されたことを意味する。
【0119】
(実施例1)
本発明に係る貯液装置10を備えた硫化設備によって、4ヶ月の操業を実施した。排ガス処理用のアルカリ処理液としては、水酸化ナトリウム溶液を使用した。
【0120】
なお、水酸化ナトリウムの原単位は、以下の式により算出した。式中のニッケル生産量は、第4の工程で生産されたニッケル・コバルト混合硫化物中のニッケル成分としての換算量である。
水酸化ナトリウム原単位=水酸化ナトリウム使用量(t)/ニッケル生産量(t)
【0121】
実施例1においては、水酸化ナトリウム溶液の使用量は、原単位で0.34であった。
【0122】
(比較例1)
従来の貯液装置を備えた硫化設備を使用した以外は、実施例1と同様に操業した。なお、アルカリ使用量の測定も、実施例と同様にして行った。
【0123】
比較例1においては、水酸化ナトリウム溶液の使用量は、原単位で0.58であった。
【0124】
以上の結果から明確に分かるように、本発明に係る貯液装置10を用い、本発明に係る圧力制御方法によって貯液装置10の圧力を制御することによって、アルカリ処理液の使用量を原単位で約6割も削減することができた。
【0125】
したがって、このことから、貯液槽からの硫化水素ガスの損失を大幅に低減させることができ、硫化水素ガスの利用効率を向上できることが分かった。
【産業上の利用可能性】
【0126】
以上のように、本発明に係る貯液装置及びその圧力制御方法は、高温加圧酸浸出法を用いたニッケル酸化鉱石の湿式製錬方法において、ニッケル・コバルト混合硫化物へのニッケル回収率を高収率に維持しながら、硫化水素ガスの利用効率を向上させることができ、操業コストを低減することができるニッケル酸化鉱石の湿式製錬方法として好適である。本発明は、ニッケル酸化鉱石の湿式精錬プラントに限定されず、硬い粒子を含むスラリーや装置表面に付着しやすい沈殿の生成を伴うプラントに対しても適用可能であり、その工業的価値は高い。
【符号の説明】
【0127】
10 貯液装置、11 貯液槽、12 圧力制御配管、13 集合管、21(21) 装入管、22(22) 給排気管、23(23) 排出管、30 連結部、31,32 圧力制御バルブ、33(33) 接続部

【特許請求の範囲】
【請求項1】
ニッケル酸化鉱石の湿式製錬方法における硫化工程において、硫酸塩溶液を硫化させて硫化物を生成させる硫化設備に用いられる貯液装置であって、
硫化反応後のスラリー又は固液分離後のろ液を装入する装入管と、不活性ガスを供給するとともに気相中のガスを排ガスとして排出する給排気管と、該スラリー又はろ液を排出する排出管とを有する複数の貯液槽と、
一端が上記複数の貯液槽の各給排気管との接続部を並列に配置した分岐管となっており、該接続部を介して該各給排気管を接続させて、該複数の貯液槽に供給する上記不活性ガス及び該複数の貯液槽から排出される上記排ガスを集合させる集合管と、
一端から上記複数の貯液槽へ供給する不活性ガスを流通させるとともに、他端へ上記複数の貯液槽から排出される上記排ガスを流通させ、該複数の貯液槽の内部の圧力を制御する圧力制御配管とを備え、
上記圧力制御配管は、上記集合管の他端と連結部を介して連結しており、該連結部を挟んだ前後に一対の圧力制御バルブを有し、該圧力制御バルブによって、上記各貯液槽への上記不活性ガスの供給及び該各貯液槽からの排ガスの排出を制御することを特徴とする貯液装置。
【請求項2】
上記圧力制御配管は、上記複数の貯液槽の内部の圧力を測定する圧力計を有することを特徴とする請求項1記載の貯液装置。
【請求項3】
上記不活性ガスは、窒素ガスであることを特徴とする請求項1又は2記載の貯液装置。
【請求項4】
上記請求項1乃至3の何れか1項記載の貯液装置を用いた圧力制御方法であって、
上記圧力制御配管の一端に不活性ガス供給設備を接続して不活性ガスを供給可能とし、他端に上記排ガスを処理する除害設備を接続して該排ガスを排出可能とし、
上記複数の貯液槽の内部の圧力が0.5kPa未満となった場合には、上記不活性ガス供給設備側の上記圧力制御バルブを調整して該複数の貯液槽に上記不活性ガスを供給し、
上記複数の貯液槽の内部の圧力が1.0kPaより大きくなった場合には、上記除害設備側の上記圧力制御バルブを調整して該複数の貯液槽の気相部のガスを排ガスとして排出することを特徴とする圧力制御方法。
【請求項5】
上記複数の貯液槽では、各貯液槽毎に個別に、スラリー又はろ液が上記装入管から装入されるとともに上記排出管から排出されることを特徴とする請求項4記載の圧力制御方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate