説明

超音波と光学を複合した画像手段を有する撮像プローブ

【課題】高周波数の超音波と光干渉断層法を含む高解像度撮像法を用いて哺乳類の組織や構造を撮像する撮像プローブを提供する。
【解決手段】この高解像度撮影法を用いた撮像プローブの構造は、高周波数の超音波(IVUS)と、光干渉断層法(OCT)などの光学撮像方法との組み合わせを用い、超音波画像信号と光学画像信号から得られる画像の同時記録を精密化する。

【発明の詳細な説明】
【技術分野】
【0001】
関連米国出願への相互参照
本件特許出願は、2007年1月19日提出の米国暫定特許出願整理番号60/881,169、名称「IMAGING PROBE」に関連し、その優先権の利益を主張するものであって、これは全体として参照により本書に組み込まれる。
【0002】
本発明は一般に、高周波数の超音波(IVUS)と、光干渉断層法(OCT)などの光学撮像方法とを組み合わせた哺乳類の組織や構造のイメージングに関し、関心領域の走査において超音波画像信号と光学的画像信号から得られる画像の同時記録(co-registering)の精密化に関する。
【背景技術】
【0003】
体内(または、内側に限らない皮膚科学や眼科学アプリケーション)の高解像度イメージングは複合的な目的を果たし、これにはi)組織構造、解剖学的構造、および構成の評定、ii)体の局所領域への介入の計画および/または案内、iii)介入により前記局所領域の構造、構成または他の特性が変化した結果を評価、が含まれる。この特定のケースの高解像度イメージングは、高周波数超音波と光学映像方法に関する。本発明の目的として、高周波数超音波は通常3MHzより高い周波数、より具体的には9−100MHzの範囲でのイメージングに関する。
【0004】
高周波数超音波は、血管内や心臓内の処置に非常に有用である。これらの応用例には、超音波トランスデューサがカテーテルや他の体内挿入可能な器具に組み込まれる。例えば、高周波数超音波の特に重要な実装例の2つは、血管をイメージングする血管内超音波検査(IVUS)と、心室をイメージングする超音波心臓検査(ICE)である。ICEとIVUSは双方とも侵略性が極微であり、血管または心室内に1以上の超音波トランスデューサを配置させてこれらの構造について高品質の画像を得る。
【0005】
医療分野で用いられる光ファイバ技術に基づく光学イメージングは、光学干渉断層撮影法(OCT)、血管顕微鏡検査法、近赤外線分光法、ラマン分光法、および蛍光分光法である。これらの療法は通常、イメージング部位とイメージング検出部間でシャフトに沿って光エネルギを送る1またはそれ以上の光ファイバを用いる必要がある。光学干渉断層撮影法は超音波の光学アナログであり、1乃至30ミクロンのイメージング解像度を提供するが、多くの場合に超音波より深くは通らない。光ファイバは、組織のレーザ切除や光線力学療法のような治療器具にエネルギを供給するのにも用いられる。
【0006】
本発明に関連するイメージングのさらなる形態は、血管顕微鏡検査、内視鏡検査、およびプローブで患者の体内をイメージングして光の背面反射で撮影する他の同様のイメージングメカニズムを含む。
【0007】
高解像度イメージング手段は、胃腸系、心臓血管系(冠状動脈、末梢血管、神経血管を含む)、皮膚、眼球(網膜含む)、尿生殖器系、胸部組織、肝組織、その他哺乳類の解剖学的構造のいくつかの異なる領域を検査するための様々な形態で具現化されてきた。例えば、高周波数超音波または光学干渉断層撮影を用いた心臓血管系のイメージングが、動脈プラークの構造と構成を検査するのに開発されている。
【0008】
高解像度イメージングは、血管やプラークの形態、疾病動脈を通る血流、(アテレクトミー、血管形成、および/またはステントによる)動脈プラークへの介入の効果を測定するのに用いられる。また、高解像度イメージングを用いて、臨床症状とならないが破裂や侵食のリスクが高く深刻な心筋梗塞の原因となる血管障害を特定する試みもある。これらは「不安定プラーク(vulnerable plaques)」と呼ばれ、このようなプラークの治療見込みは先取りできない臨床的事象として概念的に興味をそそるため関心がもたれている。
【0009】
慢性的な全体の閉塞は、血管全体が約一月以上にわたり閉塞するという、血管障害の特定のサブセットである(病変の血管造影法による所見に基づく)。殆どの血管内イメージングの様相は「側景(side-viewing)」であり、血管内イメージング装置を病変に通す必要がある。慢性の全体閉塞を撮るには、「側景」の構造よりも「前向き」に適合した高解像度イメージング方法がより有用となる。
【0010】
高解像度イメージング手段のいくつかは、プローブ先端付近の画像デバイスにトルクを伝える回転シャフトの使用に頼っている。これらの回転シャフトは往々にして長く、細く、柔軟であり、脈管構造、尿管、呼吸気管、およびこのような他の体内管腔といった解剖学的導管を通して供給できる。観念的に、ケーブルに特定の方向に連続的にトルクを与えると、このトルクケーブルはその近位と遠位の端部でその回転度合いが近い関係を有する特性を呈する。これにより、トルクケーブルの遠位端部の(体内での)回転角度が、トルクケーブルの近位端部の(体外での)回転角度に応分に近似し、超音波カテーテルの設計を単純化することができる。
【0011】
イメージングが開始される箇所におけるトルクケーブルまたはシャフトの回転は、当該トルクケーブルまたはシャフトの近位端部で生じる回転と一致しない場合がある。これは特に、柔軟なシャフトが曲がりくねった通路を通って供給されることと、少なくとも一部が、イメージングシャフトの回転要素と静止要素間の慣性と摩擦によるものである。近位と遠位の端部の回転速度が互いに等しいと仮定すると、時間によって回転速度が変わる場合に有効でなくなる。組織に向けてイメージングビームが放たれる箇所におけるイメージングプローブの角速度が不知であることの不都合は、NURD(non-uniform rotational distortion)と呼ばれるアーティファクトに繋がる。NURDは画像に有意な歪みを生じさせるとともに、画像の図形的な精度を低減させる。遠位の回転シャフトまたは撮像アセンブリの回転速度のより正確な推定への知識により、画像の再構成に関するより正確な情報を提供することができ、このような歪みを解消する補助となる。回転速度のより正確な推定はまた、撮像プローブに1より多い撮像手段(例えば超音波と光学イメージングの組み合わせ)が実装されている場合の複数画像の同時記録(co-registration)に役立つ。
【0012】
例えば超音波と光学技術のように、1より多い撮像技術を用いることについて、これらはともに高解像度イメージングの医療アプリケーションで有効性が認められているが、これらはタンデムで同時利用されていなかった。以下の関連技術の概要で説明するように、光学と超音波の技術の組み合わせが存在するいくつかの設計がある。しかしながら、これらの設計の限界は、このような許容を妨げていた。
【0013】
とりわけ、超音波と光学の技術を組み合わせた設計は、(Maschekeの米国特許7289842に記載されているように、)超音波と光学の連合しない信号を取得することとなり、超音波と光学の撮像機構を相殺してしまう。2つの撮像手段から得られるデータのアラインメントは、撮像機構の移動を必要とし、(i)NURD(non-uniform rotational distortion)、(ii)2つの撮像手段を用いた同じ場所からの連続映像間に生じる対象の動き、(iii)撮像対象の変化、(iv)撮像手段の位置の精密なトラッキングの困難性、により記録エラーが生じやすい。これらの作用はすべて同時記録の不正確性につながり、2つの撮像手段からのデータ取得の有用性を制限してしまう。
【0014】
関連技術の概要
Yock(米国特許番号4,794,931)には、血管内超音波用のカテーテルシステムが開示され、血管構造の高解像度撮像を提供している。このシステムは外側シースを具え、その内部には長いトルクケーブルの遠位端部の近傍に超音波トランスデューサがある。モータがトルクケーブルと超音波トランスデューサを回転させると、血管の解剖学的構造の2D断面図が形成される。カテーテルまたはトルクケーブルと超音波トランスデューサの線形移動と、超音波トランスデューサの回転動作の組み合わせにより、カテーテルの長さに沿った一連の2D画像の取得が可能となる。
【0015】
Miloら(米国特許番号5,429,136)と、Lenkerら(米国特許番号6,110,121と6,592,526)は、カテーテル端部において周囲または長さ方向に超音波撮像ビームをスキャンするための往復あるいは振動手段を開示する。往復あるいは振動手段により、プローブを特定の方向に数回転以上、例えば1または2回転より多く回転させるための電気的接続を提供するスリップリングのような機構を用いる必要がなくなる。同様に、光学イメージングの特定の実装により、往復あるいは振動手段を用いた光学的回転ジョイントを用いる必要がなくなる。
【0016】
Liangら(米国特許番号5,606,975及び5,651,366)は、前向きの血管内超音波を実装する手段を開示し、ここでは超音波がミラーへと向けられ、超音波ビームが血管内を進む回転トルクケーブルの長軸からある角度で伝搬する。Liangらはまた、マイクロモータ、ギア−クラッチ機構、ステアリングケーブル、または形状記憶合金や圧電素子列や導電ポリマなどのバイモルフ素子、のいずれかを用いてミラーの反射角度を変える手段を開示する。米国特許番号5,651,366の図13には、光ファイバと組み合わさりファイバとミラーを介してレーザ切除エネルギを共軸方向の超音波イメージングビームの方へ送る前向き超音波プローブの概略図が示されているが、これは光学と音波イメージングの組み合わせや、イメージング目的で利益となりうる光学的収束素子に関するものではない。
【0017】
血管内超音波検査(IVUS)を用いるのは普通になっており、これはこの技術に多くの改良と調整がなされてきたからである。柔軟なフレキシブルトルクケーブル(Crowleyの米国特許番号4,951,677)が、IVUSカテーテルに沿って回転トルクの伝達の忠実性を向上させ、NURDのアーティファクトを低減している。
【0018】
IVUSの中心周波数は3乃至100MHzの範囲内であり、より具体的には20乃至50MHzの範囲内である。高い周波数は高い解像度を提供するが、信号の透過が悪くなり、視野が狭くなる。透過深度は、トランスデューサの中心周波数や輪郭、イメージングが生じる媒質の減衰、およびシステムの信号対ノイズ比に影響する実装や特定の仕様などのいくつかのパラメータに応じて、1ミリメートル以下から数センチメートルまでの範囲にわたる。
【0019】
高周波数超音波のバリエーションも存在し、これは信号取得および/または後方散乱信号が、実在する組織の撮像に関するさらなる情報を取得あるいは推測するために変化される場合である。これには、組織内張力が当該組織が異なる血圧で圧迫されると評価するエラストグラフィ(de Korteら Circulation.2002年4月9日、105(14)、1627−30);解剖学的構造内の血流などの動きを評価するドップラーイメージング;パターン認識アルゴリズムと組み合わされた後方散乱信号の無線周波数特性を用いて組織の組成の推察を試みるバーチャル組織学(Nairの米国特許番号6,200,268)、第2の高調波イメージング(Goertzら、Invest Radiol.2006年8月、41(8):631−8)、その他が含まれる。これらの撮像形式はいずれも、本発明に記載の手段により改善される。
【0020】
超音波トランスデューサ自体もかなり進歩しており、単結晶超音波トランスデューサや複合超音波トランスデューサがある。
【0021】
Hossackら(WO/2006/121851)は、CMUTトランスデューサと反射面を用いる前向きの超音波トランスデューサを開示している。
【0022】
Trearneyら(米国特許番号6,134,003)は、高周波数超音波またはIVUSで現在得られるよりも高い解像度の映像を提供する光学干渉断層撮影を実現するいくつかの実施例を開示している。
【0023】
Boppartら(米国特許番号6,485,413)は、前向きの実装例を含む光学干渉断層撮影のいくつかの実施例を記載する。光ファイバまたは屈曲率分布型(GRIN)レンズの双方が、モータ、圧電素子、可動ワイヤ、膨張手段、その他の機構を用いて配置されている。
【0024】
Maoら(Appl Opt.2007年8月10日;46(23):5887−94)は、レンズとして作用する短い長さのGRINファイバと結合した単一モードファイバを用いた超小型OCTプローブの製造方法を開示する。ファイバとレンズの間の光学的スペーサが、ファイバ−レンズ系の作動距離を変化させることを含む。さらに、長さの短いクラッド無しファイバを遠位端部に追加し、このクラッド無しファイバをある角度で切断すると、ファイバ−レンズ系の端部に反射素子を追加することができる。この反射素子は側景イメージングが可能であり、これもまた小型プリズムまたはミラーを用いて実現される。
【0025】
光学干渉断層撮影(OCT)のバリエーションは、組織成分の複屈折特性を活用して構造と構成に関する追加情報を得る偏光感応OCT(PS−OCT);同様に、撮像対象の構成に関するさらなる情報を提供する分光OCT;流れと動きに関する情報を提供するドップラーOCT;OCTを介したエラストグラフィ;および、著しく早いイメージングの取得が可能であり、このため短い時間で対象の広範囲のイメージングが実現する光学的周波数ドメインイメージング(OFDI)を含む。同様に、これらの形態もそれぞれ、本発明の手段により改善される。
【0026】
OCT以外にも、いくつかの光ファイバ型撮像形式が存在する。Amundsonらは、赤外線光を用いた血液をイメージングするシステムを開示する(米国特許番号6,178,346)。この撮像システムに用いられる電磁スペクトルの範囲は、血液の透過を最適化するもの、すなわち可視スペクトルで血管顕微鏡検査により得られるのと同様に血液を通して光学イメージングを可能とするものが選択されるが、撮像領域の血液を流してしまう必要はない。
【0027】
Dewhurst(米国特許番号5,718,231)は、血管内イメージング用の前向きプローブを開示し、ここでは光ファイバが超音波トランスデューサを通りプローブ端部の真ん前のターゲット組織に光を放つ。この光はターゲット組織と相互作用して超音波を生じ、これが超音波センサで受信され、システムが光学画像を受信するよう構成されていない場合にのみ画像は音響画像(photoacoustic)となる。Dewhurstの装置に用いられる超音波センサは、例えば薄膜PVDFなどの薄膜重合圧電素子であり、電気エネルギを超音波に変換するのではなく、超音波エネルギを受信するためにのみ用いられる。
【0028】
硬質または軟質のシャフトの遠位端部近傍の体内領域を照明する原理に基づいて、哺乳類の体内の管腔や構造(血管、胃腸管、および肺器官など)の可視化を実現するのに、血管顕微鏡検査、内視鏡検査、気管支鏡検査、および他の多くの撮像デバイスが開示されてきた。シャフト端部近傍に光検出器アレイ(例えばCCDアレイ)を有して、あるいは光ファイバの束を有して、シャフトの遠位端部から、オペレータが照明領域を表す画像を作成または閲覧できる光検出器アレイまたは他のシステムがある近位側へと受信した光を伝達することにより画像が形成される。他の不利益のなかでも、ファイバ束は嵩張るものであり、シャフトの柔軟性が低下してしまう。
【0029】
解剖学的構造の低侵略性検査における他の光ファイバ型の態様は、Motzら(J Biomed Opt.2006年3−4月;11(2))に記載のラマン分光器;Caplanら(J Am Coll Cardiol.2006年4月18日;47(8Suppl):C92−6)記載の近赤外線分光器;および腫瘍の蛋白質分解酵素の標識蛍光イメージング(tagged fluorescent imaging)(Radiology.2004年6月;231(3):659−66)を含む。
【0030】
超音波と光学的な干渉断層撮影を単一のカテーテルに組み合わせる可能性は、非常に利益がある。Kuboらは、OCT、IVUS、および血管顕微鏡検査法を用いて急性心筋梗塞を起こした病変の形態学を評価する、冠状動脈の興味深い体内検査を発表した(Journal of American College of Cardiology、2007年9月4日、10(50):933−39)。彼らは、これらの病変をそれぞれ撮像する利点があることを示した。しかしながら、かれらの研究を実施するには、彼らはIVUS、OCT、および血管顕微鏡検査のぞれぞれで異なるカテーテルを用いる必要があり、これらの機能をまとめたカテーテルは今のところ市場に出ていない。Kawasakiらは、以前にOCTと、従来のIVUSと、統合的後方散乱IVUSとして知られる別のIVUSとについて、OCTとIVUS部品で異なるプローブを用いて標本死体の冠状動脈について比較した。Brezinskiら(Heart.1997年5月;77(5):397−403)は、以前に、ここでも別のプローブを用いてIVUSとOCT画像が比較された、解剖された大動脈の標本に関する生体外研究を発表した。後者の研究のOCTプローブは、生体内での仕様に適さなかった。
【0031】
光学干渉断層撮影法は通常、超音波より高い解像度と、超音波以外に血管や他の組織の構造や構成をより良好に特定する可能性を有する。例えば、繊維キャップの密集(fibrous cap thickness)や、動脈近くの炎症や壊死領域の存在は、光学干渉断層撮影法の方がより良好に解像しうる。しかしながら、光学干渉断層撮影法は、殆どの生体媒体について侵入度が低い(500−3000ミクロンのオーダー)という制限がある。このような媒体の多くは、光学的には貫通しない。
【0032】
一方、超音波は、血液や柔組織のような生体媒体にはよく侵入し、その侵入深度は光学干渉断層撮影法より数ミリまたは数センチメートル深い。組み合わせた撮像デバイスを用いて一方または双方の撮像方法で撮影しうることは、要求される解像度と侵入深度に関して利点となる。さらに、光学干渉断層撮影法で得られる情報の多くは超音波法で得られるものを補足し、双方の撮像方法で得られる情報の分析や表示は、その構成などに関して疑問のある組織をより理解するのに役立つ。
【0033】
IVUSとOCTのこれらの違いは、この技術分野で公知である。Mascheke(米国特許出願番号11/291,593に対応する米国特許公開番号2006/0116571)は、OCTとIVUS撮像トランスデューサの双方が搭載されたガイドワイヤの実施例を開示する。ここに開示された発明はいくつかの不十分な箇所がある。ガイドワイヤは通常直径0.014’’乃至0.035’’(約350ミクロン乃至875ミクロン)であり、超音波トランスデューサは通常少なくとも400ミクロン×400ミクロンであり、20乃至100MHz幅の周波数ではより大きくなる。トランスデューサが小さいと、ビームの焦点が合わなくなり、信号特性が悪化する。Maschkeでは、IVUSとOCT撮像機構がガイドワイヤの長さ方向の異なる場所に配置されており、IVUSとOCT撮像手段が異なる位置に配置されている構成の不利益は、画像の最適な同時記録ができないことである。
【0034】
Maschkeに発行された米国特許番号7,289,842は、IVUSとOCTを1本のカテーテル上に組み合わせた撮像システムを開示しており、ここではIVUSとOCT撮像素子が、長軸の周りを回転するカテーテルの長さに沿って互いに縦に離れている。Maschkeはまた、画像の中央部が実質的にシステムの高解像度OCT撮像部の出力から得られ、画像の外縁部が実質的にシステムの超音波撮像部の出力から得られる画像生成を開示しており、超音波の高い侵入深度をOCTのカテーテルに近い組織の高解像度と組み合わせて用いている。
【0035】
Parkら(米国特許出願11/415,848)もまた、IVUSとOCTイメージングを単一のカテーテル上で組み合わせた概念に簡単に言及している。
【0036】
しかしながら、単一のデバイス上に、例えばIVUSとOCT撮像の組み合わせのような、音響学と光学の撮像方法を組み合わせた手段の統合は、自明なことではない。本来的に回転しているカテーテル上に光学撮像素子と音響学撮像素子とを長さ方向に互いに離して設けるのは、組み合わせた画像が理想的な構成とはならない。より理想的な構成は、音響学と光学画像を互いに高精度の方法で記録できるようにしつつ、超音波と光学系の画像を生成するための高品質の音響および光学信号の取得を実現することである。
【0037】
例えば、IVUS撮像素子とOCT撮像素子を単純にカテーテルの長さに沿って線上に配置すると、IVUSとOCT画像の撮像平面の中央が、およそ超音波トランスデューサの長さの半分と光学撮像組織の長さの半分の距離で互いに異なることとなる。
【0038】
血管撮像用の機械的IVUSトランスデューサは通常長さが400ミクロンある。Maschkeの提案のような、この構成によるIVUSとOCTの撮像平面の分離は、光学と音響学の撮像面に少なくとも250ミクロンの分離が生じる。一般に、機械的IVUSは毎秒30フレームで回転し、引き戻りレート(pullback rate)は0.5mm/sであり、すなわち任意の時点tから、少なくとも15の撮像フレームまたは500ミリ秒の時間が、離れて配置された撮像手段が時間tのときに元の位置により近い撮像手段があったのと同じ位置にくるまで経過する。この撮像プローブの数百ミリ秒または数回転の違いにより、一方の撮像手段からの撮像データを他方とともに正確に記録するのが困難となっている。
【0039】
これは特に、カテーテルが体内管腔内でこの期間中に不意に横方向および縦方向に有意にずれる場合に重大となり、このようなずれは心臓の収縮や脈動流によって生じる。NURD(non-uniform rotational distortion)もまた、互いに離れた数回転で得られる画像の正確な記録性に影響を与える。2つのデータセットの記録の不正確性は、例えば不安定プラークのような重大な病状が発見されたときにより重要となる。動脈プラークの構造の外観の違い(例えば繊維キャップの厚さ、石灰化した小瘤の存在、アテローム性沈積物の大きさなど)が、血管の長さに沿って数百ミクロンの小ささで観察される。同様に、血管などの小さいが潜在的に重要な解剖学的導管の側枝が、100ミクロン以下のオーダの寸法をとりうる。
【0040】
IVUSとOCT、あるいは他の音響・光学イメージングの組み合わせの従前の実験や実装は、血管内撮像などの低侵略性イメージングに適した方法で、2またはそれ以上の撮像手段からの撮像データの記録の正確性を実現したものはなかった。
【0041】
IVUSとOCT、あるいは他の音響・光学イメージングの組み合わせの従前の実験や実装は、血管内撮像などの低侵略性イメージングに適した方法で、2またはそれ以上の撮像手段からの撮像データの記録の正確性を実現したものはなかった。
【0042】
また、音響・光学イメージングを「側景」プローブではなく「前向き」プローブに組み合わせた高解像度撮像プローブを提供するのは非常に利益がある。また、後方から、あるいは一般の側景構造において複数の角度から見ることのできる同様のプローブを提供することも有用である。
【0043】
また、超音波撮像を1またはそれ以上の光学撮像手段と組み合わせた高解像度撮像プローブを提供することも利益がある。
【0044】
また、光音響撮像または音ルミネセンス撮像に利用できる低侵略性撮像プローブを提供することも利益がある。
【0045】
また、撮像手段において、他の撮像手段が撮像データを取得する方向に関する有用な情報を提供する低侵略性撮像手段を提供することも利益がある。
【発明の概要】
【0046】
本発明は、2またはそれ以上の撮像方法による撮像を同時に実現する方法で、音響・光学的撮像手段を組み合わせた撮像プローブの実施例を提供する。この実施例は、各様式で得られる画像を正確に同時登録する方法を実現する。いくつかの実施例において、本発明は、例えば光力学治療用の赤外線光や切除手術用のレーザエネルギなどの治療エネルギを供給する複合音響撮像手段の実施例を提供する。
【0047】
本発明はまた、イメージングの一形態が、イメージングの第2の形態の再構成の補助に用いられる実施例を提供する。これは特に、撮像領域の位置または向きを実質的に特定する撮像プローブの部品の位置や向きを監視することに関する。
【0048】
本発明は、高周波数超音波と、光学干渉断層撮影法とを複合撮像システムに組み合わせる方法を提供する。
【0049】
本発明は、超音波と光学撮像システムとを組み合わせた新規な実装手段を提供し、ここでは走査するボリュームが撮像トランスデューサの位置の前と後ろの双方の領域を含む。
【0050】
本発明は、超音波画像を取得する手段と組み合わせて、血管顕微鏡検査法、内視鏡検査法、および単一の光学または少数の光ファイバを用いた類似の撮像技術により提供されるのと同様の画像を取得する機能を提供する。これらの光学画像はまた、赤外線および/または可視波長を用いて得ることができる。
【0051】
本発明は、高周波数超音波と光学干渉断層撮像法を組み合わせた手段を提供し、ここでは走査するボリュームが撮像トランスデューサの位置の前と後ろの双方の領域を含む。
【0052】
本発明の実施例は、シャフトによりアクセスされる領域の撮像または治療エネルギ供給を目的としてこの領域を走査可能であり、シャフトの回転速度が変化すると音響的および/または光学的エネルギのエミッタおよび/またはレシーバの方向が変わる。
【0053】
本発明はまた、高解像度撮像の特定の形態を実現し、これは音響エネルギを光学エネルギ(音ルミネセンス撮像)の生成、あるいは光学エネルギを音響エネルギ(光音響撮像)の生成に使用する。
【0054】
本発明の一実施例は、体内の管腔や窩洞に挿入して、当該体内管腔および窩洞の内側を撮像し、あるいは体外表面を撮像する撮像プローブであって:
a)細長い中空のシャフトであって、遠位と近位の端部と細長い中間部とを有する長軸と、前記細長い中空シャフト内に前記近位端部から離れて配置された撮像アセンブリとを具え、前記撮像アセンブリは撮像導管の第1の端部に接続され、前記撮像導管は前記細長い中空シャフトを通って延在し、その第2の端部から前記近位端部を通って画像処理・表示システムに接続され、前記撮像導管は遠位端部を有する光ファイバを具え、前記撮像アセンブリが、前記光ファイバの遠位端部に接続され前記光ファイバの遠位端部の外部に光撮像エネルギを放射し反射した光撮像エネルギ信号を受信し当該受信した反射光撮像エネルギ信号を前記画像処理・表示システムに送る光配向・受光手段を具える光学エミッタ/コレクタを具え、前記撮像アセンブリは超音波トランスデューサを具え、当該超音波トランスデューサは超音波撮像エネルギを照射および受信し、前記撮像導管は前記超音波トランスデューサを超音波信号生成器および前記画像処理・表示システムに電気的に接続する導電体を具え;
b)前記撮像アセンブリは、前記光を前記光学エミッタ/コレクタから、超音波を前記超音波トランスデューサから、前記細長い中空シャフト以外の経路に沿って供給するよう構成されたスキャン機構を具え、前記超音波トランスデューサと光学エミッタ/コレクタは、対象領域のスキャンにおいて超音波画像と工学画像を正確に同時記録できるように互いに配置および配向されており;
c)前記撮像導管と前記撮像アセンブリに動きを伝達する駆動機構と;
d)前記駆動機構と前記画像処理・表示システムとに接続され、前記対象領域のスキャンにおいて超音波撮像および光学撮像で取得された画像を処理し、前記超音波画像と光学画像を同時記録するよう構成されたコントローラと;
e)前記同時記録した画像を表示する表示手段とを具える。
【0055】
本発明の機能と利点の面のさらなる理解は、以下の詳細な説明と図面を参照することにより実現するであろう。
【図面の簡単な説明】
【0056】
本発明の好適な実施例について、単なる例示として、図を参照して以下に説明する。
【図1】図1は、超音波および光学撮像要素を含む撮像システムの概略図である。
【図2−1】図2は、アダプタ、導管および撮像アセンブリを有するフレキシブル撮像プローブの斜視図である。図2aは、点線に沿った図2の撮像プローブの中間部の断面図である。図2bは、図2の撮像プローブの遠位領域の拡大斜視図である。
【図2−2】図2cは、撮像プローブの回転および非回転部材がどのように撮像システムの残余部へのアダプタと連結しうるかを示す概略図である。図2dは、プローブの回転および非回転部材のアダプタへの連結の一例の斜視図である。
【図3】図3a−3eは、従来技術に記載された一般的な撮像カテーテル構造の図である。図3aは、ガイドワイヤ管腔を具える場合に撮像プローブに組み込まれる外側シースのためのオーバーワイヤ構造の一実施例を示す。図3bは、ガイドワイヤ管腔の構造を明示するための撮像プローブの断面を示す。図3cは、ガイドワイヤ管腔を具える場合に撮像プローブに組み込まれる外側シースのための迅速アクセス構造を示す。図3dは、ガイドワイヤ管腔を有さない撮像プローブの一部を通る断面を示す。図3eは、ガイドワイヤ管腔を有する撮像プローブの一部を通る断面を示す。
【図4−1】図4a−4gは、撮像光の進路を偏向させる手段と、互いに精密に配列された光学・音響領域撮像を実現するトランスデューサを通して光エネルギの伝達を実現する穴とを有する超音波トランスデューサの実施例である。
【図4−2】図4h−4lは、撮像光の進路を偏向させる手段と、互いに精密に配列された光学・音響領域撮像を実現するトランスデューサを通して光エネルギの伝達を実現する穴とを有する超音波トランスデューサの実施例である。
【図5】図5a−5fは、撮像光の進路を偏向させる手段を有さない、互いに精密に配列された光学・音響領域撮像を実現するトランスデューサを通して光エネルギの伝達を実現する穴を有する超音波トランスデューサの実施例である。
【図6−1】図6a−6cは、代表的な音響トランスデューサ構造を示し、図6aはトランスデューサに孔を有さない。
【図6−2】図6d−6fは、超音波トランスデューサによって形成される音響ビームパターン上の超音波トランスデューサを通る孔を設けた効果を表すシミュレーション結果を示し、図6dは孔を有さない。
【図7】図7a−7eは、音響トランスデューサの上面あるいは内側凹部のどちらかに光学撮像エネルギを送信および/または受信する光学装置を有する超音波トランスデューサの例を示す。
【図8】図8aは、音響および光学撮像の両方を用いた側面視に適する撮像アセンブリの斜視図である。図8bは、図8aにおける撮像アセンブリの側面図である。図8c−8eは、図8aの撮像アセンブリを異なる回転位置で示す端面図である。
【図9】図9a−9cは、光学撮像エミッタ/レシーバが音響トランスデューサの基材435に組み込まれた構造を描写している。
【図10】図10a−10eは、図8b−8eと同様に、単一の回転方向ではなく往復形式で回転する撮像アセンブリを示す。
【図11】図11は、光学ビームおよび音響ビームによって走査される面が2つの共面の長方形である撮像プローブの斜視図を示す。
【図12】図12は、光学撮像システムが、これらの画像ビームが実質的に収束あるいは重なるような角度を持つように構成される撮像プローブの一実施例の斜視図を示す。
【図13】図13は、音響および光学撮像の両方を用いた側面視に適する撮像アセンブリの断面図である。
【図14】図14aは、音響および光学撮像の両方を用いた前方視に適する撮像アセンブリの断面図である。図14bは、音響および光学撮像の両方を用いた前方視に適する撮像アセンブリの断面図であり、ここでは撮像プローブの遠位領域を変形させるのに人工筋肉ポリマが利用可能である。
【図15】図15aは、光学および音響ビームを側方に向けるための反射部材を用いた、音響および光学画像の両方を用いた側面視に適する撮像アセンブリの断面図である。図15bおよび15cは、図15aと同様であるが、反射部材が回動点周りに取り付けられているため、光学および音響ビームを様々な角度で側方にスキャンすることができる。
【図16】図16aは、傾動部材を用いた撮像プローブの一実施例の断面図であり、縦軸周りの撮像アセンブリの回転動作によって傾動動作が求心加速度によって調整される。図16bは、図16aの線16b−16bに沿った図である。図16cは、図16aの撮像プローブの断面であるが、使用時に傾動部材が異なる角度となっている状態を示す。図16dは、図16cの線16d−16dに沿った図である。
【図17】図17aは、平面光学的な反射層と成形音響的な反射層とを具える偏向部材の斜視図である。図17bから17dは、図17aの偏向部材の断面を描写する。
【図18】図18aは、音響トランスデューサの2つの別個の光学伝送チャネルを通る2つの光学撮像エミッタ/レシーバを有する超音波撮像トランスデューサの斜視図である。図18bは、撮像アセンブリの主要な回転動作で整列されるように配置される2つの光学撮像エミッタ/レシーバを有する超音波トランスデューサを有する撮像プローブの一実施例の斜視図である。図18cは、図18bの矢印Cに沿った図である。
【図19】図19は、光学ルーチン回路を介して同じ光学画像導波管に連結される2つの光学撮像システムを有するシステムの概略図である。
【図20】図20aおよび20bは、互いに同時記録(co-registered)された2以上の画像部分を同時に表示するための扇形パターンを示す。
【図21】図21aおよび21bは、互いに同時記録(co-registered)された2以上の画像部分を同時に表示するための不定パターンを示す。
【図22】図22は、1つの画像から別の同時記録された画像へ、時間をかけて移行するディスプレイの概略図を示す。
【図23】図23a、23bは、第1の画像の特徴が、当該第1の画像と同時記録される別の画像の特徴へとどのようにマッピングされるかを示す。
【図24】図24a、24bは、第1の画像の外形特徴がどのように第1画像と同時記録された別の画像の特徴へとマッピングされる、あるいはその逆を示す。
【図25】図25a、25bは、合成画像がどのように2以上の同時記録された画像データセットから構築されうるかの概略図である。
【図26】図26aは、細長い撮像デバイス450の近位および遠位端部の縦の断面を、トルク源452に機械的に結合されたトルク伝達シャフト451とともに示している。図26cは、図26bのデバイス450における線14c−14cを通る代表的な断面図である。
【発明を実施するための形態】
【0057】
本書記載のシステムの大部分は、制限なく、光学および音響手段の療法による撮像が可能な撮像プローブに導かれる。必要に応じて、本発明の実施例が開示される。しかしながら、開示された実施例は単なる例示であり、発明が多種の代替の形態で具体化されてもよいことが理解されるべきである。
【0058】
図は縮尺通りではなく、特定の要素の詳細を示すために、いくつかの特徴が誇張されるかあるいは極小化される場合があり、一方で、新規な態様が不明瞭になるのを防ぐために、関連要素が削除されている場合がある。したがって、ここに開示される特定の構造および機能の詳細は限定としてではなく、単にクレームの根拠、あるいは本発明を多様に採用する当業者に教示するための代表的な根拠として解されるべきである。限定ではなく教示の目的で、例示的な実施例は、光学的および音響的手段の両方による撮像を可能にする撮像プローブへと導かれる。
【0059】
ここで使用される「約(about)」の語は、寸法、温度、あるいは他の物質的な性質あるいは特徴の分野で使用される場合、概して大部分の寸法が満足させられるが、統計的にこの範囲外にも寸法が存在するという例を排除しないように、この寸法範囲の上限と下限の間に存在する僅かなバリエーションをカバーすることを意味する。例えば、本発明の実施例において、撮像プローブの部品の寸法が与えられているが、これらは限定ではないと理解されるべきである。
【0060】
ここで使用される「画像の同時記録(co-registration of images)」の語は、1の撮像手段から取得された撮像データのサブセットを、他の撮像手段を用いて取得された撮像データのサブセットと関係させる(identify)プロセスを意味し、ここでは2つの手段からの関係づけられた撮像データは、同じ物体(あるいは本発明の場合は組織)からの撮像エネルギの形態(例えば、フォトンや超音波)を検出することで取得される。第1のサブセットにおける同時記録点はそれぞれ、2つの異なる撮像手段からの2つの点が撮影対象(または組織)の同じ焦点領域から取得されたと考えられるように、第2のサブセットの対応する点にマッピングされる。
【0061】
2またはそれ以上の撮像手段を用いて得られる画像の、連続的かつ正確な画像の同時記録、あるいはその一部は、1より多い撮像手段により撮影対象の関心のある特徴を複合的に評価する機会を提供する点で有用である。
【0062】
図1は、全体が10で示される、本発明により構成される例示的な撮像システムの全体図である。これは、画像処理・表示システム16にアダプタ14を介して接続される撮像プローブ12を具える。画像処理・表示システム16は、1)超音波、2)光学干渉断層撮影法、3)血管顕微鏡検査法、4)赤外線撮像、5)近赤外線撮像、6)ラマン分光法撮像、7)蛍光撮像、の撮像様式のいずれか1以上をサポートするのに必要なハードウェアを具える。
【0063】
光学干渉断層撮影、超音波、血管顕微鏡検査、および赤外線撮像回路については、従来技術で開示されている。
【0064】
本書記載のシステムはさらに、当該システムの多くの機能ユニットの共同作用する活動を実現するコントローラ・処理ユニット18と、さらにディスプレイおよび/またはユーザインタフェースと、さらに撮像する患者の体内からの心電図信号を取得するための電極センサを具えてもよい。この心電図信号は、心臓の動きが画像品質に影響するような場合に、撮影データの取得時のタイミングをとるのに用いられる。本発明の特定の実施例に備わっていれば、画像処理・表示システムを構成する撮像光学回路・電子部21は:光学干渉計部品、1またはそれ以上の光学指示アーム(optical reference arms)、光学マルチプレクサ、光学デマルチプレクサ、光源、光検出器、分光計、偏光フィルタ、偏光コントローラ、タイミング回路、アナログ・デジタルコンバータ、および背景や従来技術の部分で述べた様々な光学撮像技術における公知の要素、の一部あるいは全部の要素を具えてもよい。超音波回路20は、パルス発生器、電子フィルタ、アナログ・デジタルコンバータ、並行処理アレイ、検波器、時間利得補償増幅器(time gain compensation amplifiers)などの増幅器、背景や従来技術の部分で記載された様々な音響撮像技術を実現する公知の部品、の一部あるいは全部を具えてもよい。
【0065】
コントローラ・処理ユニット18は、本発明の特定の実施例に備わっている場合に、多くの役割を果たし、その部品は特定の撮像システムの必要性基づいて著しく適合される。これは、モータドライブ制御部、データ記録要素(例えばメモリ、ハードドライブ、リムーバブルストレージドライブ、CDやDVDといった可搬型ストレージ媒体用のリーダ・ライタなど)、位置検知回路、タイミング回路、心臓ゲート信号機能、容積撮像プロセッサ、スキャンコンバータ、その他、の1または組み合わせを具えてもよい。ディスプレイ・ユーザインタフェース22もまた、リアルタイム表示または撮像データの取得時よりも後にデータを表示すべく、任意で設けられる。
【0066】
撮像プローブ12は、その遠位端部32の近傍に撮像アセンブリ30を具え、その長さの大部分に沿って任意の導管34を具え、その近位端部38にコネクタ36を具える。本発明の目的において、撮像アセンブリ30とは、一般に信号(音響的または光学的(あるいは両方))が撮像アセンブリ30の近くの領域を撮影する目的で収集される撮像プローブ12の部品を意味する。撮像アセンブリ30は、撮像エネルギ用の1またはそれ以上のエミッタと、撮像エネルギ用の少なくとも1以上のレシーバとを具える。本発明の目的において、「撮像エネルギ」とは光と音響エネルギの双方をいうものとする。特に、光は、紫外線、可視光、赤外線の波長スペクトルにわたる電磁波をいう。例えば、音響撮像において、撮像アセンブリ30は、音響エネルギ用のエミッタとレシーバの双方である超音波トランスデューサを含む。
【0067】
光学イメージングにおいて、撮像アセンブリ30は通常、光ファイバの遠位端を、光学レシーバとして作用するとともに光学エミッタとしても集合的に作用するレンズ(例えばボールレンズやGRINレンズ)などの光学部品の組み合わせとともに具える。ミラーおよび/またはプリズムが、しばしば光学エミッタおよび/またはレシーバの部品として組み込まれる。撮像アセンブリ30と、コネクタ36と、および/または撮像導管34は、塩水などが充填され放出(flush)されてもよい。
【0068】
撮像プローブ12は、その長さに沿った1またはそれ以上の地点で、フラッシングを可能とすべく開口部を有してもよい。光学イメージングにおいて、気体を充填させた撮像プローブ12を考えることも可能である。この気体は実質的に炭化水素または他の容易に溶解するガスであることが望ましい。代替的に、撮像アセンブリは、光学撮像用のガス充填された1以上の区画または管腔と、音響撮像用の液体充填された1以上の区画または管腔とに区画分けされてもよい。
【0069】
撮像導管34は、1以上の光学導波管と、エミッタおよび/またはレシーバをコネクタを介してアダプタに接続する1以上の導電ワイヤ(好ましくは2以上)とを具える。この撮像導管34は、撮像アセンブリを回転あるいは並進させる機械的力伝達機構として動作してもよい。例えば、撮像導管34は、互いに絶縁された電気配線の2つの層に囲まれた光ファイバを具えてもよい。撮像導管34はさらに、従来技術にあるように、例えば螺旋状に覆うワイヤや、撮像トルクケーブルを構成しスキャン機構を回転させるのに用いられる他の設計など、他の構造体により補強されてもよい。
【0070】
アダプタ14は、様々なファイバおよび/またはワイヤ内に適切な撮像処理ユニットへの信号伝送を実現する。このアダプタ14はまた、撮像アセンブリの長さ方向の並進を実現するプルバック機構49(図2d)または往復プッシュプル機構を具えてもよい。このような撮像アセンブリ30の長さ方向の並進は、撮像導管34を取り巻く外部シャフトの長さ方向の移動とともに生じてもよいし、外部シャフトが比較的静止したまま生じてもよい。
【0071】
アダプタ14の一部として、例えば撮像プローブ12内における回転部材の回転角度を検知する位置検知回路などの付加的なセンサが組み込まれてもよい。撮像プローブ12はまた、撮像システムの残りの部分に対する撮像プローブの情報を格納するEEPROMや他のプログラム可能なメモリ装置などのメモリ部品を具えてもよい。例えば、これは撮像プローブ12の仕様の同定に関する明細と、さらにプローブ12の校正情報を含んでもよい。
【0072】
音響学と光学の撮像データが精密に整合していることが非常に望ましいが、低侵略性プローブの外形を最適化する必要を認識することが重要であり、したがって所望の目的を合理的に達成しうる限り小型化される。今日のIVUSプローブは直径約0.9−2mmであり、血管のサイズは先細であるため、プローブのサイズが小さい方が心臓解剖における血管の樹脂状分岐内でより遠くに届けることができる。したがって、通常は心臓解剖の重要部分の精査のためにより小型にする。このため、光学および音響撮像の組み合わせの実施例において、例えばプローブ直径などプローブの特定の寸法を最小化する構成とすることが望ましい。
【0073】
図2は、光ファイバ40と同軸電気配線50を具える柔軟なカテーテルの斜視図である。近位のコネクタが、アダプタにより受けられて撮像光ファイバ40を「後部(back-end)」光学撮像システムに光学的に接続する光ファイバ40を具える。また、1またはそれ以上の電気導管を超音波回路20および/または制御部・処理ユニット18に接続しうる電気コネクタ56もある。撮像導管が長軸まわりに回転する実施例の場合、撮像光ファイバの回転部材を、後部撮像システム21に接続している比較的静的な光ファイバに連結する必要が生じる。回転する光ファイバプローブの連結は、撮像プローブ10の近位コネクタの一部あるいはアダプタ14の一部として組み込まれる光ファイバ回転ジョイントを用いて実現することができる。同様に、撮像導管が縦軸周りに回転する実施例の場合、撮像導管とともに回転する導電配線と、超音波回路20および/または制御部・処理ユニット18の比較的静的な導体とを、好ましくはスリップリング手段により連結する必要がある。これらのスリップリングは、撮像プローブ36の近位コネクタの一部、あるいはアダプタ14の一部として組み込むことができる。
【0074】
図2aは、図2の撮像プローブの中間部の断面を点線に沿ってとった図であり、光ファイバ40と、ガイドワイヤポート44およびガイドワイヤ42と、撮像導管34と、撮像導管管腔46と、生体適合材料でなる中空の柔軟な細長いシャフトであって中空の細長いシャフトを体内管腔および空洞に挿入するのに適した直径を有する外側シース48と、同軸電気配線50とが示されている。撮像プローブ10の端部の拡大詳細図が図2bに示されており、ガイドワイヤ42の遠位端部が外側シース48とシース48端部のフラッシュポート54を越えて延在している。図2において、撮像プローブ10の近位端部は、ガイドワイヤ42が挿入される別のガイドワイヤポート55と、コネクタ本体に沿ってフラッシュポート58および電気接触子56とを有するコネクタアセンブリ36とを具える。図2cは、撮像プローブの回転および非回転部材が、撮像システムの残りへのアダプタに接続されるかを示す概略図である。図2dは、撮像プローブの回転部材が、アダプタの回転部材とどのように連結されるかを示す概略図である。それぞれの回転部材は、コネクタやこの技術分野における他の公知の構造を用いて電気的、光学的、および/または機械的に連結される。同様に、撮像プローブの非回転部材は、アダプタ14の非回転部材と連結することができる。アダプタ14は、スリップリングと、光学回転ジョイントと、回転部材と非回転部材を電気的または光学的に連結し必要な電気・光学信号をシステムの残りの部分に送信する他の実装とを具える。
【0075】
二重の光ファイバ回転ジョイントも可能であるが、相当複雑になる。撮像プローブ12の回転部材に搭載された導電体への電機接続は、金属スリップリングとバネ、金属スリップリングとブラシ、または静的導体と回転導体との導電接続を形成する他の公に知られた方法で、非回転導電素子と連結することができる。
【0076】
図2dでは電気的、光学的、および機械的接続部が個別に示されているが、特定の実施例の必要性に応じて、いくつかのコネクタを複合コネクタへと組み合わせることにより、プローブとアダプタ間のそれぞれ個別に接続されるべきいくつかのコネクタを減らすことができる。
【0077】
図3aは、外側シース用のオーバーザワイヤ構造の一実施例を47で示し、図3bは図3aの縦の線3b−3bに沿った撮像アセンブリ30を含む部分のシース47の断面図を示す。
【0078】
図3cは、ガイドワイヤが必要な場合に撮像プローブに組み込まれる外側シース用の「迅速交換」構造の実施例を60で示す。図3cのシース60は、図2に示すエントリポート55を具える。図3dは、図3cの3d−3d線に沿ってガイドワイヤ用のエントリポート55に近い部分を通る「迅速交換」構造の断面図を示す。図3eは、図3cの3e−3e線に沿った断面図である。
【0079】
本発明は、正確に記録した超音波と光学画像を形成しうるいくつかの実施例を記載する。最も単純な概念アプローチは、超音波と光学撮像ビームのパスが互いに同一線上にあることである。
【0080】
図4aを参照すると、撮像プローブ399が、音響と光学手段が同じ方向で撮像することが可能であり、トランスデューサ内のチャネルを通して光エネルギが移動可能な音響トランスデューサが用いられている。本質的に、プローブ399は、その基板を通って設けられた光学的に伝送可能なチャネルを有するように変えられた音響トランスデューサ402を用いる。この音響トランスデューサ402は、この分野で公知の様々な超音波トランスデューサであってもよく、例えば圧電素子(例えばPZTまたはPVDF)、複合トランスデューサ、または単結晶トランスデューサなどである。
【0081】
導電体400は、トランスデューサの音響基板402の両側の導電層401に導かれている。光ファイバ403が、光学撮像を実現する光学導管を実現している。エポキシ層(トランスデューサを駆動する一方または双方の電極としても作用する銀または銅の導電エポキシ層)やポリマ(例えばパリレンやPVDF)などの、1またはそれ以上の整合層(matching layer)をトランスデューサの放出面に追加してもよい。光学伝送チャネル407は、いくつかの技術のいずれかで形成されてよく、例えば精密ドリリング、レーザアブレーション、フォトエッチング、開口その他を形成すべく鋳型の造作への封入などがある。精密ドリリングは、硬質材料の切断用に明確に設計されたダイヤモンドやカーバイドのドリルビッドなどのドリルビッドの使用を含む。高精度のスピンドル、例えばエアスピンドルが、ドリル技術の正確かつ効果的な実行の役に立つ。レーザ源を用いて基板にチャネルを削摩することができる。例示的なレーザ源は、YAGやエキシマーレーザを含む。
【0082】
代替的に、音響トランスデューサ402が当初は粘性の基板で形成される場合、圧電性トランスデューサ402の作成中に圧電素子に犠牲要素を組み込んでもよい。この犠牲要素は、機械的手段や溶剤に晒すことにより後に除去することができる。例えば、ポリスチレンの筒を犠牲要素に用いることができ、これは以降にアセトン溶解により取り去ることができる。代替的に、圧電材料402は、最初は粘性である基板で構成され、圧電トランスデューサの形成中にこの材料中に除去可能な主軸が含められ、圧電素子が部分的または全体的に硬化したら除去される。
【0083】
圧電材料402の両側には導電層401が設けられており、圧電素子に電圧をかける必要がある場合に組み込まれる。開口407が光学導波管403に、直接、あるいは1以上のミラー404やプリズム397と1以上のレンズ405の手段により接続される。この開口内に任意の光学部品が組み込まれる場合、例えばシリコンやポリマなどの緩衝性の(dampening)柔軟材料の絶縁層406(図4l参照)で、光学部品を音響基板402から分離して、電気絶縁体か、音響基板402により光学部品へ生じるストレスの伝達を最小限にするようにする。
【0084】
図4bにあるように、ファイバからの光はミラー404(またはプリズム)へと向けられ、ここでファイバからの光が偏向され光学伝送チャネル407へ通される。あるいは、図4cのように、プリズム397を用いて光を光学伝送チャネルを通るように偏向させてもよい。プリズム397は、合計内部反射の結果として光を偏向してもよいし、偏向面419上の偏向コーティングの補助を受けてもよい。プリズム397は、光路に沿った適切な位置に固定される個別の光学部品であってよい。例えば、ファイバの端部に接着されたり、UV硬化接着剤などの接着方法を用いてレンズやスペーサの上に接着されてもよい。代替的に、クラッド無し光ファイバを光路に沿って取り付けて、クラッド無しファイバのセグメントを所望の長さで切断してプリズムの作成を行ってもよい。クラッドファイバのセグメントを切断および/または研磨して、所望の角度を得るようにする。Maoは、前に引用した文献でこの方法を開示している。
【0085】
図4cに示すように、光透過ウィンドウ409が光学伝送チャネル407の端部に任意に設けられ、このチャネル内の空いた空間には気体、液体、またはガラスやこの技術分野で公知のいくつかの透明ポリマなどの光透過材料が充填される。ウィンドウ409の目的は、不要な泡がチャネル407内に発生したり残ったりするのを防止するとともに、光学伝送チャネル407内の部品を保護することである。
【0086】
図4dにあるように、例えばボールレンズなどの曲面レンズ424といった特定の光学部品の屈折力を改善するために、チャネル407内部には液体や固い材料よりも気体を有することが望ましい。
【0087】
図4e−4gにあるように、GRINレンズ405または他の光学部品が、光ファイバ403の遠位端部に隣接して、ファイバ403と光路に沿った偏向ミラーまたはプリズム397との間に設けられる。この場合、光学基板402の開口407には光学部品がなく、単に光透過材料を含むか、ウィンドウ409で覆われている。代替的に、GRINレンズ405または他の光学部品が、図4g−4lに示すように、音響基板402の光学伝送チャネル407に収容されてもよい。図4lに示すように、音響基板402から機械的かつ電気的な絶縁を提供するために、上述した絶縁材料406のスリーブが、GRINレンズ405または開口407内の他の光学部品を取り囲むようにしてもよい。
【0088】
図4fを参照すると、光学スペーサ433が光ファイバ403の遠位端部とGRINレンズ405の間に配置されている。この光学スペーサ部材433は、例えばクラッド無しファイバ、ガラス、プラスチック、ガラス充填ギャップ、または液体充填ギャップといった光透過媒体を具える。光学スペーサ部材433を使用すると、所望の焦点距離を達成するための光学部品の整列やサイズに必要な精度を低減するのに有用である。
【0089】
代替的に、図4gのように、プリズム397またはミラーの光路長が、光ファイバとレンズ405の間の光学スペーサ433の全部または一部として作用するようにしてもよい。光学スペーサの機能の一部の代替として、光がミラーまたはプリズム397を通り移動する距離を用いる利点は、焦点部材(例えばGRINレンズ405や他のレンズ)が撮像領域に近くなることであり、これにより光学撮像システムの有効作業距離が改善される。いくつかの状況下では、図4hのように、レンズ405を光学伝送チャネルの両縁部からオフセットさせて、所望の焦点深さを得るようにする。
【0090】
他の実施例では、図4iの要素434のように、光路の1またはそれ以上の光学部品が音響トランスデューサの外側面を越えて延在することが、光学撮像技術の所望のパフォーマンスを達成するために有用となる。これは、音響トランスデューサ402が非常に細い場合(例えば非常に高い超音波周波数用)や、光学撮像技術の有効作業距離が、音響トランスデューサの放出面の下に収まっているすべての光学部品を有することで適応しうるものより長い場合に非常に重要となる。
【0091】
また、光学回路が音響トランスデューサ402の表面から遠隔であることが重要である。例えば、図4jの実施例に示すように、光ファイバ403あるいはミラーまたはプリズム397の近くの光学部品と、音響トランスデューサ402との間に裏打ち材435を配置して、光学部品からの後方反射を最小化してもよい。
【0092】
音響および光学撮像エネルギの伝搬方向は、撮像プローブの長軸に直角以外の方向であってもよい。事実、プローブを取り巻くシースからの反射を低減するには、数度ほど僅かに角度をオフセットさせることが望ましい。図4kは、プローブの長軸に垂直以外の角度に整列された光学および音響撮像手段を組み合わせたプローブの実施例を示す。
【0093】
図5aに示すローブ500の実施例は、図4bのミラー404や図4cのプリズム397のような部品なく、音響および光学撮像センサを組み合わせて見るような構造に構成されている。音響センサ用の圧電素子402と、圧電素子402の両側の導電層401とを具えるプローブ500の頭部は、光ファイバ403の長軸に沿って整列され、このプローブは図4aに示すような垂直ではなく、音響および光学信号がファイバ軸に対して軸方向に放出されるよう構成されている。
【0094】
図5bに示す実施例は、図4b、4cに示す実施例と類似している。図5cは、図4dに示す実施例と類似している。図5dの実施例は、図4eに示す実施例に類似する。図5eの実施例は、図4f、4gに示す実施例と類似する。図5fの実施例は、図4iの実施例と類似する。
【0095】
図6aは、方形トランスデューサ402の放射面の外形を示す。音響トランスデューサ402の放射面の外形は、方形形状に限るものではなく、例えば三角形、円形、楕円形、その他の様々な望ましい形状のいずれかとすることができる。図6bは、中央に穴407を有する方形トランスデューサを示し、図6cはホール407内にガラスロッド501を有する方形トランスデューサを示す。
【0096】
音響ビームシミュレーションソフトウェアを用いたシミュレーションビームプロファイル結果が図6d−6fに示されており、これらは図6a−6cのトランスデューサの外形にそれぞれ対応している。図に示すように、多様な構造のビームプロファイルにかなりの類似性があり、これは光学伝送チャネルに適合した超音波トランスデューサが撮像目的に適した許容しうる超音波ビームプロファイルを生成しうることを証明している。
【0097】
光学および音響撮像手段を整列させる簡単な方法は、光ファイバを音響トランスデューサ402それ自体の中を通ることなく近接配置することである。図7aは、音響トランスデューサ402を具える撮像プローブ510を示し、ここでは光学撮像回路428の遠位端部が音響トランスデューサ402の頂部に配置されている。光学撮像回路428の遠位端部は、ファイバ403の遠位端部と、例えば光学スペーサ433、GRINレンズ405といったレンズ、ミラー404またはプリズム397などの光学撮像エネルギの放出と収集が可能な任意の光学部品とを具える。光学撮像回路428の遠位端部は、音響トランスデューサ402に直接固定されてもよいし、音響トランスデューサ402の隣のサポートに支持されてもよい。光学撮像回路428の遠位端部は、トランスデューサ402が放出する音響ビームの一部の経路に直接的に位置するため、音響トランスデューサ402が生成/受信する音響信号に影響を与える。しかしながら、音響ビームエネルギの有意な部分は、光学撮像手段403を通って移動せず、このため比較的影響を受けない。
【0098】
さらに、信号処理手段は、エコー信号の初期部分を表す信号を捨てて音響トランスデューサの表面に近い界面からの反射を打ち消すための信号消去方法を具えることが望ましい。
【0099】
図7bは、図7aのシステムの変形例である撮像プローブ512の斜視図であり、光学撮像回路428の遠位端部がトランスデューサ402表面内に引っ込んでおり、したがってトランスデューサの引っ込んだ部分が機能せず、このため音響トランスデューサ402から送信または検知された音響ビームが上に延在する撮像ファイバ403を通って実質的に伝搬しない。本実施例の平面図が図7cに示されている。トランスデューサ402の一部を機能しなくすることは、図7bのように光学撮像回路428の遠位端部の下に延在するトランスデューサ402の部分を除去することと、光学撮像手段の下の電極の部分を電気的に絶縁することにより達成しうる。この除去はいくつかの方法で行うことができるが、これはトランスデューサ402を通るチャネルをダイシングソーを用いてカットすることを含む。さらに、チャネルを除去すると、光学撮像手段の遠位部分をチャネル内に隠したと考えることができる。
【0100】
図7cは、光学撮像回路428の遠位端部を取り巻く図7bに示すプローブの放射/受信面の平面図である。
【0101】
図7dは、音響撮像手段用の複合トランスデューサを用いた撮像プローブ516を示す。このケースにおいて、複合トランスデューサは、1より多い信号生成要素またはピラー520を具えるトランスデューサである。図7dの複合トランスデューサは、4つのピラー520を具える。ピラー520間のチャネル522は、光学撮像回路428の1またはそれ以上の遠位端部用に1のチャネル522が複合音響トランスデューサの範囲内に配置されるようにする。光学撮像回路428の遠位端部は、チャネル522内に引っ込んでいる必要はなく、代わりに音響トランスデューサ402の表面上に存してもよい。ピラー520の上側導電面間の導電接続400により、ピラーが同時に作動することができる。チャネル522は、例えばポリマーやエポキシ等の充填剤で満たされて、複合トランスデューサの機械的安定度を向上したり、光学撮像手段を正しい位置に固定する補助としてもよい。
【0102】
図7eは、撮像プローブ516の平面図を示し、ここでは光学撮像回路428の遠位端部がピラー520の中央に配置されている。図4に示すような、光学撮像回路428の遠位部の様々な実装(例えば、光ファイバ、スペーサ、GRINレンズ、ボールレンズ、エアギャップ、透明ウィンドウの任意の組み合わせ)を、図7a−7eに記載の実装に利用することができる。
【0103】
多くの撮像用の機械的スキャン機構の一部として、撮像ビームが掃引する幾何学経路を規定するスキャン機構に関する主たる動作がある。例えば、ある領域をスキャンするのに回転動作を用いる撮像システムでは、一般に円形または円錐形の面となり、ここを通って撮像ビームが走査し、現在の機械的血管内超音波スキャンの実装と同様に、円形または円錐形の面は回転軸にほぼ中心づけられる。この場合の主たる動作は回転動作である。
【0104】
代替的に、撮像エミッタ/レシーバは長軸に沿って移動され、撮像ビームは平面を通って掃引され、この表面で規定される面は移動軸を含む。この場合の主たる動作は縦の移動となる。
【0105】
撮像エミッタ/レシーバは、プローブの長軸周りで回転すると同時に通常はプローブの長軸と平行な経路に沿って移動し、したがって撮像ビームは螺旋形状で規定される面を通り掃引される。
【0106】
2またはそれ以上の撮像ビームを同時に同一線上にすることなく、複合的な音響および光学撮像手段から良好な精度の同時保存画像を生成することが可能である。これは、1またはそれ以上の撮像ビームが先導ビーム(leading beam)のパスを追従するようにすることで実現しうる。ソフトウェアや電子回路で、時間毎のスキャン機構の動作の速度や方向の知識を利用して、その後一方の撮像手段で生成した画像を他方の上に互いに記録することができる。
【0107】
例えば、1の撮像ビームのパスが短時間で他の撮像ビーム(先導ビーム)のパスに近接して追従する場合、2つの手段でスキャンされる領域は、2つの画像を互いに正確に同時記録するのい十分近似していると仮定することができる。2つの画像間の記録の精度は、第1のビームを第2のビームが追従する時間遅れによって影響を受ける。この時間遅れが比較的小さければ、この期間に生じうる2つの画像の同時記録における不正確性は小さくなる。このような不正確性は、(心臓の鼓動や呼吸動作により生じるような)組織の動き、故意ではないプローブの動き、例えば血流などの生理的変化、およびスキャン機構の再生度における不正確性により生じるものが含まれる。
【0108】
図8aは、音響撮像手段と光学撮像手段との双方を具える撮像アセンブリ530の一実施例を示す。主たるスキャン動作は、撮像プローブの長さに沿った長軸の周りの回転動作である。図示するように、音響撮像ビーム532と光学撮像ビーム534とは、本来的に円形であるパスを通り掃引される。撮像ビームが長軸に垂直に整列しておらず、長軸から90度以外の角度である場合、撮像ビームが通るパスは本質的に円錐形となる。回転動作に加え縦の移動が加わった場合、2つのビームは粗い螺旋形のパスを追従することとなる。
【0109】
図8bは、組み合わせた撮像プローブ530の側面図であり、音響ビーム532が1の方向(図の上方向)に移動し、光学撮像ビーム534がページの外(読み手の方)に移動する。この場合、光学ビーム534と音響ビーム532はどの瞬間にも互いに90度離れて向いている。
【0110】
図8c−8eは、撮像プローブ530の回転動作の時系列を表しており、撮像プローブの遠位端部から見た図である。この例では、光学撮像ビーム534が音響撮像ビーム532を90度の回転角度で先導している。毎秒30フレームの定フレームレートでは、追従するビームが、先導ビームが先行する位置と同一線上になるまでにかかる時間差は9ミリ秒以下であり、これは血管内カテーテルによる血管の動きで生じうるアーティファクトに関しては短時間である。
【0111】
低侵略性撮像手段における部品と組み立てに占めるスペースを最小限とする重要性において、いくつかの部品を凹部配置することが望ましい。例えば、図9aに示すように、撮像プローブ540は、光学撮像回路428の得に端部を音響トランスデューサ402の裏打ち材435内に引っ込ませている。この凹部配置(recessing)は空間利用の効率化を達成するばかりでなく、音響トランスデューサ402への光学撮像回路428の遠位端部の固定方法を提供している。
【0112】
音響トランスデューサ402の裏打ち材435の目的は、圧電素子402の裏面から生成された信号を減衰させて、光学エミッタ/レシーバ403が配設された音響トランスデューサ402の背面からではなく、トランスデューサ402の主たる音響信号用放出面(上面)から放射されるエネルギにより画像が形成されるようにすることである。光学その他の部品を裏打ち材435に凹部配置すると、光学その他の部品が信号を音響トランスデューサ402に反射して、撮像のアーティファクトが生ずる原因となりうる。
【0113】
図9bは偏向面544を示し、ここに光学エミッタ/レシーバ403が支持されており、そうでなければ光学エミッタ/レシーバ403に到達する音響エネルギをそらすよう作用し、このエネルギを横方向(実質的に音響トランスデューサ402の面に平行)にそらしてトランスデューサ402の方に反射するエネルギ量を最小化するようにしている。この偏向面544は、ガラスや鉄などの硬質な固体で作成することができる。
【0114】
図9cは、光学撮像回路428の遠位端部それ自身が、図9bに示す付加的な偏向部材を用いずに音響エネルギを実質的に横に偏向させる面545を有する。
【0115】
撮像ビームが回転動作の結果としてスキャンされる撮像プローブの実施例では、回転速度が一定であるか、むしろ同じ方向に向いたままである必要はない。撮像アセンブリが一方向に回転し、その後停止して反対方向に回転する往復動作をとってもよい。この状況では、先導ビームと追従ビームは互いに役割を交換する。
【0116】
例えば、図10aでは、撮像アセンブリが反時計方向に回転するに伴い、音響ビーム532は最初光学ビーム534に追従する。図10bに示すように、撮像プローブの回転速度がゼロ(図10c)になるまで、音響ビーム532は光学ビーム534の掃引経路を追従し続ける。回転方向が反対向きに変化したら、音響ビーム532が先導ビームとなり、光学ビームが追従する(図10d、10eのように)。この動きは、先導および追従センサビームの定義が付随して変化すると、必要なだけ方向を変えることになる。
【0117】
図11は撮像プローブ540を示し、この主たる動作は矢印541に沿った前後の縦の動きであり、光学ビーム534と音響ビーム532が掃引する面は2つの同一平面状の四角形である。撮像アセンブリが近位側に移動すると(図11の左)、光学撮像ビーム534が音響撮像ビーム532を先導する。遠位側への移動(図11の右)の反対も然りである。縦の動きは往復してもよい。
【0118】
縦または回転の主たる動作のいずれも、この主たる動作に追加の動きを組み合わせてもよいと考えられる。例えば、スローな並進移動(例えば10mm/s以下、典型的には1mm/s以下)を高速回転スキャン動作(例えば毎秒360度、典型的には毎秒3600度以上)に付加して、異なる縦の位置から2D断面画像を得るようにしてもよい。
【0119】
同様に、スローな回転動作(例えば毎秒360度以下、典型的には毎秒30度以下)を早い縦の往復運動シーケンス(平均0.1mm/s以上、より典型的には1mm/s以上)に付加して、撮像プローブの長軸周りの異なる向きで取得した一連の縦の画像を生成してもよい。遠位端部における多様な撮像素子の整列は、撮像ビームの1つが主たる動作時に他を追随するよう構成されるが、互いの上に画像を正確に記録する機能は、比較的スローな第2の動きの追加により大きく影響は受けない。上記には回転と並進のスローと早い動作の絶対数が提供されたが、より重要なのはこれらの動作の相対的な度合いである。
【0120】
光学と音響ビームの同一線上の整列は(図4a−5fに示すように)、光学と音響画像の非常に正確な記録を提供する。プローブの代替実施例は、光学撮像エミッタ/レシーバを音響ビームのパスに向けて角度づけたり、音響撮像エミッタを光学撮像ビームのパスに向けて角度づけることにより、光学と音響ビームが実質的に互いに重なる。図12は、撮像プローブ546の実施例であって、光学撮像回路428の遠位端部が、光学撮像ビーム534が音響撮像ビーム532の方へ向けられ、逆も同じように構成されている。これにより、図4a−5fのように光学撮像ビームを整列させるよりも簡単な構成方法となるが、2つの撮像手段にとって、2つの撮像ビームの一部へのほどよく正確な重なりとはなにかが生じる。特に、ビームがその焦点範囲の相当部分が重なるように整列された実施例が有用である。
【0121】
図13は、撮像プローブ550の一実施例を示し、音響と光学手段の双方で、同じ通常の向きで同じ通常の原点で同時に撮像するよう構成されている。1以上の光ファイバ410と1の電気導管411が、共軸の導電体のように、撮像導管560内に配され、撮像アセンブリ562へと移動する。この撮像アセンブリ562は、矢印420で示すような実質的に側方視で撮像するよう構成された音響トランスデューサ412を具える。この撮像アセンブリ562はまた、撮像用に構成された光学撮像回路564の遠位端部が、矢印421で示される側方視の方向に実質的に撮像するよう構成されている。
【0122】
音響トランスデューサ412と、光学撮像回路564の遠位端部は、これらがいつでも、撮像アセンブリ562が回転する軸423にほぼ直交する同じ断面内で、2またはそれ以上の異なる方向を撮像しうるよう構成されている。したがって、撮像アセンブリの回転中の撮像アセンブリ562の並進移動を最小限と仮定すると、光学エミッタ/レシーバ564で収集される撮像データは、音響トランスデューサ412で収集される撮像データと同時記録することができる。例えば、図13に示すように、音響および光学手段が、長軸周りで互いに180度反対側を撮像するよう構成されている場合、音響トランスデューサ412の一地点で撮像された領域は、撮像アセンブリ562が半回転だけ回転したときに光学撮像手段564の遠位端部で撮像された領域と実質的に同じとなる。同様に、撮像ビーム420と421が180度以外で長軸から似た角度を有する場合、これらはともに実質的に一致した円錐形の経路で掃引され、したがって同時記録される。
【0123】
図14a、14bに示すプローブ570の実施例は、IVUSとOCT双方が前方視用の変形可能な素材で組み合わさっている。1以上の光ファイバ410と1の電気導管411が、一対の共軸導電体のように撮像導管578内に配されて、撮像アセンブリ572へと移動する。音響トランスデューサ412は、矢印413で示す実質的に前方視方向を撮像するよう構成されている。
【0124】
光学撮像回路574の遠位端部は一般に、GRINレンズなどのレンズ415と光学スペーサ(図示せず)と組み合わさった光ファイバ410の遠位端部を具える。この撮像導管578は、電荷をかけると変形しうる特性を有する人工筋肉アクチュエータを具える。図14bは、人工筋肉アクチュエータが変形した場合に撮像角度がどのように変化するかを示し、図14aはアクチュエータに電圧をかけない場合のプローブ形状を示す。
【0125】
現在の撮像プローブの実施例は、撮像プローブ内で大きなトランスデューサを利用できるようにするデフレクタを使用すべく構成されている。代替的に、このデフレクタを回動可能とし、回動機構に取り付けられてスキャン機構内でさらなる自由度を実現してもよい。例えば、スキャン機構は2D撮像を実現してもよいし、2D撮像システムから3D撮像システムに増やしてもよい。代替的に、撮像システムの焦点深さを変えるために、デフレクタを長軸に沿って移動させてもよい。
【0126】
図15aは、撮像アセンブリ590の実施例を示し、光学および/または音響撮像エネルギをほぼ放射方向に偏向させるのにデフレクタ592を用いている。このデフレクタ592は、1またはそれ以上の反射部材でなる。光反射材は、例えばステンレススチール、金、銀、プラチナといった研磨あるいはスパッタ加工した金属を含む。
【0127】
音響反射部材は、ステンレススチールその他の金属、石英その他の結晶、ガラス、および硬質ポリマを含む。図15bは、他の実施例の撮像アセンブリ600を示し、回動点604の周りを回動するデフレクタ602を具え、これにより撮像ビームと撮像プローブ長軸間の角度を変化させることができる。この撮像アセンブリ600は、デフレクタ602が様々な機構と結合することによりその位置を変え、この機構には求心動作、磁力、ケーブル機構、流動学、圧電ドライバ、小型モータ、その他の機構を用いるものがある。
【0128】
図15cは、図15bの構成における一実施例であり、カンティレバーマウント902に搭載されたカンティレバー901とデフレクタの動作範囲が、ミニマム止め部82とマキシマム止め部80により制限されている。本実施例は、撮像アセンブリのプローブ長軸周りでの回転動作が変化した結果として、撮像角度が変化する特性を有する。静止状態または低い回転速度で、カンティレバーワイヤがデフレクタをその回動点周りで止め部80に当接するように押す。高い回転速度で、求心加速度により、デフレクタ604が回動して止め部80から離れる。デフレクタ602のカンティレバー901による戻る力を求心加速度が越え続けるため、デフレクタは結局止め部82に接触することとなる。このような実施例では、撮像アセンブリ600に3Dスキャン機構が実装される。
【0129】
図16aは、実質的に前方視方向の音響と光学撮像の双方が可能な撮像プローブ100の遠位端部の実施例を示す。図16aは、偏向部材が、ディスク70を通り延在するピンなどの回動機構に搭載されたディスクである撮像プローブの遠位端部29の実施例である。この回動機構72は、偏向ディスク70の傾斜軸を規定している。撮像アセンブリ30が静止している場合、ディスク70は任意の開始位置に留まる。しかしながら、撮像アセンブリ30が回転すると、ディスク70は、ディスク70の両面で規定される面の法線が長軸75とほぼ平行になるように整列する。ディスク70は、撮像アセンブリ30が回転すると2つの好適な向きをとり、これらは偏向軸周りで180度離れている。
【0130】
説明目的で、傾斜角度とは、長軸75と、偏向部材70が好適な向きの一方にある場合の長軸75に平行な偏向部材70を通る虚軸との間の角度をいう。例えば、偏向部材70が好適な向きにある場合、偏向角度はおよそゼロとなる。偏向部材70が重量や磁力、静電気、別の動く部分や流体との摩擦、圧縮力、垂直な力、または偏向部材70の傾斜軸周りにかかる不十分な対抗トルクの他のソースなどの外力により好適な向きから離れて傾斜したら、偏向角度は増大する。
【0131】
撮像アセンブリ30に、偏向部材70の偏向角度を増大させるような1またはそれ以上の機構を設けてもよい。本発明の目的において、このような機構を復位機構という。トーションスプリング76(図16a、16cに示す)、カンティレバー、または圧縮スプリングを復位機構として用いることができ、スプリング76の一端が偏向部材70と機械的に接触し、他端が撮像アセンブリ30本体といった撮像プローブ100の別の部分と機械的に接触する。
【0132】
代替的に、磁石、静電気、液圧、または偏向部材の偏向軸の周りにトルクをかける他の機構を適用してもよい。復位力を生じるのに利用可能な機構の他の例は、エラストマー(例えば、ゴム、ポリウレタン、シリコン、フッ素エラストマー、熱可塑性プラスチックその他多数)や、プラチナ、ニチノール、スチールまたは他の適切な素材でなるスプリングやフォイルなどの、カンティレバースプリングまたはフォイルの利用を含む。撮像装置の非常に小さな実施例では、静電力のような分子間力や撮像アセンブリの部品間のファンデルワールス力が外部電圧をかけない場合でも非常に有意なものとなりうる。このため、偏向部材と、後述する止め部80、82といった偏向部材近傍の構造体との間の本質的な分子間力は、正味の復位力を提供するのに十分である。例えば、PVC、ナイロン、またはLDPEからなる面を有する止め部は、偏向部材と止め部間の十分な引力を提供しうる。
【0133】
1またはそれ以上の止め部(stop)80、82が、偏向部材70の偏向角度の範囲を制限する。例えば、撮像アセンブリ30のシェル84からポストまたはリップ80が、止め部80として延在し、止め部80に接触した場合に偏向部材がさらにその偏向角度を変化させるのが抑止される。このため、止め部は、偏向角度が止め部の位置で決定される最大値を越えないように制限するのに利用される。多くの実施例において、撮像アセンブリが静止状態か回転速度が低いときに最大偏向角度が達成される。
【0134】
付加的あるいは代替的な止め部82を設けて、偏向部材が動作範囲の上限の回転速度で最小限の偏向角度となるようにしてもよい。実に、以下の特定の実施例の記載から明らかなように、偏向角度をゼロにするのに有意な利益はない状況が多い。図16cは、偏向部材が第2の止め部に当たり、その動作範囲を撮像アセンブリの高い回転角度で制限している。
【0135】
撮像アセンブリは、光学エミッタと、付随する光学および超音波トランスデューサの双方を具えてもよい。超音波トランスデューサ88は、小さな共軸ケーブル89とレンズ92の端部に搭載され、ミラー94が図16a−16dの撮像アセンブリ30の光ファイバケーブル96の端部に搭載され、光学および超音波エミッタが偏向部材70に撮像エネルギを収束させるよう構成されている。超音波トランスデューサ88と光学エミッタは、偏向部材70に向けて撮像エネルギを方向付けることができる。代替的に、同一線上の光学および音響撮像を実現する実施例では、図4a−4kあるいは5a−5fのように、撮像エネルギを偏向部材70に向けることができる。
【0136】
撮像エネルギはその後、偏向部材70に搭載されたエネルギ偏向部材で偏向される。超音波撮像用には、エネルギ偏向部材(偏向部材70)は、固体金属面(例えばステンレススチール)や、水晶結晶板やガラスなどの結晶面といった音響反射面を具える。光学撮像用には、エネルギ偏向部材(偏向部材70)は、研磨金属でなる鏡面、二軸配向ポリエチレンテレフタレート(Mylar)などの金属化ポリマ、スパッタまたは電気化学的に溶着された金属などの光反射面を具える。一般にミラーを作成するのに用いられる金属は、アルミニウム、銀、スチール、金、またはクロムを含む。
【0137】
代替的に、エネルギ偏向部材は、例えばガラス、透明ポリマ、その他多くの透明反射材料で作成され、プリズムと同じように撮像エネルギを偏向させてもよい。好適には、エミッタおよび/またはレシーバは、撮像アセンブリにおいて撮像アセンブリとともに回転する部品に搭載される。しかしながら、エミッタおよび/またはレシーバは、撮像アセンブリ内でエネルギ偏向機構が回転していても、撮像アセンブリとともに回転しない撮像プローブの部品に搭載されてもよい。これは、例えばエミッタおよび/またはレシーバを外部シースに設けたり、撮像アセンブリを2以上のサブアセンブリに分け、その一つが回転して偏向部材を具えるようにしてもよい。
【0138】
超音波と光学干渉断層撮影では、放射および/または受信した撮像エネルギの伝搬角度を調整する機能は、撮像アセンブリの回転動作と組み合わさると、3Dボリュームをスキャンすることができる。血管顕微鏡検査や赤外線撮像では、放射および/または受信撮像エネルギの伝搬角度を調整する機能は、撮像アセンブリの回転動作と組み合わさると、ファイバの束を必要とせず単一の光ファイバを用いて画像が生成できるようになる。このような改良により、柔軟性および/または撮像装置の小型化が達成される。
【0139】
本書に開示される撮像プローブで利用可能な多様なスキャン機構のさらなる詳細が、同時に出願されともに係属している出願番号11/・・・の「SCANNING MECHANISMS FOR IMAGING PROBE」に開示されており、これは全体として参照により本書に組み込まれている。
【0140】
エネルギ偏向部材が反射面を具える場合、この反射面は平面である必要はない。例えば、音響撮像の場合、音響反射面が放物線状または長球輪郭のような曲面を有すると便宜であり、これにより音響ビームが反射面により収束し、結果として音響撮像システムにおける横方向の解像度が向上する。さらに、偏向部材を用いて音響と光学エネルギの双方を反射により偏向する場合、音響反射板は光学エネルギを反射する面と同じである必要はない。
【0141】
例えば、音響反射面に放物線状などの曲面をもたせることは便宜であるが、光学撮像エネルギの向きを変えるには平面を具える方が好ましい。これは、図17a乃至17dのよに、例えばステンレススチールのディスクで1の面が放物線状となるよう湾曲された音響反射面を設けて実現することができ、ここでは音響反射面とは異なる光学反射面を有する偏向部材が示されている。
【0142】
図17aは、撮像アセンブリ内でデフレクタが回動しうるピンを受ける穴を側部に有するデフレクタの斜視図である。図17bは、デフレクタのほぼ中央でとったデフレクタの断面図である。ピン465を受ける穴が示されている。最上層は平坦な光学反射層4612である。この光学反射層461の下には、一般的な音響透過層462があり、これが光学反射層461と音響反射基板463の間に延在している。図17c、17dは、このデフレクタにおけるディスク中央から離れた異なる地点の断面図である。
【0143】
このようなデフレクタは、ステンレススチールなどの音響反射材料のディスクを用いて、必要な穴をドリルまたは打ち込みにより開けて構築することができ、これによりデフレクタは最終的に撮像アセンブリに搭載される。放物線状または長球の湾入は、ディスクの一方の面に対し行うことができる。この湾入面にその後、ポリメチルペンテン(TPX)などの音響透過媒体を充填する。金、銀、またはクロームの薄膜をこの露出した平坦なポリマ面にスパッタ蒸着し、光学反射面とする。この層は、300オングストロームから20,000オングストロームのオーダーであり、その機械的特性として音響エネルギを透過しつつ同時に光学反射面を提供するのに十分薄い。
【0144】
このような製造工程の成果は、曲面で音響エネルギを反射して所望の焦点効果を達成しつつ、光学エネルギが平面で反射される、層化した反射材が製造されることである。この構成のさらなる利点は、光学および音響撮像エネルギが同じ共通スペースを通り移動し、光学および音響撮像の同時記録を達成するとともに、撮像アセンブリ内で必要なスペースを最小限として1またはそれ以上の撮像様式を構築する構成で、光学および音響撮像が生じうることである。
【0145】
いくつかの実施例では、図16a、16cで示すアセンブリのように、撮像様式の1つを単独で用いて、2Dおよび3D画像の再構成に有用なパラメータを測定するのが有用である。例えば、偏向部材を用いた容積撮像プローブの場合、偏向部材の傾斜角度を正確に測定するためにはOCTを用いることが望ましい。したがって、OCTデータを用いて撮像プローブの外側領域の対応するOCT画像を生成する必要なく、図16aの偏向部材70の傾斜角度のような、OCTデータから得られる傾斜角度の知識で超音波画像が生成されうる。
【0146】
いくつかの実施例では、血管内撮像システムの1より多い光学撮像方法を有することが望ましい。例えば、OCTと血管顕微鏡検査法は有用な組み合わせとなる。図18aは、超音波撮像トランスデューサ402を示し、光学撮像回路428の2つの遠位端部が、音響トランスデューサの2つの別個の光学伝送チャネルを通る。図18b、18cは、光学撮像回路428の2つの遠位端部が、撮像アセンブリの主たる回転動作に沿って整列されるように構成される。これらは1より多い撮像エミッタ/レシーバを撮像プローブの遠位端部に用いる例である。スキャン機構の一部として撮像プローブが長軸回りで長い回転動作をとる場合、このような実施例は複数チャネルの光学回転ジョイントを用いる必要がある。
【0147】
代替的に、いくつかの撮像システムにおいて光学撮像光源および/または検出器を撮像プローブの回転部に搭載して、電気スリップリングまたはワイヤレス通信で撮像システムに接続してもよい。選択的に、バッテリをプローブの回転部の電気エネルギ源あるいは必要なスリップリングの数を低減するためのアダプタとして用いてもよい。光源や光検出器を撮像プローブの近位端部に配置し、プローブの長軸回りで撮像導管34の残りの部分とともに回転するようにして、撮像プローブとアダプタ間にさらなる光学カプラが要らないようにする。これは、プローブをシステムの他の部分と接続するのに1より多いファイバを用いると、光学回転ジョイントの複雑性が有意に増大してしまうからである。
【0148】
撮像プローブが小さい角度範囲で往復回転動作をとる場合(例えば2回転以下)、あるいはまったく回転しない場合、光学回転ジョイントを用いる必要はなく、撮像プローブの光学部品を画像処理・表示ハードウェアに接続するタスクを単純化することができる。
【0149】
別の実施例では、撮像プローブの遠位端部に同じ光学撮像エミッタ/レシーバを用い、スイッチ、マルチプレクサ、デマルチプレクサ、プリズム、回折格子、カプラ、および/またはサーキュレータなどの光学ルーチン回路を用いて、1より多い撮像様式用に同じファイバと遠位の光学部品を用いるようにしてもよい。
【0150】
図19は、2つの光学撮像システム211が同じ光学撮像導波管212に光学ルーチン回路(1またはそれ以上の上述した要素を具える)を介して接続されたシステムの概略図である。この導波管は、撮像プローブ12がそのスキャン機構の一部として広い範囲の回転動作を必要とする場合、光学回転ジョイント213を介して撮像プローブに接続される。光学撮像回路428の遠位端部は、本発明のどこかに記載されている光学撮像を実現するための光ファイバ、スペーサ、ミラー、プリズム、ボールレンズ、GRINレンズ、エアギャップ、透明ウィンドウのいかなる組み合わせを具えてもよい。導波管やレンズなどの光学撮像要素の多くは、特定範囲の波長(例えば、赤外線や可視スペクトル)に最適に機能するよう設計されているが、ある範囲用に設計された光ファイバや他の光学部品のパフォーマンスはあのスペクトルの光を用いる情報の提供にも適当なことが多い。
【0151】
このため、1より多い範囲の波長を用いる撮像を同時に行うことができる。あるいは、光学ルーチン回路210内の光学スイッチ、マルチプレクサ、およびデマルチプレクサの手段により撮像導波管を異なる撮像様式を異なる時間インターバルで用いたり、単に光学導波管の使用タイミングを異なる撮像様式で異なる時間インターバルで用いてもよい。
【0152】
光ファイバは多くの実施例において好適な光学導波管212であるが、光ファイバより潜在的に空間効率のよい光学導波管の代替形態を用いることが好ましい。例えば、最大直径が3−500ミクロンのオーダー、好ましくは4−125ミクロンの細い光学チャネルをカテーテルの押出成型時に形成することができる。屈折指数の高い流体媒体を例えば注入手段により光学チャネルに導入可能である。このような流体媒体は、エポキシや特に光学部品用に構成された粘着剤を含む。
【0153】
この流体媒体は、例えばUV硬化型粘着剤のような硬化型であってもよい。光学伝送チャネルに、低屈折率の押し出し成形カテーテル材料で囲まれた高屈折率の材料を充填すると、本質的に光ファイバを内包するのと同じ機能となるが、個別のクラッド層が不要となるため、カテーテル内の空間を僅かにより有効に利用することができる。カテーテル内の空間の最適利用は、低侵略性の性質や、カテーテルが展開される領域の限られたスペースにおいてしばしば重要となる。
【0154】
本発明のさらなる別の動作モードは、光学トランスデューサに音響変換を組み合わせたトランスデューサを使用することであり、ここで送信エネルギは1の形態であり、受信エネルギは別の形態である。例えば、光音響撮像は、撮像領域に光ベースのエネルギを供給することを含む。フォトンが撮像領域と相互作用して、伝搬する媒体の相互作用の一部として音響エネルギが生成される。この音響エネルギはよく超音波の形であり、超音波トランスデューサで検出可能である。光学エミッタを音響レシーバに整列させ組み合わせて用いると、光音響撮像を実現する良好な構成となる。図4a−4k、5a−5f、または図12に示すように、光学撮像用の開口を有するか音響と光学撮像領域が実質的に重なる超音波トランスデューサは、光音響撮像が可能である。
【0155】
同様に、音ルミネセント撮像は、超音波型エネルギを撮像領域に供給する(Daniels and Price, Ultrasound in Medicine and Biology 1991:17(3):297-308)。音響エネルギは撮像領域と相互作用して、伝搬する媒体との相互作用の一部としてフォトンが生成される。一部のフォトンは音響エネルギ源に戻される。超音波トランスデューサを光学レシーバと整列させ組み合わせて用いると、音ルミネセンス撮像を実現する良好な構成となる。
【0156】
図4a−4k、5a−5f、または図12に示すように、撮像ビームが同一線上あるいは実質的に重なる音響および光学撮像素子の実装は、音ルミネセンス撮像を実現する。
【0157】
図1を再び参照すると、撮像プローブ12(本書記載の音響および光センサのいずれかの実施例を含む)およびその部品は、撮像プローブ12で実現される撮像に用いる解剖学上の位置および目的によって、いくつかの寸法や特性とすることができる。例えば、心室を含む心臓血管系に用いる目的では、撮像プローブ12は細長く柔軟であることが望ましく、長さ5−3000mmの範囲、好ましくは300−1600mmの範囲である。撮像導管34と撮像アセンブリ30は、最大断面が200ミクロン−10mm、好ましくは500ミクロン−5mmである。外側シース48は、撮像導管34と撮像アセンブリ30の両方を取り囲んでもよい。これにより、撮像導管34と撮像アセンブリ30が外側シース内で回転可能となるとともに、これら2つの部材を周辺組織から機械的に隔離される。
【0158】
さらなる別の実施例では、撮像プローブ10を胃腸系に用いるには、通常は撮像プローブ10は細長く柔軟で、長さ100mm−2000mmの範囲、好ましくは300mm−1500mmの範囲である。最大断面は典型的に3mm−20mmである。
【0159】
さらなる別の例では、撮像プローブ10を経皮手段を介して柔組織で撮像する場合、撮像プローブに硬いシャフトが用いられる。外側シースは、例えばステンレススチール管などの硬い中空シャフトに置き換えられ、ただし多くの他のポリマ、金属、およびセラミックスでさえも機能的に適している。
【0160】
さらなる別の実施例では、神経外科手術中のセッティングで撮像プローブ10を用いる場合、典型的には撮像プローブ10は短く半硬質で、長さの範囲が50mm−200mmである。外科医が施術中に曲げて形作り、頭蓋外空間から頭蓋内の撮像対象に向けて最適な経路を得るようにすることが望ましい。最大断面は200ミクロン−5mm、好適には500ミクロン−3mmである。
【0161】
さらなる別の例では、撮像プローブ10を介入性神経血管のセッティングで使用する場合、典型的にはプローブ10は長く非常に柔軟で、長さ200mm−4000mmの範囲、好ましくは1300mm−2000mmの範囲である。最大断面は200ミクロン−5mmで、好ましくは500ミクロン−3mmである。プローブの遠位端部は好適には神経血管構造を通り航行性を向上すべく鋭利な復元力を有する。
【0162】
本発明の実施例は、例えば血管形成バルーン、アテレクトミー装置、ステント供給システム、またはドラッグ局所供給システムなどの、心血管の介入に用いるような、介入用のデバイスとともに、あるいは組み込んで利用可能である。これはまた、バイオプシー、無線周波数切除、切除、焼灼法、局所化した小線源照射、寒冷療法、レーザ切除、音響切除を実現する実現する装置とともに用いられ、あるいは組み込まれてもよい。
【0163】
特に、画像スキャン機構を用いて高出力の光学または音響エネルギをターゲット領域に案内することは、現在の装置で組織のレーザまたは音響アブレーションを実現するのを促進する。例えば、血管領域を本発明記載の撮像プローブのOCTまたは超音波の実施例で撮像しつつ、治療を供給する領域をユーザインタフェースを通じて選択することができる。その後、スキャン機構を所望の方向にエネルギ供給すべく向けたときに強力なエネルギパルスを供給する。例えば、レーザエネルギのパルスを光学撮像と同じ光ファイバで伝送し、偏向部材を具える上記実施例における偏向部材で偏向し、ターゲット組織へ向けて移動させて所望の効果を得るようにしてもよい。レーザエネルギパルスのタイミングは、撮像プローブでエネルギをターゲット領域へ向けることにより実現するスキャンパターンで調整される。
【0164】
2またはそれ以上の高解像度撮像様式における正確な画像記録の機会は重要な情報を提供し、これは単一の撮像様式により得られるものより有用であることが多い。Maschkeらは、血管内画像の内側部がOCT撮像情報で構成され、血管内画像の外側部がIVUS撮像情報で構成される複合画像の形成を記載している。これは、OCTで得られる高解像度画像と、IVUSの高い透過性とを利用するものである。しかしながら、このIVUSとOCT画像の重ね合わせの信頼性は、Maschkeに記載のようにIVUSとOCT撮像部品の構成を用いた場合に生じるIVUSとOCT画像の記録の不正確性による限界があり、これは本発明の多くの実施例により解消される。
【0165】
IVUSとOCT画像の組み合わせの代替的な実現例は、画像をセクタに分析することを含み、ここでは図20aに示すように、代替セクタが代替撮像手段を用いて表示される。第1の画像231と第2の画像232は、ここでは第1および第2の画像が互いに同時記録され異なる手段により取得されるが、第1の画像のセクタ233が第2の画像のセクタに置き換えられた複合画像を形成するのに使用される。任意で、セクタ233を規定するボーダ235を画像中心の周りを時間ごとに回転させ、第1と第2の同時記録された画像の両方の特徴を同定するための動的画像を提供するようにしてもよい。図20bは、複合画像234の中心の周りのボーダ235の回転の時間経過を示す図である。
【0166】
代替的に、ユーザはどの部分を一方の画像とし、どの部分を他方の画像で見るかを、図21aのように第2の画像の輪郭236を特定するか、図21bのように第2の画像の2つの閉じられた輪郭間のスペース237を特定することによって指定してもよい。
【0167】
代替的に、第1の画像231と第2の画像232を同じ位置で画面上に別のレイヤとして表示し、手前のレイヤの透明度を変化させると、画像を組み合わせる手段を効率的に提供することができる。あるいは、図22に示すように、例えばIVUS画像をある期間は手前に表示し、次にOCT画像を次の期間は手前に表示させるようにするなど、レイヤの順番を時間毎に変化させてもよい。
【0168】
本発明の目的は、第1の画像231の特定の関心のある特徴を同定し、この特徴の情報(位置、形状、信号特性、または組成など)を、当該第1の画像231と正確に同時登録された第2の画像232に移すことである。幾何学的特徴は、画像における特定のポイント、輪郭、または2D領域を含む。図23aに示すように、ユーザは撮像システムのユーザインタフェース(マウスやキーボードを用いて)を通じて、ポイント238、輪郭、または領域を第1の画像231からマニュアル作業で特定することができ、すると幾何学的ポイント238が図23bのように第1の画像231と同時記録された第2の画像232に現れる。第1の画像と正確に同時記録された1またはそれ以上の画像は、第1の画像からの任意あるいはすべての幾何学的特徴を他の任意の画像に重ねることができる。
【0169】
例として、ユーザはICT画像内で、血管の内側境界あるいは繊維状キャップの後縁を特定してもよい。図24aは、OCT画像(第1の画像)の概略図において特定される内側境界241を表す輪郭を示す。同様に、血管壁の外側境界242(通常は外側の弾力層で規定される)は、IVUS画像(第2の画像)で特定することができる。血管の内側境界241またはファイバキャップの後縁を表す輪郭は、その後対応するIVUS画像の上に重ねられる。同様に、血管壁(通常は外側の弾力層で規定される)の外側境界242は、IVUS画像で特定することができる。IVUS画像において評価された外側境界を表す輪郭は、OCT画像に重ねられる。図24bは、第1および第2の画像の双方の内側と外側境界を示す。
【0170】
血管の内側境界は多くのIVUS画像で容易に特定できるが、輪郭を生成するOCTの法が多くの場合より正確である。さらに、OCTはファイバキャップまたはプラークを特定するのにより良好と考えられ、その一部は高解像度だからである。しかしながら、IVUSはさらに遠くまで見ることができ、多くの血管の外壁をよりよく評価することができる。
【0171】
幾何学的特徴は、例えば外観(surface)や量感(volume)などの、3Dデータセットに見られる特徴を含むことができる。3D撮像で観察される外観や量感は、2つのデータセットが正確に記録された場合、別の3D撮像データセットに重ねることができる。
【0172】
関心のある幾何学的特徴は、マニュアル作業で特定する必要はない。ある撮像データセットの特徴は、ユーザの介入を最小限とすべく自動化または半自動化された手段で特定されてもよい。例えば、いくつかの境界検出方法が、IVUSの文献で引用されている(例えばKlingensmith, IEEE Transactions on Medical Imaging, 2000; 19:652-662)。自動境界検出方法は、画像を分析していくつかの予め定められた特徴の輪郭を同定する。半自動方法も同様であるが、境界検出アルゴリズムの開始点を決定したり、アルゴリズムによって生成された結果をリファインするのにユーザの介入を必要とする。
【0173】
他の特徴検出アルゴリズムを考えて、境界以外の特徴を同定するようにしてもよい。例えば、超音波画像において暗い領域の後に明度/輝度が高い領域が撮像ビームの同じ方向に続いた場合はしばしば「シャドーイング」と呼ばれ、撮像領域がカルシウム(例えばと進行したアテローム性動脈硬化や悪性腫瘍など)や金属(例えばステントや他のインプラント)を含んでいることが多い。同様に、血管のOCT画像において、高輝度の領域が、同じ撮像パスに沿って取得される早いが連続的な信号減衰の後に続く場合、血管壁の壊死の兆候がある。このような領域をアルゴリズムで検出し、各画像でこれらを特定する。このような特徴が各画像で同定されたら、その位置や形状を他の正確に同時記録された画像と重ねる。
【0174】
本発明の特定の実施例では、1またはそれ以上の画像の調整を行って同時記録をさらに改善してもよい。本発明の実施例の多くで、1またはそれ以上の撮像方法で撮像データ取得精度を向上しており、さらに画像を調整して同時記録プロセスの精度を向上すると利益となる。例えば、すべての組織を通して一定の音の速度で評価して超音波画像を生成し、一方でOCTですべての組織を通して一定の光の速度で評価するようにする。
【0175】
しかしながら現実では、撮像エネルギが伝搬する各組織の組成によってこれらの速度は少し変化する。このため、1またはそれ以上の画像の同時記録プロセスを完了する前に、同時記録される2またはそれ以上の画像内の特定の特徴を同定し、これらの特徴を変異プロセスに用いることにより、1またはそれ以上の画像を変異(morph)または歪ませてもよい。どの地点でも、同時記録されるすべての画像で特定される輪郭や他の特徴は、変異プロセスを実行するのに用いることができる。超音波画像は最も一般的には、画像内の各ピクセルに対応する近似の解剖学的位置から反射する超音波信号の強度を表すグレースケールを表示することにより生成される。同様に、OCT画像は最も一般的には、画像内の各ピクセルに対応する近似の解剖学的位置から反射する光の強度を表すグレースケールを表示することにより生成される。
【0176】
各位置での超音波やOCT画像の強度情報とは別に、複合画像から得られる分析に非常に有用となりうる超音波やOCT画像のいくつもの別の態様がある。
【0177】
画像内のサンプルの強度以外の特徴に基づく超音波信号から導かれる画像の表示は、この分野でよく知られている。Nairら(Circulation 2002; 106(17):2200-2206および米国特許番号6,200,268)は、血管のIVUS画像の個別の領域における超音波信号のいくつかのパラメータを測定するアルゴリズムの結果を公表している。各領域はさらに、血管の組織学的分析に基づいて組織カテゴリが割り当てられる。各領域の超音波供給パラメータと組織学的分類は、パターン認識エンジンに入力され、その後に多くの超音波特性に基づいて生体組織を分析する試みを行うアルゴリズムが生成される。分析に用いられるいくつかの特性は、例えば最大出力、最大出力周波数、最低出力、最低出力周波数、傾き、y切片、中間周波数フィット、統合された後方散乱などの規定された周波数範囲にわたる周波数ドメインパラメータを含む。生成された画像は、血管断面の組織分布図と、個々の色数とを含み、各色が単一の組織カテゴリを表す。Wilsonらは、IVUS画像の領域における超音波信号の周波数ドメイン減衰を測定し、減衰スロープのカラーマップを従来のIVUS画像に重ねて、特定の病理種類に関係すると考えられる範囲を特定する利用を提示する。
【0178】
同様に、関心ある特徴を、光学画像内で測定あるいは同定して、強度に基づく画像以外の画像を生成することもできる。このような画像を生成するパラメータや他の特性には、減衰、偏光感度、検出される縁部、分光情報、その他が含まれる。
【0179】
本発明で実現される同時記録の高度な正確性の結果、1より多い撮像様式で測定した特徴や信号特性に基づいて画像を生成することが可能となる。例えば、OCTで特定された内側境界245と、IVUSで特定された外側境界246と、例えば石灰化、繊維質、アテローム、血栓症、金属、および無病の領域などの血管壁の重要な要素を特定する機能を向上させる複合画像を生成するための撮像データセットの焦点領域内の光学信号特性と音響信号特性とを組み合わせるのにパターン認識システムを用いて血管壁内の最も適当な組織要素のカラーマップとを用いて合成画像を生成することができる。
【0180】
図25aは、OCTで特定される内側境界245と、IVUSによる第2の画像内で特定される外側境界246と、OCTおよび超音波信号特性分析用に使用される領域とを示す概略図である。図25bに示すように、同時記録された関心領域における1より多い撮像様式からの信号特性248が、分析される関心領域に対応する複合画像の1以上のピクセルの構成の評価を作成するのに用いられる。この評価は、この分野で公知の方法を用いて調整されたパターン認識システム249により作成することができる。同時記録画像内で特定される幾何学的特徴249もまた、選択的に複合画像に含められてもよい。関心領域の要素の評価プロセスは、異なる関心領域について数回繰り返して複合画像を生成してもよい。
【0181】
さらに、複合撮像手段のこのような分析を実現するソフトウェアや処理アルゴリズムは、取得ステーション(acquisition station)上になくてもよい。撮像データが取得されたら、撮像データは1またはそれ以上の処理ユニットの別のセットに対しオフラインで分析を行うべく送信されてもよい。
【0182】
本書記載の複合型IVUS/OCTスキャン装置は、回転エンコーダを具えてもよい。複合IVUS/OCTスキャン装置に用いられる光学エンコーダのさらなる詳細は、同時に出願され同時係属している出願番号11/...、名称「MEDICAL IMAGING DEVICE WITH ROTARY ENCODER」に開示されており、これは全体として参照により本書に組み込まれる。
【0183】
簡単に、図26a−26eを参照すると、撮像プローブは、スキャン機構の一部としての撮像導管34のような回転シャフトを用いる細長い撮像プローブとともに用いられるよう設計されたエンコーダを具え、この利用は、非均一な回転歪みが生じうるトルク伝達に用いられる長く柔軟なケーブルを用いる様々な装置の利用として一般化することができ、正確な回転動作の評価が求められる。特に、従来型の回転エンコードシステムは所望の角度分解能を提供せず、あるいは使用目的において十分に小型ではないのに対し、トルクケーブルの外側半径が比較的小さい(例えば4mm以下)で長く(例えば5cm以上)、柔軟なトルク伝達システムに用いるのに最も適している。
【0184】
図26aは、細長い撮像デバイス450の近位および遠位端部の縦の断面を、トルク源452に機械的に結合されたトルク伝達シャフト451とともに示している。このトルク源452はモータ、オペレータによりマニュアル回転されるハンドル、あるいは様々な類似の装置であってよい。トルク伝達シャフト452は、例えばエネルギ供給デバイス、針、アテレクトミーヘッド、またはいくつかの他の装備であるデバイスの機能端部454にトルクを伝達する。図26cは、外側シース453の壁が伝達シャフトを取り囲み、デバイスの機能端部を内包するよう示されているが、外側シースがオープンで機能端部の近傍に開口がある実施例も可能である。光ファイバ455が外側シース453の一部として示され、これは光照射、光検出、あるいは双方を実現する目的であり、伝達シースの近位端部から離れた符号化インタフェースへ/から続いている。図26aにおいて、本例では円筒形の符号化インタフェース本体180がデバイスの回転部分に取り付けられているが、ファイバは比較的静的である。この光ファイバ455は、図示するように外側シース453の突出部の一部として設けられてもよいし、シースの内側あるいは外側面に付加され、接着や、ファイバとシースを取り巻く熱収縮材料のさらなる層などこの分野で周知の方法でシース453に固定されてもよい。光ファイバ455の終端には、例えば光学スペーサ、レンズ、および/または偏向機構172(例えばプリズムやミラー)などの光を符号化インタフェース104に向けるのに必要な様々な遠位光学部品115がある。図26aの符号化インタフェース104は、上述した同時に出願され同時係属している出願番号11/...、名称「MEDICAL IMAGING DEVICE WITH ROTARY ENCODER」に開示されている筒状符号化インタフェース本体のものと同様である。
【0185】
図26bの符号化インタフェースは、上記同時係属出願の筒状符号化インタフェース本体のものと同様である。図14a、14bの実施例で用いられている符号化光学回路はトルク伝達シャフトに搭載されていないか直接結合されていないため、光学符号化回路に沿って光学回転ジョイントを設ける必要がない。
【0186】
図26cは、図26bのデバイス450における線14c−14cを通る代表的な断面図である。システムを符号化する1またはそれ以上の光ファイバ455を外側シース453に組み込んでいる。
【0187】
上述の同時に出願され同時係属している出願番号11/...、名称「MEDICAL IMAGING DEVICE WITH ROTARY ENCODER」記載の回転エンコーダの実施例は、図26a−26dのいずれかの実施例の機能端部を撮像アセンブリ30に置換し、トルク伝達シャフト451を電気あるいは光学信号を伝えるのに適した撮像導管34に置換することにより、撮像プローブ12に組み込むことができる。
【0188】
本書において、「具える」、「具えている」、「含む」、「含んでいる」の語は包括的ではなく開放的であり、排他的でないと解されるべきである。特に、本明細書およびクレームにおいて、「具える」、「具えている」、「含む」、「含んでいる」やこれらの派生語は、特定の特徴、ステップ、あるいは要素が含まれていることを意味する。これらの語は、他の特徴、ステップ、あるいは要素の存在を否定すると解されてはならない。
【0189】
上述した本発明の好適な実施例の記載は、本発明の本質を説明するために提示されたものであって、本発明を示された特定の実施例に限定するものではない。本発明の範囲は添付のクレームに包含されるすべての実施例とその均等物により規定される。


【特許請求の範囲】
【請求項1】
撮像プローブにおいて、
中空のシャフトと、
前記中空のシャフトを通って延在し、光ファイバと導電体とを具える撮像導管であって、その近位端部で、画像処理システムと、光源と、超音波信号生成器とに接続可能な撮像導管と、
前記撮像導管の遠位部分に取り付けられた撮像アセンブリとを具え、当該撮像アセンブリが、
光偏向素子を具える光学エミッタ/コレクタであって、前記光偏向素子が前記光ファイバの遠位端部に光学的に接続し、前記光ファイバの遠位端部の外部に光撮像エネルギを導き、反射した光撮像エネルギ信号を前記光ファイバの遠位端部の中へ導く、光学エミッタ/コレクタと、
超音波撮像エネルギを放射し、反射した超音波撮像エネルギ信号を受信し、音響基板と裏打ち材とを具える超音波トランスデューサであって、前記導電体に接続する超音波トランスデューサとを具え、
前記光学エミッタ/コレクタの少なくとも一部が前記超音波トランスデューサ内に存在し、
前記撮像アセンブリは、前記光学エミッタ/コレクタからの光撮像エネルギと、前記超音波トランスデューサからの超音波撮像エネルギとを前記中空のシャフトの外部に供給するよう構成されており、
前記超音波トランスデューサと前記光偏向素子は、関心領域のスキャン中に前記反射した光撮像エネルギ信号と前記反射した超音波撮像エネルギ信号を同時記録できるように、互いに対して配置され配向されることを特徴とする撮像プローブ。
【請求項2】
請求項1に記載の撮像プローブにおいて、前記撮像導管が当該撮像導管に動きを伝達する駆動機構に接続可能であることを特徴とする撮像プローブ。
【請求項3】
請求項1又は2に記載の撮像プローブにおいて、前記撮像導管がその長軸周りで回転可能であることを特徴とする撮像プローブ。
【請求項4】
請求項1〜3の何れか一項に記載の撮像プローブにおいて、前記超音波トランスデューサは表面を有し、当該表面から前記超音波撮像エネルギが放射され、前記超音波トランスデューサは自身に設けられた光学伝送チャネルを有し、前記光偏向素子が前記光学伝送チャネルに沿って存在し前記光学伝送チャネルを介して前記表面へ前記光撮像エネルギを伝送することにより、前記光撮像エネルギが前記超音波撮像エネルギと実質的に同一線上になることを特徴とする撮像プローブ。
【請求項5】
請求項4に記載の撮像プローブにおいて、前記光学伝送チャネルの少なくとも一部が前記裏打ち材の内部に設けられることを特徴とする撮像プローブ。
【請求項6】
請求項4又は5に記載の撮像プローブがさらに、光学焦点素子を具え、前記光学焦点素子の一部が前記光学伝送チャネル内に存在することを特徴とする撮像プローブ。
【請求項7】
請求項6に記載の撮像プローブにおいて、前記光学焦点素子が前記超音波トランスデューサの外側面を越えて延在することを特徴とする撮像プローブ。
【請求項8】
請求項6又は7に記載の撮像プローブにおいて、前記光学伝送チャネルが第1の部分と第2の部分とを具え、前記第1の部分が前記超音波トランスデューサの側面から前記超音波トランスデューサの裏打ち材を通って延在し、前記第2の部分が前記第1の部分と光学的に接続し、前記第2の部分が前記超音波トランスデューサの音響基板と前記超音波トランスデューサの放射面とを通って延在し、前記光偏向素子が前記光学伝送チャネルに沿って存在し前記第1の部分と前記第2の部分との間で光学ビームを偏向することを特徴とする撮像プローブ。
【請求項9】
請求項8に記載の撮像プローブにおいて、前記裏打ち材の少なくとも一部が前記光学伝送チャネルの第1の部分の裏側に設けられ、前記音響基板の反対側にあることを特徴とする撮像プローブ。
【請求項10】
請求項8又は9に記載の撮像プローブにおいて、前記光ファイバの遠位部分が前記光学伝送チャネルの第1の部分に組み込まれていることを特徴とする撮像プローブ。
【請求項11】
請求項8〜10の何れか一項に記載の撮像プローブにおいて、前記光学伝送チャネルの第2の部分の遠位部分が前記光透過ウィンドウを具えることを特徴とする撮像プローブ。
【請求項12】
請求項8〜11の何れか一項に記載の撮像プローブにおいて、前記光学焦点素子が前記光学伝送チャネルの第2の部分に存在することを特徴とする撮像プローブ。
【請求項13】
請求項6〜12の何れか一項に記載の撮像プローブにおいて、前記光偏向素子が前記光学焦点素子の光学スペーサとして機能するのに適した経路長を有するプリズムであることを特徴とする撮像プローブ。
【請求項14】
請求項6〜13の何れか一項に記載の撮像プローブにおいて、前記光学伝送チャネルが自身に存在する光学スペーサを具え、前記光学スペーサが前記光ファイバの遠位端部と前記光学焦点素子との間の光学ビーム経路に沿って設けられることを特徴とする撮像プローブ。
【請求項15】
請求項8〜12の何れか一項に記載の撮像プローブにおいて、前記裏打ち材の少なくとも一部が前記光学伝送チャネルの第1の部分と前記音響基板との間に配置されることを特徴とする撮像プローブ。
【請求項16】
請求項8〜12の何れか一項に記載の撮像プローブにおいて、前記光学伝送チャネルの第1の部分が前記音響基板に隣接することを特徴とする撮像プローブ。
【請求項17】
請求項4〜16の何れか一項に記載の撮像プローブにおいて、光学部品によって占有されない光学伝送チャネルの内部の領域が気体又は液体で満たされることを特徴とする撮像プローブ。
【請求項18】
請求項4〜17の何れか一項に記載の撮像プローブにおいて、前記光学伝送チャネルの少なくとも一部が音響緩衝層を含むことを特徴とする撮像プローブ。
【請求項19】
請求項18に記載の撮像プローブにおいて、前記音響緩衝層が前記光学伝送チャネル内に存在する光学素子への音響基板により生成されたストレスの伝達を低減する柔軟材料を具えることを特徴とする撮像プローブ。
【請求項20】
請求項4〜19の何れか一項に記載の撮像プローブにおいて、前記光学伝送チャネルの少なくとも一部が電気絶縁層を具えることを特徴とする撮像プローブ。
【請求項21】
請求項1〜20の何れか一項に記載の撮像プローブにおいて、前記光偏向素子が前記裏打ち材に組み込まれていることを特徴とする撮像プローブ。
【請求項22】
請求項1〜21の何れか一項に記載の撮像プローブにおいて、前記光学エミッタ/コレクタの1又はそれ以上の光学素子が前記超音波トランスデューサの外側面を越えて延在することを特徴とする撮像プローブ。
【請求項23】
請求項1〜22の何れか一項に記載の撮像プローブにおいて、前記光偏向素子と前記超音波トランスデューサは、実質的に同じ伝搬経路に沿って実質的に同じ方向から前記反射した光撮像エネルギ信号と前記反射した超音波撮像エネルギ信号を受け取るように、互いに対して配置され配向されることを特徴とする撮像プローブ。
【請求項24】
請求項1〜23の何れか一項に記載の撮像プローブにおいて、前記光学エミッタ/コレクタと前記超音波トランスデューサは、前記光学エミッタ/コレクタと前記超音波トランスデューサから実質的に同一線の方向に前記超音波撮像エネルギと前記光撮像エネルギを送るように、互いに対して配置され配向されることを特徴とする撮像プローブ。
【請求項25】
請求項1〜23の何れか一項に記載の撮像プローブにおいて、前記光学エミッタ/コレクタと前記超音波トランスデューサは、前記光学エミッタ/コレクタに関連する光軸が前記超音波トランスデューサに関連する音響軸と実質的に同一線上になるように、互いに対して配置され配向されることを特徴とする撮像プローブ。
【請求項26】
請求項3に記載の撮像プローブにおいて、前記光偏向素子と前記超音波トランスデューサは、取得する前記反射した超音波撮像エネルギ信号と前記反射した光撮像エネルギ信号との間に時間遅れがある状態で関心領域を撮像できるように、互いに対して配置され配向され、撮像エネルギの第1のビームによるスキャン経路が撮像エネルギの第2のビームによって主たる方法で追従され、前記撮像エネルギの第1のビームは光撮像エネルギのビームと超音波撮像エネルギのビームのうちの一方であり、前記撮像エネルギの第2のビームが前記光撮像エネルギのビームと前記超音波撮像エネルギのビームのうちの他方であり、前記主たる方法では、開始時点から始まる遅延期間中に前記撮像エネルギの第2のビームのビーム軸自体が実質的に前記撮像エネルギの第1のビームの開始軸に整列せず、前記遅延期間は前記撮像エネルギの第2のビームのビーム軸が前記開始軸に実質的に整列するときに終わることを特徴とする撮像プローブ。
【請求項27】
請求項3に記載の撮像プローブにおいて、前記光学エミッタ/コレクタは、前記光ファイバの遠位端部から前記撮像される関心領域へと放射される光を収束してそこから反射した光を集光する光収束素子を具えることを特徴とする撮像プローブ。
【請求項28】
請求項27に記載の撮像プローブにおいて、前記超音波トランスデューサと前記光学エミッタ/コレクタは、前記撮像導管が回転したとき、第1の時点で前記超音波トランスデューサによって撮像された領域が第2の時点で前記光学エミッタ/コレクタによって撮像された領域と実質的に同じになるように、互いに対して配置され配向され、前記光収束素子は、その外表面が第1の時点の前記超音波トランスデューサの放射面より第2の時点で撮像されている領域に近くなるように配置されることを特徴とする撮像プローブ。
【請求項29】
請求項3に記載の撮像プローブにおいて、前記超音波トランスデューサは表面を有し、当該表面から超音波信号が放射され、前記光偏向素子は、前記超音波撮像エネルギが放射される方向に対して予め選択された角度で光を放射するように前記超音波トランスデューサに対し搭載され、これにより前記超音波撮像エネルギと前記光撮像エネルギが前記関心領域を異なる時間にスキャンすることを特徴とする撮像プローブ。
【請求項30】
請求項29に記載の撮像プローブにおいて、前記予め選択された角度は、90度、135度、及び180度からなる群から選択されることを特徴とする撮像プローブ。
【請求項31】
請求項3に記載の撮像プローブにおいて、前記光学エミッタ/コレクタは第1の光学エミッタ/コレクタであり、前記撮像アセンブリが前記第1の光学エミッタ/コレクタに対し予め選択された角度で光を放射するよう構成された第2の光学エミッタ/コレクタを具え、これにより前記第1の光学エミッタ/コレクタから放射される光撮像エネルギと前記第2の光学エミッタ/コレクタから放射される光撮像エネルギが前記関心領域を異なる時間にスキャンすることを特徴とする撮像プローブ。
【請求項32】
請求項31に記載の撮像プローブにおいて、前記第2の光学エミッタ/コレクタの少なくとも一部が前記超音波トランスデューサ内に存在することを特徴とする撮像プローブ。
【請求項33】
請求項1〜32の何れか一項に記載の撮像プローブにおいて、前記撮像アセンブリは、前記光学エミッタ/コレクタから供給された光撮像エネルギと前記超音波トランスデューサから放射された超音波撮像エネルギが前記中空のシャフトを通る前にさらに反射することなく伝搬するよう構成されていることを特徴とする撮像プローブ。
【請求項34】
請求項1〜32の何れか一項に記載の撮像プローブにおいて、前記撮像アセンブリは、前記光学エミッタ/コレクタから供給された光撮像エネルギと前記超音波トランスデューサから放射された超音波撮像エネルギが前記中空のシャフトを通る前にさらなる反射素子に出合うことなく伝搬するよう構成されていることを特徴とする撮像プローブ。
【請求項35】
請求項1〜32の何れか一項に記載の撮像プローブにおいて、前記光学エミッタ/コレクタは光撮像エネルギを供給するよう構成され、前記超音波トランスデューサは前記撮像導管の回転軸から外れた方向に前記超音波撮像エネルギを放射するよう構成されていることを特徴とする撮像プローブ。
【請求項36】
請求項1〜32の何れか一項に記載の撮像プローブにおいて、前記撮像アセンブリは、前記光学エミッタ/コレクタからの光撮像エネルギと前記超音波トランスデューサからの超音波信号を反射するよう搭載された反射部材を具え、前記反射部材が可動部材であって前記撮像導管の長軸に対して可変の撮像角で前記可動部材から前記中空のシャフトの外部にエネルギビーム経路に沿ってエネルギビームを供給し、前記可動部材は、前記エネルギビーム経路と前記撮像導管の長軸との間の可変の撮像角が前記長軸周りの前記撮像導管の角速度を調整することによって変化するように搭載されていることを特徴とする撮像プローブ。
【請求項37】
請求項36に記載の撮像プローブにおいて、前記反射部材が音響反射面と光学反射面とを具え、前記音響反射面と前記光学反射面は異なる層に設けられることを特徴とする撮像プローブ。
【請求項38】
請求項37に記載の撮像プローブにおいて、前記光学反射面が音響を透過することを特徴とする撮像プローブ。
【請求項39】
請求項37に記載の撮像プローブにおいて、前記音響反射面が前記超音波撮像エネルギを収束するよう形成されていることを特徴とする撮像プローブ。
【請求項40】
請求項36〜39の何れか一項に記載の撮像プローブにおいて、前記可動部材が前記長軸と直交する回動軸に沿って前記撮像アセンブリに回動可能に搭載されていることを特徴とする撮像プローブ。
【請求項41】
請求項1〜40の何れか一項に記載の撮像プローブにおいて、前記光撮像エネルギは光学干渉断層撮影法による撮像を実現すべく用いられることを特徴とする撮像プローブ。
【請求項42】
請求項1〜41の何れか一項に記載の撮像プローブにおいて、前記光撮像エネルギは可視光であることを特徴とする撮像プローブ。
【請求項43】
請求項1〜41の何れか一項に記載の撮像プローブにおいて、前記光撮像エネルギは赤外線光であることを特徴とする撮像プローブ。
【請求項44】
請求項1〜43の何れか一項に記載の撮像プローブがさらに、前記撮像アセンブリに接続された回転エンコーダ機構を具え、前記撮像アセンブリの回転動作を検出することを特徴とする撮像プローブ。
【請求項45】
請求項1〜44の何れか一項に記載の撮像プローブがさらに、画像処理システムを具え、前記画像処理システムは関心領域のスキャン中の超音波撮像と光学撮像から得られた超音波画像と光学画像を処理し、前記超音波画像と光学画像を同時記録し、同時記録した画像を表示するよう構成されていることを特徴とする撮像プローブ。
【請求項46】
請求項1〜45の何れか一項に記載の撮像プローブにおいて、前記中空のシャフトの外径が約2mm以下であることを特徴とする撮像プローブ。
【請求項47】
請求項2に記載の撮像プローブにおいて、前記駆動機構が前記撮像導管の往復並進運動を提供するよう構成されていることを特徴とする撮像プローブ。
【請求項48】
請求項1〜9の何れか一項に記載の撮像プローブにおいて、前記光学エミッタ/コレクタの少なくとも一部が前記超音波トランスデューサに組み込まれていることを特徴とする撮像プローブ。
【請求項49】
請求項1〜9の何れか一項に記載の撮像プローブにおいて、前記光学エミッタ/コレクタの少なくとも一部が前記超音波トランスデューサ内に引っ込んでいることを特徴とする撮像プローブ。
【請求項50】
撮像プローブにおいて、
中空のシャフトと、
前記中空のシャフトを通って延在し、光ファイバと導電体とを具える撮像導管であって、その近位端部で、画像処理システムと、光源と、超音波信号生成器とに接続可能な撮像導管と、
前記撮像導管の遠位部分に取り付けられた撮像アセンブリとを具え、当該撮像アセンブリが、
光偏向素子を具える光学エミッタ/コレクタであって、前記光偏向素子が前記光ファイバの遠位端部に光学的に接続し、前記光ファイバの遠位端部の外部に光撮像エネルギを導き、反射した光撮像エネルギ信号を前記光ファイバの遠位端部の中へ導く、光学エミッタ/コレクタと、
超音波撮像エネルギを放射し、反射した超音波撮像エネルギ信号を受信し、音響基板と裏打ち材とを具える超音波トランスデューサであって、前記導電体に接続する超音波トランスデューサとを具え、
前記光学エミッタ/コレクタの少なくとも一部が前記超音波トランスデューサ内に引っ込んでおり、
前記撮像アセンブリは、前記光学エミッタ/コレクタからの光撮像エネルギと、前記超音波トランスデューサからの超音波撮像エネルギとを前記中空のシャフトの外部に供給するよう構成されており、
前記撮像アセンブリは、前記光学エミッタ/コレクタから供給された光撮像エネルギと前記超音波トランスデューサから放射された超音波撮像エネルギが前記中空のシャフトを通る前にさらに反射することなく伝搬するよう構成されており、
前記超音波トランスデューサと前記光偏向素子は、関心領域のスキャン中に前記反射した光撮像エネルギ信号と前記反射した超音波撮像エネルギ信号を同時記録できるように、互いに対して配置され配向されることを特徴とする撮像プローブ。
【請求項51】
撮像プローブにおいて、
中空のシャフトと、
前記中空のシャフトを通って延在し、光ファイバと導電体とを具える撮像導管であって、その近位端部で、画像処理システムと、光源と、超音波信号生成器とに接続可能な撮像導管と、
前記撮像導管の遠位部分に取り付けられた撮像アセンブリとを具え、当該撮像アセンブリが、
光偏向素子を具える光学エミッタ/コレクタであって、前記光偏向素子が前記光ファイバの遠位端部に光学的に接続し、前記光ファイバの遠位端部の外部に光撮像エネルギを導き、反射した光撮像エネルギ信号を前記光ファイバの遠位端部の中へ導く、光学エミッタ/コレクタと、
超音波撮像エネルギを放射し、反射した超音波撮像エネルギ信号を受信する超音波トランスデューサであって、前記導電体に接続する超音波トランスデューサとを具え、
前記超音波トランスデューサが音響層と裏打ち材を具え、前記光学エミッタ/コレクタの少なくとも一部が前記裏打ち材に設けられたチャネル内に引っ込んでおり、前記チャネルの外表面は前記チャネル内に引っ込んだ光学エミッタ/コレクタの一部によって反射される超音波エネルギを偏向するよう構成されており、
前記光学エミッタ/コレクタの少なくとも一部が前記超音波トランスデューサ内に存在し、
前記撮像アセンブリは、前記光学エミッタ/コレクタからの光撮像エネルギと、前記超音波トランスデューサからの超音波撮像エネルギとを前記中空のシャフトの外部に供給するよう構成されており、
前記超音波トランスデューサと前記光偏向素子は、関心領域のスキャン中に前記反射した光撮像エネルギ信号と前記反射した超音波撮像エネルギ信号を同時記録できるように、互いに対して配置され配向されることを特徴とする撮像プローブ。
【請求項52】
撮像プローブにおいて、
中空のシャフトと、
前記中空のシャフトを通って延在し、光ファイバと導電体とを具える撮像導管であって、その近位端部で画像処理システムに接続可能な撮像導管と、
前記撮像導管の遠位部分に取り付けられた撮像アセンブリとを具え、当該撮像アセンブリが、
光偏向素子を具える光学アセンブリであって、前記光偏向素子が前記光ファイバの遠位端部に光学的に接続し、前記光ファイバの遠位端部の外部に光撮像エネルギを導き、前記撮像アセンブリが前記光学アセンブリから前記中空のシャフトの外部と組織の内部とに光撮像エネルギを供給するよう構成された、光学アセンブリと、
前記光撮像エネルギに応じて前記組織内で生成された超音波撮像エネルギ信号を受信し、前記導電体に接続する超音波トランスデューサであって、前記光学アセンブリの少なくとも一部が前記超音波トランスデューサ内に存在する、超音波トランスデューサとを具え、
前記光偏向素子と前記超音波トランスデューサは、前記光撮像エネルギ信号と前記超音波撮像エネルギ信号がそれぞれ、実質的に同じ伝搬経路に沿って放射され受信されるように、互いに対して配置され配向されることを特徴とする撮像プローブ。
【請求項53】
撮像プローブにおいて、
中空のシャフトと、
前記中空のシャフトを通って延在し、光ファイバと導電体とを具える撮像導管であって、その近位端部で画像処理システムに接続可能な撮像導管と、
前記撮像導管の遠位部分に取り付けられた撮像アセンブリとを具え、当該撮像アセンブリが、
超音波撮像エネルギを放射し、音響基板と裏打ち材とを具え、前記導電体に接続する超音波トランスデューサであって、前記撮像アセンブリが前記超音波トランスデューサから前記中空のシャフトの外部と組織の内部とに前記超音波撮像エネルギを供給するよう構成された、超音波トランスデューサと、
光偏向素子を具える光学アセンブリであって、前記光偏向素子が前記光ファイバの遠位端部に光学的に接続し、前記光ファイバの遠位端部に光撮像エネルギ信号を導き、前記光撮像エネルギ信号が前記超音波撮像エネルギに応じて前記組織内で生成され、前記光学アセンブリの一部が前記超音波トランスデューサ内に組み込まれた、光学アセンブリとを具え、
前記光偏向素子と前記超音波トランスデューサは、前記超音波撮像エネルギ信号と前記光撮像エネルギ信号がそれぞれ、実質的に同じ伝搬経路に沿って放射され受信されるように、互いに対して配置され配向されることを特徴とする撮像プローブ。
【請求項54】
撮像プローブにおいて、
中空のシャフトと、
前記中空のシャフトを通って延在し、光ファイバと導電体とを具える撮像導管であって、その近位端部で、画像処理システムと、光源と、超音波信号生成器とに接続可能な撮像導管と、
前記撮像導管の遠位部分に取り付けられた撮像アセンブリとを具え、当該撮像アセンブリが、
光収束素子を具える光学エミッタ/コレクタであって、前記光収束素子が前記光ファイバの遠位端部に光学的に接続し、前記光ファイバの遠位端部の外部に光撮像エネルギを導き、反射した光撮像エネルギ信号を前記光ファイバの遠位端部の中へ導く、光学エミッタ/コレクタと、
超音波撮像エネルギを放射し、反射した超音波撮像エネルギ信号を受信する超音波トランスデューサであって、前記導電体に接続する超音波トランスデューサとを具え、
前記撮像アセンブリは、前記光学エミッタ/コレクタからの光撮像エネルギと、前記超音波トランスデューサからの超音波撮像エネルギとを前記中空のシャフトの外部に供給するよう構成されており、
前記超音波トランスデューサと前記光学エミッタ/コレクタは、前記撮像導管が回転したとき、第1の時点で前記超音波トランスデューサによって撮像された領域が第2の時点で前記光学エミッタ/コレクタによって撮像された領域と実質的に同じになるように、互いに対して配置され配向され、
前記光収束素子は、その外表面が第1の時点における前記超音波トランスデューサの放射面より第2の時点で撮像されている領域に近くなるように配置されることを特徴とする撮像プローブ。
【請求項55】
請求項54に記載の撮像プローブにおいて、前記超音波トランスデューサと前記光収束素子は、前記第1の時点が前記第2の時点と実質的に同じになるように、互いに対して配置され配向されることを特徴とする撮像プローブ。
【請求項56】
請求項54又は55に記載の撮像プローブにおいて、前記撮像アセンブリがさらに光偏向素子を具え、前記光偏向素子が前記光ファイバの遠位端部と光学的に接続することを特徴とする撮像プローブ。
【請求項57】
請求項54〜56の何れか一項に記載の撮像プローブにおいて、当該撮像プローブが前記撮像アセンブリの主たる回転動作により前記領域をスキャンするよう構成されていることを特徴とする撮像プローブ。


【図1】
image rotate

【図2−1】
image rotate

【図2−2】
image rotate

【図3】
image rotate

【図4−1】
image rotate

【図4−2】
image rotate

【図5】
image rotate

【図6−1】
image rotate

【図6−2】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate


【公開番号】特開2013−99589(P2013−99589A)
【公開日】平成25年5月23日(2013.5.23)
【国際特許分類】
【出願番号】特願2013−18395(P2013−18395)
【出願日】平成25年2月1日(2013.2.1)
【分割の表示】特願2009−545771(P2009−545771)の分割
【原出願日】平成20年1月21日(2008.1.21)
【出願人】(508347638)
【Fターム(参考)】