説明

超音波診断装置及び超音波診断装置用送信ユニット

【課題】駆動パルスにおける過渡応答の低減により良好な画像データを収集する。
【解決手段】超音波診断装置の送信部21は、所定の遅延時間を有した駆動制御信号Sc1及びSc2を生成する駆動制御信号生成部212と、前記駆動制御信号に従ってスイッチング回路Sw1及びSw2を制御しパルストランスPtの1次側巻線L1に流れる電流の方向を交互に切り替えることによって2次側巻線L2に正の極性と負の極性を有したバイポーラ型の駆動パルスを発生する駆動パルス発生部213を備え、超音波パルスの放射に直接寄与する駆動パルスを発生させるための基本駆動制御パルスPo1及びPo2とこの駆動パルスの過渡応答を低減させるための過渡応答低減用駆動制御パルスPcによって構成される前記駆動制御信号に基づいて前記スイッチング回路を制御することにより過渡応答が低減された駆動パルスの発生を行なう。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波診断装置及び超音波診断装置用送信ユニットに係り、特に、バイポーラ型の駆動パルスを用いて振動素子の駆動を行なう超音波診断装置及び超音波診断装置用送信ユニットに関する。
【背景技術】
【0002】
超音波診断装置は、超音波プローブに内蔵された振動素子から発生する超音波パルスを被検体内に放射し、生体組織の音響インピーダンスの差異によって生ずる超音波反射波を前記振動素子により受信して種々の生体情報を収集するものである。複数の振動素子に供給する駆動信号や前記振動素子から得られる受信信号の遅延時間を制御することにより超音波の送受信方向や集束点を電子的に制御することが可能な近年の超音波診断装置では、超音波プローブを体表に接触させるだけの簡単な操作でリアルタイムの画像データを容易に観察することができるため、生体臓器の形態診断や機能診断に広く用いられている。
【0003】
このような超音波診断装置を用いて被検体の画像データを生成する際、超音波プローブに設けられた振動素子を駆動して当該被検体の体内へ超音波パルスを放射するための駆動方法として、電子的なスイッチング回路を用いてパルストランスの1次側巻線に流れる電流の方向を交互に切り替えることにより2次側巻線に発生する正の極性と負の極性を有した駆動パルスを用いて振動素子を駆動するバイポーラ駆動法がある(例えば、特許文献1参照。)。
【0004】
図8は、バイポーラ型駆動パルスの発生を目的としてパルストランスPtとスイッチング回路Sw1及びSw2とから構成された従来の駆動パルス発生部213aの具体的な構成とこの駆動パルス発生部213aに供給される駆動制御信号Sc1及びSc2を示したものであり、この駆動パルス発生部213aでは、図8に示すようにパルストランスPtを構成する1次側巻線L1の端部に接続されたスイッチング回路Sw1及びSw2を駆動制御信号生成部212aから供給される駆動制御信号S1及びS2に従って短絡あるいは開放することにより、1次側巻線L1のセンタータップに接続された直流電源Vpから1次側巻線L1に流入する電流の方向が制御される。そして、1次側巻線L1に流れる電流に伴って2次側巻線L2の両端部に発生する高電圧の駆動パルスPxによって振動素子の駆動が行なわれる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2006−87602号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上述のパルストランスPtを用いてバイポーラ型の駆動パルスPxを発生させる場合、図8に示すようにパルストランスPtの2次側巻線L2に発生する駆動パルスPxの後部において過渡応答成分ΔPaが発生し、この過渡応答成分ΔPaは、駆動制御信号S2の供給が終了する時刻t3を起点とした期間Δτ1において持続する。そして、過渡応答成分ΔPaを含む駆動パルスPxは、超音波プローブに設けられた振動素子に供給されて被検体の体内に超音波パルスが放射され、このとき体内から得られる超音波反射波は前記振動素子により電気的な受信信号に変換されて受信部に供給される。即ち、超音波プローブの振動素子から得られた受信信号は、駆動パルスPxの過渡応答成分ΔPaに重畳された状態で受信部へ供給される。
【0007】
一方、上述の受信部の前段には、この受信部を高電圧の駆動パルスPxから保護するために所定の閾値Vsより大きな振幅を有したパルス成分を排除するリミッタ回路が設けられ、期間Δτ1において発生し閾値Vsより大きな振幅を有する過渡応答成分ΔPaとこの過渡応答成分ΔPaに重畳した受信成分はリミッタ回路によって排除される。即ち、駆動パルスPxにおける過渡応答成分ΔPaの発生により、その持続期間Δτ1に対応した超音波プローブから下式(1)で示される距離ΔRまでの比較的広範囲な領域における画像データを収集することができないという問題点を有していた。
【数1】

【0008】
本発明は、上述の問題点に鑑みてなされたものであり、その目的は、超音波プローブに設けられた振動素子を駆動して被検体に対し超音波パルスを放射する際、振動素子に供給される駆動パルスの過渡応答を低減することにより超音波プローブの近傍においても良好な画像データの収集が可能な超音波診断装置及び超音波診断装置用送信ユニットを提供することにある。
【課題を解決するための手段】
【0009】
上記課題を解決するために、請求項1に係る本発明の超音波診断装置用送信ユニットは、被検体の体内へ超音波パルスを放射するために超音波プローブに設けられた振動素子に対してバイポーラ型の駆動パルスを供給する超音波診断装置用送信ユニットにおいて、所定の送信遅延時間を有した駆動制御信号を生成する駆動制御信号生成手段と、前記駆動制御信号に基づいて前記駆動パルスを発生する駆動パルス発生手段とを備え、前記制御信号生成手段が生成する前記駆動制御信号は、前記超音波パルスの放射に直接寄与する駆動パルスを発生させるための基本駆動制御パルスと前記駆動パルスの過渡応答を低減させるための過渡応答低減用駆動制御パルスによって構成されることを特徴としている。
【0010】
一方、請求項6に係る本発明の超音波診断装置は、超音波プローブに設けられた振動素子をバイポーラ型の駆動パルスを用いて駆動することにより被検体の体内へ超音波パルスを放射し、前記体内から得られる超音波反射波に基づいて画像データを生成する超音波診断装置であって、請求項1乃至請求項5の何れか1項に記載した超音波診断装置用送信ユニットによって生成された駆動パルスを用いて前記振動素子を駆動することを特徴としている。
【発明の効果】
【0011】
本発明によれば、超音波プローブに設けられた振動素子を駆動して被検体に対し超音波パルスを放射する際、振動素子に供給される駆動パルスの過渡応答を低減することにより超音波プローブの近傍においても良好な画像データの収集が可能となる。
【図面の簡単な説明】
【0012】
【図1】本発明の実施例における超音波診断装置の全体構成を示すブロック図。
【図2】同実施例の超音波診断装置が備える送受信部の具体的な構成を示すブロック図。
【図3】本実施例の送信部が備える駆動パルス発生部の具体的な回路構成を示す図。
【図4】同実施例の受信部が備えるプリアンプの具体的な回路構成を示す図。
【図5】同実施例の送信部において発生する駆動パルスの過渡応答を説明するための図。
【図6】同実施例の超音波診断装置が備える受信信号処理部の具体的な構成を示すブロック図。
【図7】本実施例の駆動制御信号生成部が生成する駆動制御信号の変形例を示す図。
【図8】バイポーラ型駆動パルスの発生を目的とした従来の駆動パルス発生部の具体的な構成とこの駆動パルス発生部に供給される駆動制御信号を説明するための図。
【発明を実施するための形態】
【0013】
以下、図面を参照して本発明の実施例を説明する。
【実施例】
【0014】
以下に述べる本実施例の超音波診断装置が備える送信部は、所定の遅延時間を有した2チャンネルの駆動制御信号を生成する駆動制御信号生成部と、前記駆動制御信号に基づいてスイッチング回路を制御しパルストランスの1次側巻線に流れる電流の方向を交互に切り替えることによって前記パルストランスの2次側巻線に正の極性と負の極性を有したバイポーラ型の駆動パルスを発生する駆動パルス発生部を備え、前記駆動パルス発生部は、前記駆動制御信号生成部が生成した超音波パルスの放射に直接寄与する駆動パルスを発生させるための基本駆動制御パルスとこの駆動パルスの過渡応答を低減させるための過渡応答低減用駆動制御パルスによって構成される駆動制御信号に基づいてスイッチング回路を制御することにより過渡応答が低減された駆動パルスの発生を行なう。
【0015】
尚、以下の実施例では、セクタ走査方式の超音波診断装置について述べるが、リニア走査方式やコンベックス走査方式等が適用された超音波診断装置であってもよい。
【0016】
(装置の構成)
本実施例における超音波診断装置の構成につき図1乃至図6を用いて説明する。但し、図1は、超音波診断装置の全体構成を示すブロック図であり、図2及び図6は、この超音波診断装置が備える送受信部及び受信信号処理部の具体的な構成を示すブロック図である。
【0017】
図1に示す本実施例の超音波診断装置100は、被検体の診断対象部位を含む撮影領域に対して超音波パルス(送信超音波)を放射し前記診断対象部位から得られた超音波反射波(受信超音波)を電気信号(受信信号)に変換する複数個の振動素子を有した超音波プローブ3と、前記診断対象部位に対し送信超音波を放射するための駆動パルスを超音波プローブ3の前記振動素子に供給しこれらの振動素子から得られた複数チャンネルの受信信号を整相加算する送受信部2と、整相加算後の受信信号を処理して超音波データとしてのBモードデータ及びカラードプラデータを生成する受信信号処理部4と、当該診断対象部位に対する超音波走査によって得られた上述の超音波データに基づいて画像データを生成する画像データ生成部5を備え、更に、画像データ生成部5によって生成された画像データを表示する表示部6と、被検体情報の入力、画像データ収集条件の設定、各種コマンド信号の入力等を行なう入力部7と、送受信部2における送信遅延時間及び受信遅延時間を設定することにより当該診断対象部位に対する超音波走査を制御する走査制御部8と、上述の各ユニットを統括的に制御するシステム制御部9を備えている。
【0018】
以下に、本実施例の超音波診断装置100が備えた各ユニットの具体的な構成とその機能について説明する。
【0019】
図1の超音波プローブ3は、図示しないN個の振動素子をその先端部に有し、これら振動素子の各々は、Nチャンネルの多芯ケーブルを介して送受信部2の入出力端子に接続されている。振動素子は電気音響変換素子であり、送信時には電気パルス(駆動パルス)を超音波パルス(送信超音波)に変換し、受信時には超音波反射波(受信超音波)を電気的な受信信号に変換する機能を有している。
【0020】
尚、以下では、説明を簡単にするために、超音波プローブ3に設けられたN個の振動素子を送信用振動素子及び受信用振動素子として用いる場合について述べる。即ち、N個からなる送信用振動素子の各々が、送受信部2から供給されるNチャンネルの駆動パルスにより駆動されて被検体内に送信超音波を放射し、この送信超音波によって被検体内から得られる受信超音波は、受信用振動素子によってNチャンネルの受信信号に変換される。
【0021】
次に、図2に示す送受信部2は、当該被検体に対して送信超音波を放射するためのNチャンネルからなる駆動パルスを超音波プローブ3の送信用振動素子に供給する送信部21と、超音波プローブ3の受信用振動素子から得られたNチャンネルの受信信号を整相加算(即ち、所定方向からの受信超音波に対応する受信信号の位相を合わせて加算合成)する受信部22を備えている。
【0022】
送信部21は、送信遅延設定部211、駆動制御信号生成部212及び駆動パルス発生部213を備え、送信遅延設定部211は、走査制御部8から供給される走査制御信号に従い、送信超音波を所定の方向へ偏向するための偏向用遅延時間と所定の距離に集束させるための集束用遅延時間とに基づいた送信遅延時間を設定する。この場合の送信遅延時間は、送信振動素子数N、振動素子の配列間隔、送信方向及び送信焦点距離等によって一義的に決定され、例えば、図示しない演算回路を用いて算出してもよいが、ルックアップテーブルとして予め保管された各種遅延時間データの中から選択して用いてもよい。
【0023】
一方、駆動制御信号生成部212は、送信遅延設定部211から供給される送信遅延時間の情報に基づき、夫々がNチャンネルからなる駆動制御信号Sc1及びSc2を生成して駆動パルス発生部213へ供給する。この場合、駆動制御信号Sc1は、送信超音波の放射に直接寄与する駆動パルスを発生させるための駆動制御パルス(以下では、基本駆動制御パルスと呼ぶ。)と駆動パルス発生部213が発生する駆動パルスの過渡応答を低減させるための駆動制御パルス(以下では、過渡応答低減用駆動制御パルスと呼ぶ。)によって構成され、駆動制御信号Sc2は、基本駆動制御パルスのみによって構成されるが、その詳細については後述する。
【0024】
次に、駆動パルス発生部213の具体的な回路構成につき図3を用いて説明する。Nチャンネルから構成される駆動パルス発生器213の各々は、駆動制御信号生成部212から供給される駆動制御信号Sc1及びSc2に基づいて超音波プローブ3に設けられた送信用振動素子を駆動するための駆動パルスを発生する機能を有し、図3に示すように2チャンネルのスイッチング回路Sw1及びSw2とパルストランスPtを有している。そして、パルストランスPtを構成する1次側巻線L1のセンタータップcoは直流電源Vpに接続され、1次側巻線L1の端子c1はスイッチング回路Sw1の端子c5に、又、1次側巻線L1の他の端子c2はスイッチング回路Sw2の端子c8に夫々接続されている。更に、パルストランスPtを構成する2次側巻線L2の端子c3は超音波プローブ3に設けられた送信用振動素子及び受信部22が有する後述のプリアンプ221に接続され、2次側巻線L2の他の端子c4は接地されている。
【0025】
一方、スイッチング回路Sw1の端子c5及びスイッチング回路Sw2の端子c8は、既に述べたように1次側巻線L1の端子c1及び端子c2に夫々接続され、スイッチング回路Sw1の端子c6及びスイッチング回路Sw2の端子c9は接地されている。又、スイッチング回路Sw1の制御用端子c7及びスイッチング回路Sw2の制御用端子c10は、駆動制御信号生成部212の出力端子に接続されている。
【0026】
即ち、駆動パルス発生部213のスイッチング回路Sw1及びSw2は、駆動制御信号生成部212から自己の制御用端子c7及びc10へ供給される2チャンネルの駆動制御信号Sc1及びSc2によってON(短絡)状態あるいはOFF(開放)状態が決定される。そして、駆動制御信号生成部212から供給される駆動制御信号Sc1の基本駆動制御パルスPo1によりスイッチング回路Sw1が短絡状態となった場合、直流電源Vpから第1の巻線L1及びスイッチング回路Sw1を介してパルス電流i1が流れ、このパルス電流i1に伴って第2の巻線L2の端子C3と端子C4との間には電圧Vo1の駆動パルスが出力される。
【0027】
一方、駆動制御信号生成部212から供給される駆動制御信号Sc2の基本駆動制御パルスPo2によりスイッチング回路Sw2が短絡状態となった場合、直流電源Vpから第1の巻線L1及びスイッチング回路Sw2を介してパルス電流i2が流れ、このパルス電流i2に伴って第2の巻線L2の端子C3と端子C4の間には電圧Vo2(Vo2=−Vo1)の駆動パルスが出力される。
【0028】
尚、上述のスイッチング回路Sw1及びSw2は、例えば、同じスイッチング特性を有したNチャンネルのFETが用いられ、駆動制御信号Sc1及びSc2が供給される期間において開放と短絡を交互に行なう。この場合、FETのドレイン端子は、パルストランスPtの第1の巻線L1における端子c1及び端子c2に接続され、カソード端子は接地される。又、FETのゲート端子は、駆動制御信号生成部212の出力端子に接続され、駆動制御信号生成部212からゲート端子に供給される駆動制御信号Sc1及びSc2に基づいて各々のFETにおけるドレイン端子とカソード端子との開放/短絡が行なわれる。
【0029】
図2へ戻って、送受信部2の受信部22は、超音波プローブ3に設けられた受信用振動素子の各々に対応するNチャンネルのプリアンプ221及びA/D変換器222と、整相加算部223を備えている。プリアンプ221は、超音波プローブ3の受信用振動素子から供給される受信信号を増幅して十分なS/Nを確保するためのものであり、その初段部には、送信部21の駆動パルス発生部213が発生する大振幅の駆動パルスからプリアンプ221を保護するためのリミッタ回路が設けられている。そして、受信用振動素子によって得られたNチャンネルの受信信号は、プリアンプ221において所定の大きさに増幅され、A/D変換器222にてデジタル信号に変換された後整相加算部223へ供給される。
【0030】
一方、整相加算部223は、図示しない受信遅延設定部と加算部を有し、受信遅延設定部は、A/D変換器222においてデジタル信号に変換されたNチャンネルの受信信号に対し所定方向に強い受信指向性を設定するための偏向用遅延時間と所定の深さからの受信超音波を集束するための集束用遅延時間に基づいた受信遅延時間を設定する。そして、加算部は、上述の受信遅延時間が与えられたNチャンネルの受信信号を加算合成(整相加算)する。
【0031】
図4は、プリアンプ221の具体的な回路構成を示したものであり、このプリアンプ221は、リミッタ回路2211と増幅回路2212を備えている。
【0032】
リミッタ回路221aは、例えば、図4に示すようにダイオードD1乃至D6と抵抗R1及びR2を用い、プリアンプ221の入力インピーダンスが駆動パルスのような大振幅の信号に対しては大きくなり、受信信号のような微小振幅の信号に対しては小さくなるように構成されている。
【0033】
即ち、リミッタ回路221aは、高電圧に耐え得るプレーナダイオードやショットキーダイオード等のダイオードD1乃至D4によって構成されるブリッジ回路BRとダイオードD5及びD6によって構成されるクランプ回路CLを有している。そして、ブリッジ回路BRを構成するダイオードD1のアノードとダイオードD3のアノードには、抵抗R1を介して正の直流電圧V3が印加され、同様にして、ダイオードD2のカソードとダイオードD4のカソードには抵抗R2を介して負の直流電圧V4(|V4|=V3)が印加される。このような構成によりブリッジ回路BRのダイオードD1乃至D4にバイアス電流を常時流すことにより微小振幅の信号(受信信号)に対するON抵抗を低くしている。
【0034】
一方、方向が異なる2つのダイオードD5及びD6を並列接続して構成されるクランプ回路CLの一方の端部(例えば、ダイオードD5のカソードとダイオードD6のアノードとの接続部)はブリッジ回路BRの出力端子に接続され、他の端部(ダイオードD5のアノードとダイオードD6のカソードとの接続部)は接地される。
【0035】
上述の構成により、プリアンプ221は、送信部21の駆動パルス発生部213から供給される大振幅の駆動パルスに対して高入力インピーダンスを呈し、超音波プローブ3の振動素子から供給される微小振幅の受信信号に対して低入力インピーダンスを呈する。従って、ダイオードの閾値Vsより大きな振幅を有する信号(駆動パルス)はクランプされ、この閾値Vsより小さな振幅を有する信号(受信信号)はそのまま増幅回路221bへ供給されるため、駆動パルスによる増幅回路221bの破壊を防止することができる。
【0036】
次に、送信部21において発生する駆動パルスの過渡応答につき図5を用いて説明する。
【0037】
図5(a)及び図5(b)は、送信部21の送信遅延設定部211において設定された送信遅延時間Δτに基づいて駆動制御信号生成部212が生成した駆動制御信号Sc1及びSc2を示しており、駆動制御信号生成部212の第1の出力端子からは、基準時刻t0から送信遅延時間Δτだけ経過した時刻t1において生成されたパルス幅τoの基本駆動制御パルスPo1と、時刻t1から2τoだけ経過した時刻t3において生成されたパルス幅τc(τc<τo)の過渡応答低減用駆動制御パルスPcとからなる駆動制御信号Sc1が出力される。
【0038】
一方、駆動制御信号生成部212の第2の出力端子からは、上述の時刻t1からτoだけ経過した時刻t2において生成されたパルス幅τoの基本駆動制御パルスPo2を有する駆動制御信号Sc2が出力される。尚、上述の基本駆動制御パルスPo1及びPo2のパルス幅τoは、超音波プローブ3に設けられた振動素子の共振周波数foに基づいて設定され、例えば、τo=1/2foとなる。
【0039】
次に、図5(c)は、図5(a)の駆動制御信号Sc1及び図5(b)の駆動制御信号Sc2が駆動パルス発生部213に設けられたスイッチング回路Sw1の制御用端子及びスイッチング回路Sw2の制御用端子に供給された場合にパルストランスPtの出力端(即ち、2次側巻線L2の両端部)から出力される駆動パルスPcxを模式的に示している。この場合、図8において既に述べたように、パルス幅τoを有した駆動制御信号Sc1の基本駆動制御パルスPo1及び駆動制御信号Sc2の基本駆動制御パルスPo2によって生成される駆動パルスPxには基本駆動制御パルスPo2による駆動が終了する時刻t3から比較的長い期間Δτ1において過渡応答成分が発生する。
【0040】
しかしながら、本実施例のように、基本駆動制御パルスPo2による駆動が終了する時刻t3にてパルス幅τcを有する過渡応答低減用駆動制御パルスPcを用いた駆動パルス発生部213の駆動を行なうことにより、基本駆動制御パルスPo1及びPo2によって発生した過渡応答成分と過渡応答低減用駆動制御パルスPcによって発生した過渡応答成分とが相殺し合う。このため、図5(c)に示すように、過渡応答の期間が大幅に短縮された駆動パルスPcxによって超音波プローブ3の振動素子を駆動することが可能となる。
【0041】
図5(d)は、このとき受信部22のプリアンプ221から出力される受信信号Srを示したものであり、このプリアンプ221には、振動素子において検出された受信信号が図5(c)の駆動パルスPcxに重畳した状態で供給される。このため、リミッタ回路2211を有したプリアンプ221では、基本駆動制御パルスPo2による駆動が終了する時刻t3から駆動パルスPcxの過渡応答成分が所定の閾値Vs以下に減衰する時刻t4までの期間Δτ2において受信信号を受信することはできない。しかしながら、本実施例では、基本駆動制御パルスPo1及びPo2に過渡応答低減用駆動制御パルスPcを追加して駆動パルス発生部213を駆動することにより駆動パルスPcxの過渡応答期間は大幅に短縮されるため上述の受信信号が受信できない期間Δτ2は図8に示した期間Δτ1と比較して大幅に短縮され、従って、超音波プローブ3の近傍においても良好な画像データの収集が可能となる。
【0042】
次に、図1に示した受信信号処理部4の具体的な構成につき図6のブロック図を用いて説明する。この受信信号処理部4は、受信部22の整相加算部223から出力される整相加算後の受信信号を信号処理してBモードデータを生成するBモードデータ生成部41と、前記受信信号を信号処理してカラードプラデータを生成するカラードプラデータ生成部42を備えている。
【0043】
Bモードデータ生成部41は、受信部22の整相加算部223から出力される受信信号の各々に対して包絡線検波を行なう包絡線検波器411と、包絡線検波後の受信信号に対する対数変換処理により小さな信号振幅を相対的に強調してBモードデータを生成する対数変換器412を備えている。
【0044】
一方、カラードプラデータ生成部42は、π/2移相器421、ミキサ422−1及び422−2、LPF(低域通過フィルタ)423−1及び423−2を備え、受信部22の整相加算部223から出力される受信信号を直交位相検波して複素信号(I信号及びQ信号)を生成する。
【0045】
更に、カラードプラデータ生成部42は、ドプラ信号記憶部424、MTIフィルタ425及び自己相関演算器426を備え、直交位相検波によって得られた複素信号は、ドプラ信号記憶部424に一旦保存される。一方、高域通過用デジタルフィルタであるMTIフィルタ425は、ドプラ信号記憶部424に保存された上述の複素信号を読み出し、この複素信号に含まれた臓器の固定反射体あるいは臓器の呼吸性移動や拍動性移動等に起因するドプラ成分(クラッタ成分)を除去する。又、自己相関演算器426は、MTIフィルタ425によって抽出された血流情報のドプラ成分に対して自己相関値を算出し、更に、この自己相関値に基づいて血流の平均流速値、分散値、パワー値等を算出してカラードプラデータを生成する。
【0046】
図1へ戻って、画像データ生成部5は、図示しないBモード画像データ生成部とカラードプラ画像データ生成部を備え、前記Bモード画像データ生成部は、受信信号処理部4のBモードデータ生成部41が生成した時系列的なBモードデータを超音波の送受信方向に対応させて順次保存することによりBモード画像データを生成する。同様にして、前記カラードプラ画像データ生成部は、受信信号処理部4のカラードプラデータ生成部42が生成した時系列的なカラードプラデータを順次保存することによりカラードプラ画像データを生成する。
【0047】
一方、表示部6は、図示しない表示データ生成部、データ変換部及びモニタを備え、画像データ生成部5が生成したBモード画像データやカラードプラ画像データを表示する。例えば、前記表示データ生成部は、画像データ生成部5のBモード画像データ生成部が生成したBモード画像データとカラードプラ画像データ生成部が生成したカラードプラ画像データを重畳し、更に被検体情報等の付帯情報を付加して表示データを生成する。そして、前記データ変換部は、前記表示データ生成部にて生成された表示データに対し各種の変換処理を行なって前記モニタに表示する。
【0048】
入力部7は、操作パネル上に表示パネルやキーボード、トラックボール、マウス、選択ボタン、入力ボタン等の入力デバイスを備え、被検体情報の入力、超音波データ収集条件や画像データ生成条件の設定、更には、各種コマンド信号の入力等を行なう。
【0049】
走査制御部8は、当該被検体の診断対象部位を含む撮影領域に対し超音波走査を行なうための遅延時間制御を送信部21の送信遅延設定部211及び受信部22の整相加算部223に対して行なう。
【0050】
一方、システム制御部9は、図示しないCPUと記憶回路を備え、前記記憶回路には、入力部7にて入力あるいは設定された上述の各種情報が保存される。そして、前記CPUは、上述の入力情報や設定情報に基づいて超音波診断装置100の各ユニットを統括的に制御し、当該被検体の診断対象部位に対する画像データの生成と表示を行なう。
【0051】
以上述べた本実施例によれば、超音波プローブに設けられた振動素子を駆動して被検体に対し超音波パルスを放射する際、振動素子に供給される駆動パルスの過渡応答を低減することにより超音波プローブの近傍においても良好な画像データの収集が可能となる。このため、体表面の近傍に位置した診断対象部位に対する診断精度を向上させることができる。
【0052】
特に、上述の実施例では、超音波パルスの放射に直接寄与する駆動パルスを発生させるための基本駆動制御パルスとこの駆動パルスの過渡応答を低減させるための過渡応答低減用駆動制御パルスによって構成される駆動制御信号に基づいて駆動パルスの生成を行なっているため、駆動パルス発生部の回路構成を複雑にすることなく駆動パルスの過渡応答を低減することができる。
【0053】
又、パルストランスの1次側巻線に流れる電流の方向を2チャンネルからなる駆動制御信号を用いて制御することにより前記パルストランスの2次側巻線にバイポーラ型の駆動パルスを発生させる際、上述の駆動制御信号の何れか一方に過渡応答低減用駆動制御パルスを付加することにより駆動パルスの過渡応答が大幅に低減されたバイポーラ型の駆動パルスを発生させることができる。
【0054】
更に、上述の実施例によれば、駆動パルスの過渡応答を低減することにより体表面近傍の診断対象部位を通常の超音波プローブを用いて観察することができる。即ち、浅部臓器の診断において従来行なわれてきた振動素子−体表面に対するカップリング媒質の挿入が不要となるため超音波プローブの操作性が改善され、更に、カップリング媒質中にて発生する多重反射や減衰が無くなるため良質な画像データの収集が可能となる
以上、本発明の実施例について述べてきたが、本発明は上述の実施例に限定されるものではなく、変形して実施することが可能である。例えば、上述の実施例では、セクタ走査方式の超音波診断装置100について述べたが、リニア走査方式やコンベックス走査方式等が適用された超音波診断装置であってもよい。
【0055】
又、超音波プローブ3に設けられた振動素子と送受信部2はNチャンネルの多芯ケーブルによって接続される場合について述べたが、送受信部2を構成する全てのユニットあるいは一部のユニットは、振動素子と共に超音波プローブ3に内蔵されていても構わない。
【0056】
更に、超音波データとして収集したBモードデータ及びカラードプラデータに基づいて画像データを生成する場合について述べたが、Bモードデータあるいはカラードプラデータの何れか一方を用いて画像データを生成してもよく、他の超音波データを用いて画像データを生成してもよい。
【0057】
一方、上述の実施例では、超音波プローブ3に設けられたN個の振動素子を送信用振動素子及び受信用振動素子として用いる場合について述べたが、N個の振動素子の中から送信専用振動素子、受信専用振動素子及び送受信兼用振動素子を選択して用いてもよい。この場合、送受信兼用振動素子へ供給する駆動パルスは上述の実施例に述べた方法によって生成されるが、送信専用振動素子あるいは受信専用振動素子へ供給する駆動パルスも同様の方法によって生成してもよい。特に、過渡応答が低減された駆動パルスを用いて送信専用振動素子及び送受信兼用振動素子を駆動することにより、画像データ全体の距離分解能を改善することができる。
【0058】
又、上述の実施例における駆動制御信号Sc1及びSc2の各々は、1つの基本駆動制御パルスを有する場合について述べたが複数の基本駆動制御パルスを有していてもよい。但し、図7(a)に示すように、駆動制御信号Sc1及びSc2が同数の基本駆動制御パルスを有する場合、上述の実施例と同様にして駆動制御信号Sc2が有する最後の基本駆動制御パルスに後続して駆動制御信号Sc1が有する過渡応答低減用駆動制御パルスPcが駆動パルス発生部213へ供給される。
【0059】
一方、図7(b)に示すように、駆動制御信号Sc1及びSc2が異なる数の基本駆動制御パルスを有する場合(即ち、駆動制御信号Sc1が有する基本駆動制御パルスの数が駆動制御信号Sc2が有する基本駆動制御パルスの数より1つ多い場合)、駆動制御信号Sc1が有する最後の基本駆動制御パルスに後続して駆動制御信号Sc2が有する過渡応答低減用駆動制御パルスPcが駆動パルス発生部213へ供給される。
【符号の説明】
【0060】
2…送受信部
21…送信部
211…送信遅延設定部
212…駆動制御信号生成部
213…駆動パルス発生部
22…受信部
221…プリアンプ
2211…リミッタ回路
2212…増幅回路
222…A/D変換器
223…整相加算部
3…超音波プローブ
4…受信信号処理部
41…Bモードデータ生成部
42…カラードプラデータ生成部
5…画像データ生成部
6…表示部
7…入力部
8…走査制御部
9…システム制御部
100…超音波診断装置

【特許請求の範囲】
【請求項1】
被検体の体内へ超音波パルスを放射するために超音波プローブに設けられた振動素子に対してバイポーラ型の駆動パルスを供給する超音波診断装置用送信ユニットにおいて、
所定の送信遅延時間を有した駆動制御信号を生成する駆動制御信号生成手段と、
前記駆動制御信号に基づいて前記駆動パルスを発生する駆動パルス発生手段とを備え、
前記制御信号生成手段が生成する前記駆動制御信号は、前記超音波パルスの放射に直接寄与する駆動パルスを発生させるための基本駆動制御パルスと前記駆動パルスの過渡応答を低減させるための過渡応答低減用駆動制御パルスによって構成されることを特徴とする超音波診断装置用送信ユニット。
【請求項2】
前記駆動制御信号を構成する前記過渡応答低減用駆動制御パルスのパルス幅は、前記基本駆動制御パルスのパルス幅より狭いことを特徴とする請求項1記載の超音波診断装置用送信ユニット。
【請求項3】
前記駆動制御信号生成手段は、複数からなる前記基本駆動制御パルスに後続させて前記過渡応答低減用駆動制御パルスを生成することを特徴とする請求項1記載の超音波診断装置用送信ユニット。
【請求項4】
前記駆動パルス発生手段は、パルストランスとこのパルストランスの1次側巻線の端部に接続された2つのスイッチング回路を有し、前記駆動制御信号生成手段が生成した前記駆動制御信号を前記スイッチング回路の各々へ交互に供給して前記1次側巻線の電流方向を切り替えることにより前記パルストランスの2次側巻線に前記バイポーラ型の駆動パルスを発生することを特徴とする請求項3記載の超音波診断装置用送信ユニット。
【請求項5】
送信遅延設定手段を備え、前記送信遅延設定手段は、前記超音波パルスを所定の方向へ偏向するための偏向用遅延時間及び前記超音波パルスを所定の距離に集束させるための集束用遅延時間の少なくとも何れかに基づいた前記送信遅延時間を設定することを特徴とする請求項1記載の超音波診断装置用送信ユニット。
【請求項6】
超音波プローブに設けられた振動素子をバイポーラ型の駆動パルスを用いて駆動することにより被検体の体内へ超音波パルスを放射し、前記体内から得られる超音波反射波に基づいて画像データを生成する超音波診断装置であって、
請求項1乃至請求項5の何れか1項に記載した超音波診断装置用送信ユニットによって生成された駆動パルスを用いて前記振動素子を駆動することを特徴とする超音波診断装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2010−194045(P2010−194045A)
【公開日】平成22年9月9日(2010.9.9)
【国際特許分類】
【出願番号】特願2009−41098(P2009−41098)
【出願日】平成21年2月24日(2009.2.24)
【出願人】(000003078)株式会社東芝 (54,554)
【出願人】(594164542)東芝メディカルシステムズ株式会社 (4,066)
【Fターム(参考)】