説明

重質油改質燃料焚きガスタービン及び重質油改質燃料焚きガスタービンの運転方法

【課題】本発明の目的は、燃焼器に供給される気体改質燃料のドレン化を低減し、効率が高い重質油改質燃料焚きガスタービン及び重質油改質燃料焚きガスタービンの運転方法を提供することにある。
【解決手段】本発明は、第1の気液分離装置において飽和蒸気温度以上で液体と気体に分離させ、第1の気液分離装置と燃焼器との間に設けられた気体改質燃料の系統に気体改質燃料の温度より高い温度の水蒸気を供給する手段を設けたことを特徴とする。
【効果】本発明によれば、燃焼器に供給される気体改質燃料のドレン化を低減し、効率が高い重質油改質燃料焚きガスタービン及び重質油改質燃料焚きガスタービンの運転方法を提供することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、重質油改質燃料焚きガスタービン及び重質油改質燃料焚きガスタービンの運転方法に関する。
【背景技術】
【0002】
重質油等の低品位燃料は、発電用ガスタービンに悪影響を与える重金属類,硫黄分,窒素分,灰分等の不純物を多量に含んでいる。このような低品位燃料を改質するため、300〜500℃,20〜30MPaといった高温高圧水の水熱反応を用いた技術が知られている。高温高圧水は重質油等の有機物を容易に溶解させ、有機物を熱分解,加水分解、または酸化剤の存在下で酸化分解する反応溶媒として働く。近年、このような高温高圧水の水熱反応により重質油を改質した改質燃料で運用する重質油改質燃料焚きガスタービンが開発されている。
【0003】
この重質油改質燃料焚きガスタービンの一例として、高温高圧条件下(例えば300〜500℃,20〜30MPa程度)で重質油を水と混合させて改質し、改質された燃料を減圧・冷却するとともに分離器内で静置して、ガス成分と液成分(油分及び水分)とに分離する。そして、油分は蒸留して沸点の低い留出分(軽質分)と沸点の高い残分に分離し、ガス成分及び留出分は燃焼器にそれぞれ供給して燃焼し、発生した燃焼ガスによりタービンを駆動して発電する。一方、残分はボイラに供給して燃焼し、ボイラで生成した蒸気により蒸気タービンを駆動して発電する技術が開示されている(例えば、特許文献1参照)。
【0004】
【特許文献1】特開平11−80750号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
特許文献1において、改質燃料を減圧するとともに常温(飽和水以下)まで冷却して分離器内で静置することにより、ガス成分と液成分である油分及び水分とに分離させる。但し、重質油は高温高圧水に溶解しているため、改質燃料を減圧・冷却させると極微細な油滴と水滴が混合状態で生成される。そのため、油分と水分の分離は困難となる。また、改質燃料を常温まで冷却する必要があるため、システム全体の効率という観点からは好ましくない。
【0006】
そこで改質燃料を常温まで冷却せずに、改質燃料の冷却温度を飽和蒸気温度以上とし、水蒸気を含むガス成分と油分とに分離する方法が考えられる。ところが、水蒸気を含むガス成分を燃焼器へ供給する配管において、自然放熱して温度が低下し、ドレンが発生する可能性を有する。ドレンの発生により気液が混在した燃料を燃焼器の気体改質燃料用ノズルに供給すると、ガス噴孔の詰まり、間欠燃焼による振動やタービン負荷変動が起きる可能性もある。
【0007】
本発明の目的は、燃焼器に供給される気体改質燃料のドレン化を低減し、効率が高い重質油改質燃料焚きガスタービン及び重質油改質燃料焚きガスタービンの運転方法を提供することにある。
【課題を解決するための手段】
【0008】
本発明は、第1の気液分離装置において飽和蒸気温度以上で液体と気体に分離させ、第1の気液分離装置と燃焼器との間に設けられた気体改質燃料の系統に気体改質燃料の温度より高い温度の水蒸気を供給する手段を設けたことを特徴とする。
【発明の効果】
【0009】
本発明によれば、燃焼器に供給される気体改質燃料のドレン化を低減し、効率が高い重質油改質燃料焚きガスタービン及び重質油改質燃料焚きガスタービンの運転方法を提供することができる。
【発明を実施するための最良の形態】
【0010】
本発明の実施例1では、第1の気液分離装置において飽和蒸気温度以上で液体と気体に分離させ、第1の気液分離装置と燃焼器との間に設けられた気体改質燃料の系統に気体改質燃料の温度より高い温度の水蒸気を供給する手段を設けている。
【0011】
第1の気液分離装置の内部温度を飽和蒸気温度以上とすることで、液体改質燃料へ水分が混入することを抑制することができる。また、第1の気液分離装置と燃焼器との間に設けられた気体改質燃料の系統に気体改質燃料の温度より高い温度の水蒸気を供給する手段を設けることで、気体改質燃料中の軽質有機物の温度を上昇させ、気体改質燃料が自然放熱して冷却によるドレン化を極力抑制することができる。更に、気体改質燃料中の水蒸気混入量を増加させると、蒸気の熱エネルギーを燃焼器で回収できると共に、燃焼器内部の燃焼室でNOxが生成されることを抑制できる。なお、水蒸気は燃焼器からの排ガスに含まれ、タービンの駆動流体として働き、タービン出力が増加するため水蒸気による熱損失を少なくすることもできる。
【0012】
また、本発明の実施例1では、第1の気液分離装置において飽和蒸気温度以上で液体と気体に分離させるとともに、気体改質燃料を供給するマニホールドと第1の気液分離器との間に気体改質燃料の温度より高い温度の水蒸気を供給する手段を設け、気体改質燃料のマニホールドの下側に第1の気液分離器を設けている。
【0013】
液体改質燃料と気体改質燃料を燃焼器に供給するマニホールドをそれぞれ設けることで、燃焼器の各々に対して、気体と液体が混合した改質燃料が供給されることを抑制できる。そのため、気体改質燃料と液体改質燃料の供給流量偏差を低減できる。
【0014】
また、気体改質燃料用マニホールドの下側に第1の気液分離器を設けることで、気体改質燃料用マニホールドでドレンが発生しても、重力降下で第1の気液分離装置にそのドレンが降下し、気体改質燃料を燃焼させる燃料ノズルにドレンが流入することを抑制できる。
【0015】
更に、気体改質燃料用マニホールドと第1の気液分離装置との間に気体改質燃料より高い温度の水蒸気を供給する手段を設けることで、ドレン化を抑制できる。液体改質燃料は第1の気液分離装置から液体改質燃料用マニホールドに直接供給することで、液体改質燃料をタンクへ一時的に貯留する必要がなくなる。また、タンクから燃焼器へ供給するための圧縮ポンプ等の補機を不要とし、コストが低減できる。
【0016】
また、本発明の実施例1では、第1の気液分離装置に液体改質燃料の量を監視可能な手段を設けている。
【0017】
第1の気液分離装置に液体改質燃料の量を監視可能な手段を設けることで、液体改質燃料の量とガスタービン負荷に応じた液体改質燃料流量の制御をすることが出来る。当該手段は、液体改質燃料の量を検知できるセンサーを用いることが可能である。このような液体改質燃料の監視手段により、気液分離装置の気体・液体量を一定に保持でき、気体改質燃料の供給量変動を抑制することができる。
【0018】
また、本発明の実施例1において、第1の気液分離装置と燃焼器との間に設けられた気体改質燃料の系統に水蒸気を供給する手段は、水を加熱する加熱装置と燃料改質装置との間の系統であって、この系統から分岐されて気体改質燃料の系統に連通させている。
【0019】
このように第1の燃料改質装置と気体改質燃料に供給する水蒸気の供給源であるポンプ,加熱器を共有することで、コストが低減できる。また、当該加熱装置をタービン排ガスが供給される排熱回収ボイラとすることにより、タービン排ガスの熱を利用することができ、ガスタービン全体の熱効率が向上する。
【0020】
また、本発明の実施例2では、燃料改質装置と第1の気液分離装置との間の系統に圧力を制御する制御弁を設け、制御弁の上流側に第2の気液分離装置を設け、第2の気液分離装置で分離された液体改質燃料を第1の気液分離装置に供給するよう構成している。
【0021】
改質燃料の軽質化が不十分である場合、燃料減圧後の制御弁に気液混相流体が供給され、燃料制御が不安定になることが考えられる。そこで、各々の制御弁の上流側に第2の気液分離装置を設置する。当該気液分離装置で分離された液体改質燃料を第1の気液分離装置に供給することで、制御弁に液体改質燃料が流入することを抑制できる。
【0022】
また、本発明の実施例3と実施例4では、気液分離装置により分離した液体改質燃料を加圧するためのポンプと、ポンプの下流側であって、加圧した液体改質燃料の加熱手段とを設置し、燃料改質装置と気液分離器との間の系統に、加熱手段により加熱された液体改質燃料を供給している。
【0023】
このような構造により、ガスタービンへの燃料供給は気体改質燃料のみで可能となり、制御を簡略化し、コストの低減と制御信頼性を向上させる。また、液体改質燃料の加熱手段に、ガスタービンの廃熱を利用する場合には、システム効率を向上させることができる。
【実施例1】
【0024】
本発明を用いた実施例として、重質油改質燃料焚きガスタービンのシステム構成を図1に示す。当該システムは、重質油と水の供給系統,改質器,気液分離器,燃焼器,圧縮器,タービン,発電機,廃熱回収ボイラ,起動用燃料系統を有する。
【0025】
重質油タンク2と水タンク1にそれぞれ貯蓄された重質油7と水6は、油ポンプ4,水ポンプ3で加圧された後、加熱装置である廃熱回収ボイラ5で昇温される。そして、昇温された水と重質油は、燃料改質装置である改質器8へ供給される。この際、高温高圧水により重質油7を改質する場合は、改質器8に供給される重質油7と水6の圧力を22MPa、温度条件を374℃とするか、当該圧力・温度条件に近い高温高圧水とすることが好ましい。
【0026】
燃料改質装置である改質器8では、重質油7が軽質化され、更に重金属,硫黄等の不純物9を取り除き、改質燃料10を生成する。改質燃料10は保圧弁11で減圧されて、燃料流量調整用の圧力調整弁12と流量調整弁13を通過する。これらの調整弁を介することで、ガスタービン負荷に応じて流量制御が成された改質燃料10は、冷却器21において飽和蒸気温度近傍まで冷却され、第1の気液分離装置である気液分離器14aに供給される。
【0027】
気液分離器14aでは飽和蒸気温度近傍まで改質燃料が冷却されているため、気体改質燃料15と液体改質燃料16に分離する。気液分離器14aと燃焼器22との間には、気体改質燃料と液体改質燃料がそれぞれ流れる2つの系統が設けられており、気体改質燃料と液体改質燃料は別々に燃焼器22へ供給される。
【0028】
気液分離器14aには液体改質燃料16の貯蔵量を監視するための手段が設置されている。当該手段として液位を判断するセンサー36を使用することができる。改質器8と燃焼器22との間に設けられた液体改質燃料の流路には、気液分離器14aに貯蔵された液体改質燃料の貯蔵量を制御すると共に、燃焼器22に供給する液体改質燃料の供給量を調整するための液体改質燃料制御弁18が設置されている。当該制御弁は、気液分離器14aに設けられたセンサー出力17に応じて開度が制御される。
【0029】
また、気液分離器14aで分離された気体改質燃料15は、気体改質燃料の温度より高い温度の水蒸気を供給する手段からの水蒸気19と混合されて燃焼器22に供給される。気液分離器14aと燃焼器22との間に設けられた気体改質燃料15の系統に水蒸気を供給する手段として、外部から水蒸気を供給することも可能である。しかし、本実施例のように廃熱回収ボイラ5で加熱された水蒸気を供給することで、設備数を低減させることが可能である。水蒸気19は、水蒸気流量制御弁20によって流量を制御されて、気体改質燃料に供給される。
【0030】
燃焼器22では、圧縮機23からの圧縮空気24と気体・液体改質燃料、若しくは起動用燃料29とを燃焼させて燃焼ガス25を生成する。燃料と圧縮空気とを燃焼させる燃焼室では局所高温燃焼領域が生じるとNOxが生成される。しかし、本実施例では、気体改質燃料15と共に供給される水蒸気19によって、燃焼室における高温領域の温度を低減しNOxの発生を抑制することが可能である。
【0031】
生成された燃焼ガス25は、タービン26を回転させて発電機27を駆動する。タービン26から排出された排ガスは、廃熱回収ボイラ5に排ガス28として供給される。廃熱回収ボイラ5では、タービン26からの排ガス28によって改質器8に供給する重質油・水を加熱する役割を果たす。
【0032】
ここで、燃焼器22が複数缶で構成されるガスタービンにおける、マニホールドと気液分離器14aの詳細な構造を図2に示す。冷却器21において飽和蒸気温度まで冷却された改質燃料10は、第1の気液分離器である気液分離器14aに供給される。気液分離器14aにおいて、改質燃料10は気体改質燃料15と液体改質燃料16に分離される。そして、気体改質燃料15は気液分離器14aの上側に設けられた気体改質燃料用マニホールド33へ流入し、液体改質燃料16は気液分離器14aの下側に設けられた液体改質燃料用マニホールド34へ流入する。各々のマニホールドには燃焼器缶数分の枝管35が設けられ、それぞれの枝管35に燃焼器22が接続されている。なお、本実施例では、気体改質燃料用マニホールド33の枝管35には気体改質燃料に適した燃焼器が接続されており、液体改質燃料用マニホールド34の枝管35には液体改質燃料に適した燃焼器が接続されている。このように、各燃焼器22には、マニホールドの枝管35を介して気体改質燃料15及び液体改質燃料16が供給可能である。
【0033】
また、気液分離器14aの内部には液体改質燃料16の貯蓄量を監視可能なセンサー
36が設置されており、このセンサー36の出力17と信号処理器37の制御出力39により、液体改質燃料用マニホールド34と気液分離器14aの間の配管に設置された液体改質燃料制御弁18を制御し、液体改質燃料16の貯蓄量を一定に保つことができる。更に、この液体改質燃料制御弁18は、負荷運転時の燃料切替等に燃料制御指令38を受けて運用条件に応じた制御が可能となっている。
【0034】
図3は、図1及び図2のシステムを用いたガスタービンにおいて、ガスタービン負荷の変化に対する起動用燃料29,気体改質燃料15,液体改質燃料16、及び気体改質燃料15を加熱する加熱用水蒸気19の流量変化を示した図である。図3の上部に示す図では、縦軸に温度を示し、横軸にガスタービン負荷を示す。また、図3の下部に示す図では、縦軸に流量を示し、横軸にガスタービン負荷を示す。
【0035】
ガスタービン負荷が図3の区間1の場合について説明する。ガスタービン起動時は、起動用燃料ポンプ30によって昇圧された軽油等の起動用燃料29を、起動用燃料流量制御弁31で燃料流量を調整して燃焼器22へ供給し、着火する。起動用燃料29は、燃焼器22の着火からガスタービンの起動昇速である部分負荷運転時に使用される。このガスタービン負荷運転時では、ガスタービンから排出される排ガス28の温度は低いため、廃熱回収ボイラ5で加熱された重質油7と水6は改質反応に必要な温度よりも低い温度である。
【0036】
図3の区間2では、ガスタービン出口の排ガス28温度が上昇し、廃熱回収ボイラ5による重質油7と水6の十分な昇温が可能となった時点で、水6を改質器8に供給し、高温水若しくは蒸気として改質燃料10の燃料配管を暖める。この際、各配管で液化した水はドレンとして外部に排出し、気体改質燃料15を供給する配管から水蒸気のみを燃焼器
22へ供給する。
【0037】
図3の区間3では、重質油7の供給を開始し、改質器8の温度・圧力が所定の改質条件に達した段階で、加熱用水蒸気19を供給すると共に燃焼器22に改質燃料を供給する。改質燃料10を供給する初期段階では、燃焼器22に気体改質燃料15のみを供給する。
【0038】
図3の区間4では、気液分離器14aに液体改質燃料16が十分に貯蓄され、貯蓄量監視用のセンサー36が作動可能となった段階で、燃焼器22に液体改質燃料16の供給を開始する。気体改質燃料と液体改質燃料の供給量増加とガスタービン負荷の上昇に応じて、起動用燃料29を減少させる。
【0039】
図3の区間5では、所定のガスタービン負荷から改質燃料10のみの運用とする。ガスタービン負荷の増加に伴い、改質燃料の流量と気体改質燃料15を昇温させる水蒸気19の供給量を増加させる。
【実施例2】
【0040】
本発明の実施例2における、ガスタービンのシステム構成を図4に示す。本システムは図1のシステムに対し、保圧弁11の下流側であって圧力調整弁12の上流側に気液分離器14bを設置し、圧力調整弁12の下流側であって流量調整弁13の上流側に気液分離器14cを設置している。そして、第2の気液分離装置である気液分離器14b,14cにより分離された液体改質燃料16を気体改質燃料用マニホールド33の上流側に設置している第1の気液分離装置である気液分離器14aに供給する構造としている。
【0041】
本実施例は、改質器8の改質条件によって十分に重質油7が軽質化されていない場合に有効である。その場合は、改質燃料10の圧力低下、及び配管等の熱損失による温度低下のために、改質器8と気液分離器14aとの間の系統で気液分離する可能性がある。特に、改質器8と気液分離器14aとの間の系統に改質燃料の圧力を変化させる弁を設けている場合、弁を通過した改質燃料が気液分離する可能性もある。そのため、改質燃料10が通過する弁の上流側配管に気液分離器14b,14cを設けることで、気液混相の燃料によって圧力調整弁12と流量調整弁13の制御に不具合が生じることを回避できる。
【0042】
また、保圧弁11の下流側に設置された気液分離器14b、及び圧力調整弁12の下流側に設置された気液分離器14cから分離された液体改質燃料16を、気体改質燃料用マニホールド33の上流側に設けられた気液分離器14aに供給することにより、燃焼器
22へ供給する液体改質燃料16の量を制御することができる。
【実施例3】
【0043】
本発明を用いた実施例3として、ガスタービンのシステム構成を図5に示す。本実施例は、図1に示した実施例に対し気液分離器14aから分離した液体改質燃料16を一旦貯蔵するための液体改質燃料タンク41を設けている。そして、液体改質燃料タンク41に貯められた液体改質燃料16をポンプ42により加圧し、加熱手段で再加熱して気化させた後に、圧力調整弁12の上流側に供給できる構造となっている。また、ポンプ42の下流側系統から分岐して、液体改質燃料タンク41へ液体改質燃料16を送る戻し系統を備え、当該系統に流量を調整する戻り弁43を設置している。液体改質燃料タンク41から加熱手段に供給する液体改質燃料の流量は、ポンプ42の吐出圧力により制御する。そして、加熱手段の下流側には流量制御弁44を設置し、気化改質燃料45の流量を制御する。
【0044】
このようなシステムとすることで、燃焼器22には気体改質燃料15のみが供給可能であり、燃焼器22の構造及び制御の簡略化が可能である。また、液体改質燃料16を再加熱し気化するための加熱手段として廃熱回収ボイラ5を利用することにより、システム効率を向上させることができる。
【0045】
液体改質燃料タンク41において液体改質燃料16を貯蔵する際、液体改質燃料タンク41内で燃料密度に応じて燃料が上下に分離する可能性がある。そのため、好ましくは攪拌器等を液体改質燃料タンク41の内部に設置し、液体改質燃料16の成分を一定に保つことが望ましい。また改質条件によっては、図4に示すように保圧弁11の下流側、及び圧力調整弁12の下流側にそれぞれ気液分離器14b,14cを設置し、分離された液体改質燃料16を液体改質燃料タンク41に供給しても良い。
【実施例4】
【0046】
本発明を用いた実施例4として、ガスタービンのシステム構成を図6に示す。本実施例は、図5に示した実施例に対して加熱手段としてヒータ46を設置し、ポンプ42で加圧した液体改質燃料16を加熱・気化させるシステムとしている。
【0047】
廃熱回収ボイラ5の排ガス28が液体改質燃料の温度上昇に不十分な場合においても、液体改質燃料16を加熱することができる。また、液体改質燃料タンク41の容量を小さくできると共に、燃料供給制御の応答性が向上する。
【図面の簡単な説明】
【0048】
【図1】本発明を用いた燃料供給システムの実施例1を示した図。
【図2】図1のシステムにおける気液分離器の配置と構造を示した図。
【図3】図1のシステムの負荷と燃料等の流量・温度を示した図。
【図4】本発明を用いたシステムの実施例2を示した図。
【図5】本発明を用いたシステムの実施例3を示した図。
【図6】本発明を用いたシステムの実施例4を示した図。
【符号の説明】
【0049】
1…水タンク、2…重質油タンク、3…水ポンプ、4…油ポンプ、5…廃熱回収ボイラ、6…水、7…重質油、8…改質器、9…不純物、10…改質燃料、11…保圧弁、12…圧力調整弁、13…流量調整弁、14a,14b,14c…気液分離器、15…気体改質燃料、16…液体改質燃料、17…出力、18…液体改質燃料制御弁、19…水蒸気、20…水蒸気流量制御弁、21…冷却器、22…燃焼器、23…圧縮機、24…圧縮空気、25…燃焼ガス、26…タービン、27…発電機、28…排ガス、29…起動用燃料、30…起動用燃料ポンプ、31…起動用燃料流量制御弁、33…気体改質燃料用マニホールド、34…液体改質燃料用マニホールド、35…枝管、36…センサー、37…信号処理器、38…燃料制御指令、39…制御出力、41…液体改質燃料タンク、42…ポンプ、43…戻り弁、44…流量制御弁、45…気化改質燃料、46…ヒータ。

【特許請求の範囲】
【請求項1】
空気を圧縮し圧縮空気を生成する圧縮機と、
重質油と水とを混合させて改質燃料を生成する燃料改質装置と、
該燃料改質装置からの改質燃料を液体と気体とに分離する第1の気液分離装置と、
該第1の気液分離装置で分離された液体改質燃料と気体改質燃料を前記圧縮空気とともに燃焼させる燃焼器と、
前記第1の気液分離装置と前記燃焼器との間に液体改質燃料と気体改質燃料とをそれぞれ供給する2つの系統と、
前記燃焼器からの燃焼ガスにより駆動するタービンとを備えた重質油改質燃料焚きガスタービンであって、
前記第1の気液分離装置において飽和蒸気温度以上で液体と気体に分離させ、前記第1の気液分離装置と前記燃焼器との間に設けられた前記気体改質燃料の系統に前記気体改質燃料の温度より高い温度の水蒸気を供給する手段を設けたことを特徴とする重質油改質燃料焚きガスタービン。
【請求項2】
空気を圧縮し圧縮空気を生成する圧縮機と、
重質油と水とを混合させて改質燃料を生成する燃料改質装置と、
該燃料改質装置からの改質燃料を液体と気体とに分離する第1の気液分離装置と、
該第1の気液分離装置で分離された液体改質燃料と気体改質燃料を前記圧縮空気とともに燃焼させる複数の燃焼器と、
前記第1の気液分離装置と前記燃焼器との間に液体改質燃料と気体改質燃料とをそれぞれ供給するマニホールドと、
前記燃焼器からの燃焼ガスにより駆動するタービンとを備えた重質油改質燃料焚きガスタービンであって、
前記第1の気液分離装置において飽和蒸気温度以上で液体と気体に分離させるとともに、前記気体改質燃料を供給するマニホールドと前記第1の気液分離器との間に前記気体改質燃料の温度より高い温度の水蒸気を供給する手段を設け、気体改質燃料のマニホールドの下側に前記第1の気液分離器を設けたことを特徴とする重質油改質燃料焚きガスタービン。
【請求項3】
請求項1に記載の重質油改質燃料焚きガスタービンであって、
前記第1の気液分離装置に前記液体改質燃料の量を監視可能な手段を設けた重油改質燃料焚きガスタービン。
【請求項4】
請求項1記載の重質油改質燃料焚きガスタービンであって、
前記第1の気液分離装置と前記燃焼器との間に設けられた前記気体改質燃料の系統に水蒸気を供給する手段は、水を加熱する加熱装置と前記燃料改質装置との間の系統であって、該系統から分岐されて前記気体改質燃料の系統に連通することを特徴とする重質油改質燃料焚きガスタービン。
【請求項5】
請求項1記載の重質油改質燃料焚きガスタービンであって、
前記燃料改質装置と前記第1の気液分離装置との間の系統に圧力を制御する制御弁を設け、
該制御弁の上流側に第2の気液分離装置を設け、
該第2の気液分離装置で分離された液体改質燃料を前記第1の気液分離装置に供給するよう構成された重質油改質燃料焚きガスタービン。
【請求項6】
請求項1記載の重質油改質燃料焚きガスタービンであって、
前記気液分離装置により分離した液体改質燃料を加圧するためのポンプと、該ポンプの下流側であって、該加圧した液体改質燃料の加熱手段とを設置し、燃料改質装置と気液分離器との間の系統に、該加熱手段により加熱された液体改質燃料を供給することを特徴とする重質油改質燃料焚きガスタービン。
【請求項7】
空気を圧縮し圧縮空気を生成する圧縮機と、
重質油と水とを混合させて改質燃料を生成する燃料改質装置と、
該燃料改質装置からの改質燃料を液体と気体とに分離する第1の気液分離装置と、
該第1の気液分離装置で分離された液体改質燃料と気体改質燃料を前記圧縮空気とともに燃焼させる燃焼器と、
前記第1の気液分離装置と前記燃焼器との間に液体改質燃料と気体改質燃料とをそれぞれ供給する2つの系統と、
前記燃焼器からの燃焼ガスにより駆動するタービンとを備えた重質油改質燃料焚きガスタービンの運転方法であって、
前記第1の気液分離装置において飽和蒸気温度以上で液体と気体に分離させ、前記第1の気液分離装置と前記燃焼器との間に設けられた前記気体改質燃料の系統に、前記燃料改質装置の改質反応が所定の状態になった後に、前記気体改質燃料の温度より高い温度の水蒸気を供給することを特徴とする重質油改質燃料焚きガスタービンの運転方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate