説明

錯感覚に対する閾値以下の刺激を伴う疼痛の管理

合併症の可能性および望ましくない副次的な悪影響、特に錯感覚の感覚、を最小限に止め若しくは排除しながら、疼痛を治療するための装置,システム及び方法が提供される。このことは、錯感覚の実質的な感覚を生じさせることなく疼痛感覚に作用するやり方で、刺激エネルギーレベルでもって、後根の神経節に近接して刺激を加えることにより達成される。幾つかの実施形態では、かかる神経刺激は、後根の神経節に特有の生体構造上の特徴および機能を旨く利用している。

【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
この出願は、参照することによりここに組み入れられるものであるが、2009年3月24日に出願された「閾値以下の刺激を伴う疼痛の管理」と題する米国仮特許出願第61/163,007号に対する35 U.S.C. 119(e)に基づく優先権を主張するものである。
【0002】
(連邦政府支援の研究または開発の下でなされた発明に対する権利に関する陳述)
:該当せず
【0003】
(「配列表」,表、若しくはコンパクトディスクに関して提出されたコンピュータプログラム表の付属書類への言及)
:該当せず
【背景技術】
【0004】
脊髄刺激法(spinal cord stimulation:SCS)は、30年以上にわたって、様々な疼痛症候群の治療に用いられてきた。SCSの目標は、痛みのある部位は完全に且つ一貫してカバー(cover)するけれども、他の部位においては不快な感覚を生じさせることのない、錯感覚(パレステジア:paresthesia)を創り出すことである。錯感覚は、身体の部位における、ひりひり感(tingling),ちくちく感(pricking)、或いは痺れ感(numbness)の感覚として定義付けることができる。この錯感覚は、より一般的には、「ピリピリ感(pins and needles)」の感覚として知られている。幾つかの事例では、錯感覚の感覚は、痛みの感覚よりも好ましい。
SCSにおいては、錯感覚の創出は、脊髄後索(dorsal column)および/または後根(dorsal root)のAβ繊維を刺激することによって達成される。脊髄後索刺激は、典型的には、刺激器(stimulator)のレベル(level)及びそれを下回るレベルにて、多くの皮節において錯感覚を生じせしめる。これとは対照的に、後根刺激は、刺激器にごく近接した限られた数の細根(rootlet)内の繊維を活性化させて、僅かな数の皮節のみにおいて錯感覚を生じせしめる。
これらの要因のために、SCS刺激器を用いての後根刺激は、十分な疼痛緩和(pain relief)をもたらさないかも知れない。更に、SCS刺激器を用いての根(root)の刺激は、不快な感覚や運動機能(motor response)を生じせしめることがある。これらの副次的な悪影響は、錯感覚の全範囲に対して必要とされる値を下回るパルス振幅で起こり得る。従って、SCSの臨床上の目標は、神経根付近を刺激することなく、関連のある脊髄構造を刺激する電場を創り出すことである。
【0005】
髄腔内神経根刺激は、脊髄の正中線上ではなく、脊柱管の外側面(この領域は「ガター(gutter)」として知られている)の神経細根に沿って、電極が配置される点を除いては、SCSに関連した技法である。電極は、伝統的なSCSパドルリード(paddle lead)ではなく、円筒リード(cylindrical lead)に取り付けられる。ガター内でのリード線配置の精度は、局所内での錯感覚をもたらす知覚可能なレベルで神経根を刺激することによって確認される。知覚上の回復(sensory recruitment)に対する閾値を上回るレベルで刺激することにより、知覚上の錯感覚(sensory paresthesia)が生じ得る。この技法は、ある種の疼痛状態を治療するために、SCSと併せて用いることができる。
【発明の概要】
【発明が解決しようとする課題】
【0006】
ある種の患者にとっては、錯感覚は望ましい効果ではなく、また、疼痛に対する耐性の高い代替手段ではない。従って、望ましくない効果を最小限にして疼痛緩和をもたらすには、改良された治療法が必要とされている。これらの目的の少なくとも幾つかは、本発明によってかなえられることになろう。
【0007】
(発明の概要)
本発明は、合併症(complication)の可能性および望ましくない副次的な悪影響を、最小限に止め若しくは排除しながら、例えば疼痛などの状態を治療するための装置,システム及び方法を提供するものである。特に、この装置,システム及び方法は、錯感覚の実質的な感覚を生じさせることなく、疼痛を治療する。このことは、ここでより詳しく説明されるように、特定の刺激エネルギーレベルでもって、後根の神経節(ガングリオン:ganglion)に極めて近接して刺激を加えることによって達成される。
【課題を解決するための手段】
【0008】
本発明の第1の態様においては、少なくとも1つの電極を有するリード線を位置決めするステップであって、前記少なくとも1つの電極の少なくとも1つが、後根神経節に近接するように位置決めするステップと、前記後根神経節の少なくとも一部を刺激するために、前記少なくとも1つの電極の少なくとも1つに刺激エネルギーを供給するステップとを備える、患者の疼痛を治療するための方法が提供されている。前記リード線の位置決めステップと前記刺激エネルギーの供給ステップとが合わさって、実質的な錯感覚の感覚を生じせしめることなく疼痛感覚に作用する。
【0009】
幾つかの実施形態では、前記刺激エネルギーを供給するステップは、Aβ繊維の補給のための閾値以下のレベルで刺激エネルギーを供給することを包含している。また、幾つかの実施形態では、前記刺激エネルギーを供給するステップは、Aβ繊維のセルボディ補給のための閾値以下のレベルで刺激エネルギーを供給することを包含している。
【0010】
別の実施形態では、前記刺激エネルギーを供給するステップは、a)Aδ繊維のセルボディ補給のための閾値を越えるレベルで刺激エネルギーを供給すること、b)C繊維のセルボディ補給のための閾値を越えるレベルで刺激エネルギーを供給すること、c)髄鞘が有る小型の繊維のセルボディ補給のための閾値を越えるレベルで刺激エネルギーを供給すること、d)髄鞘が無い繊維のセルボディ補給のための閾値を越えるレベルで刺激エネルギーを供給すること、を包含している。
【0011】
更に別の実施形態では、前記刺激エネルギーを供給するステップは、前記後根神経節内のグリア細胞の機能を調節することができるレベルで刺激エネルギーを供給することを包含している。例えば、幾つかの実施形態では、前記刺激エネルギーを供給するステップは、前記後根神経節内の衛生細胞の機能を調節することができるレベルで刺激エネルギーを供給することを包含している。また、別の実施形態では、前記刺激エネルギーを供給するステップは、前記後根神経節内のシュワン細胞の機能を調節することができるレベルで刺激エネルギーを供給することを包含している。
【0012】
更になお別の実施形態では、前記刺激エネルギーを供給するステップは、前記後根神経節内のニューロン若しくはグリア細胞に連繋する少なくとも1つの血管に、作用物質を放出するか、又は後根神経節内のニューロン若しくはグリア細胞に作用する細胞信号を送らせる、ことができるレベルで刺激エネルギーを供給することを包含している。
【0013】
幾つかの実施形態では、前記リード線を位置決めするステップは、前記リード線の少なくとも一部が神経根スリーブの角度姿勢に沿って伸長するように、前記リード線を硬膜上腔を通って進行させることを包含している。また、幾つかの実施形態では、前記リード線を硬膜上腔を通って順行方向に進行させるステップは、順行方向に進行させることを包含している。
【0014】
本発明の第2の態様においては、患者の後根神経節と共にAβ繊維セルボディを除きつつ、当該患者の後根神経節内の小型の繊維セルボディを選択的に刺激する、患者を治療するための方法が提供されている。
幾つかの実施形態では、前記小型の繊維セルボディはAδ繊維セルボディを包含している。また、別の実施形態では、前記小型の繊維セルボディはC繊維セルボディを包含している。
【0015】
本発明の第3の態様においては、患者による疼痛の感覚に関連した後根神経節を特定するステップと、患者による疼痛の感覚を低減するために、前記後根神経節内の少なくとも1つのグリア細胞を神経調節するステップとを備えた、患者を治療するための方法が提供されている。
幾つかの実施形態では、前記少なくとも1つのグリア細胞は衛生細胞を包含している。別の実施形態では、前記少なくとも1つのグリア細胞はシュワン細胞を包含している。また、幾つかの実施形態では、前記神経調節するステップは、実質的な錯感覚の感覚を生じせしめることなく疼痛感覚を抑制するレベルで刺激を与えることを包含している。
【0016】
本発明の第4の態様においては、少なくとも1つの電極を有するリード線を位置決めするステップであって、前記少なくとも1つの電極の少なくとも1つが、後根神経節に近接するように位置決めするステップと、少なくとも1つの血管が後根神経節内のニューロンを細胞調節する作用物質を放出せしめるように、前記後根神経節に連繋した前記少なくとも1つの血管を刺激するように、前記少なくとも1つの電極に刺激エネルギーを供給するステップとを備えた、患者を治療するための方法が提供されている。
幾つかの実施形態では、前記作用物質は、疼痛感覚の変換に関与するニューロンの機能に作用する細胞調節薬品を包含している。
【0017】
本発明の第5の態様においては、患者の疼痛を治療するために、少なくとも1つの電極を有するリード線であって、後根神経節に近接して配置されるように構成されたリード線と、実質的な錯感覚の感覚を生じせしめることなく疼痛感覚に作用するように、前記後根神経節を刺激するために、前記リード線が前記後根神経節に近接して位置決めされている間、前記少なくとも1つの電極の少なくとも1つに刺激エネルギーを供給するように構成された、パルス発生器とを備えているシステムが提供されている。
【0018】
幾つかの実施形態では、前記パルス発生器は、Aβ繊維の補給のための閾値以下のレベルで刺激エネルギーを供給する。別の実施形態では、前記パルス発生器は、Aβ繊維のセルボディ補給のための閾値以下のレベルで刺激エネルギーを供給する。また、別の実施形態では、前記パルス発生器は、Aδ繊維のセルボディ補給のための閾値を越えるレベルで刺激エネルギーを供給する。更に別の実施形態では、前記パルス発生器は、C繊維のセルボディ補給のための閾値を越えるレベルで刺激エネルギーを供給する。幾つかの実施形態では、前記パルス発生器は、髄鞘が有る小型の繊維のセルボディ補給のための閾値を越えるレベルで刺激エネルギーを供給する。また、幾つかの実施形態では、前記パルス発生器は、髄鞘が無い繊維のセルボディ補給のための閾値を越えるレベルで刺激エネルギーを供給する。
【0019】
幾つかの実施形態では、前記パルス発生器は、前記後根神経節内のグリア細胞の機能を調節することができるレベルで刺激エネルギーを供給する。例えば、幾つかの実施形態では、前記パルス発生器は、前記後根神経節内の衛生細胞の機能を調節することができるレベルで刺激エネルギーを供給する。また、別の実施形態では、前記パルス発生器は、前記後根神経節内のシュワン細胞の機能を調節することができるレベルで刺激エネルギーを供給する。
【0020】
幾つかの事例では、前記パルス発生器は、前記後根神経節内のニューロン若しくはグリア細胞に連繋する少なくとも1つの血管に、作用物質を放出するか、又は後根神経節内のニューロン若しくはグリア細胞に作用する細胞信号を送らせる、ことができるレベルで刺激エネルギーを供給する。
【0021】
また、幾つかの実施形態では、前記リード線は、硬膜上腔を通って順行方向に進行させられるように構成され、前記リード線の少なくとも一部が神経根スリーブの角度姿勢に沿って伸長するように位置決めされる。
【0022】
本発明の他の目的および利点は、添付図面に従い添付図面を伴った詳細な説明から明らかになることであろう。
【図面の簡単な説明】
【0023】
【図1A】図1Aは、脊髄,結び付いた神経根および脊髄レベルでの末梢神経の概略的な図解をもたらす図である。
【図1B】図1Bは、DRG内のセルを図解するものである。
【図2A】図2Aは、脊髄とDRGの断面の組織学的な図解をもたらす図である。
【図2B】図2Bは、異なる倍率レベルで、脊髄とDRGの断面の組織学的な図解をもたらす図である。
【図2C】図2Cは、異なる倍率レベルで、脊髄とDRGの断面の組織学的な図解をもたらす図である。
【図3】図3は、少なくとも1つの電極を有するリード線であって、少なくとも1つの電極がターゲットDRG上に位置するように患者の生体構造を通って前進させられたリード線の実施形態を図解するものである。
【図4】図4は、DRG上に位置したリード線の概略的な図解をもたらす図である。
【図5】図5は、閾値の刺激と神経繊維の直径との例示的な関係を示すグラフを図解するものである。
【図6】図6は、神経繊維の直径に基づいた補給順序を図解するものである。
【図7】図7は、セルボディの大きさに基づいた補給順序を図解するものである。
【図8】図8は、刺激の位置に基づいた補給順序の違いを図解するものである。
【図9】図9は、DRGに連繋した様々の細胞および解剖学上の構造を含む、DRG上に位置決めされたリード線の実施形態の概略的な図解をもたらす図である。
【図10A】図10Aは、リード線およびその送給システムの実施形態を図解するものである。
【図10B】図10Bは、リード線およびその送給システムの実施形態を図解するものである。
【図10C】図10Cは、リード線およびその送給システムの実施形態を図解するものである。
【図10D】図10Dは、リード線およびその送給システムの実施形態を図解するものである。
【図11】図11は、リード線およびその送給システムの実施形態を図解するものである。
【図12】図12は、リード線およびその送給システムの実施形態を図解するものである。
【発明を実施するための形態】
【0024】
本発明は、合併症の可能性および望ましくない副次的な悪影響を、特に錯感覚の感覚を、最小限に止め若しくは排除しながら、疼痛を治療するための装置,システム及び方法を提供するものである。このことは、錯感覚の実質的な感覚を生じさせることなく疼痛感に影響を及ぼすことになる手法で、刺激エネルギーレベルでもって後根の神経節(ガングリオン)に極めて近接して刺激を加えることによって達成される。
幾つかの実施形態では、かかる神経刺激は、以下により詳しく説明されるように、後根の神経節に特有の解剖学上の特徴および機能を巧みに利用している。この装置,システム及び方法は、侵襲性が最小限であり、従って、移植手術に起因する合併症の可能性を低減し、また、錯感覚のような知覚が最小で、若しくは全く伴わずに、疼痛感をなんとかするように目標付けられている。
【0025】
図1Aは、脊髄S,連繋する神経根(nerve root)および脊髄レベルでの末梢神経の概略的な図解をもたらす図である。ここに、神経根は、末梢神経(peripheral nerve)PNで繋がって一緒になる後根(dorsal root)DR及び前根(ventral root)VRを包含している。図に示されるように、前記後根DRは後根神経節(dorsal root ganglion)DRGを含んでいる。DRGは、大型ニューロン(neuron),小型ニューロン及び非神経(非ニューロン:non-neuronal)細胞を含む、様々の細胞(セル:cell)で構成されている。
DRG内の各ニューロンは、体細胞(ソーマ:細胞核を包含する神経の球状の端部)及び2つの軸索(axon)を有する、双極性または擬似的に単極性の細胞で構成されている。用語ソーマ(soma:体細胞)はギリシャ語であって「ボディ(body)」を意味し;神経のソーマはよく「セルボディ(cell body)」と呼ばれる。ソーマは、後根ではなくてDRG内に集められ、連繋する軸索は、そこから後根内へ、及び末梢神経系へ向かって伸長する。
図1Bは、DRG内に位置するセルであって、小型のソーマSM,大型のソーマSM’及び非神経細胞(この例では、衛星細胞(satellite cell)SC)を含んでいるセルの拡大された図解を与えるものである。図2A〜2Cは、脊髄S、及びDRGを含めて連繋する神経根の断面の組織学的な図解を与えるものである。図2Aは、40倍の倍率での生体構造(アナトミー:anatomy)を図解し、周囲の生体構造に対するDRGの大きさの関係を示している。図2Bは、100倍の倍率で図2Aの解剖学的構造を示している。ここで、DRGの構造の違いが視認できるようになって来る。図2Cは、DRGに焦点を絞って、400倍の倍率で図2Aの生体構造を示している。図に示されるように、大型のソーマSM’及び小型のソーマSMは、DRG内に位置している。
【0026】
幾つかの実施形態では、本発明に従ったDRGの刺激は、少なくとも1つの電極を有するリード線の使用でもって達成される。リード線は、少なくとも1つの電極が、標的とする(ターゲット:target)DRG上に、その付近に、その回りに、或いは近接して、位置するように、患者の生体構造を通って前進させられる。リード線および電極は、電極が他の生体構造の望ましくない刺激を最小限にとどめる若しくは排除することができるように、寸法設定され構成されている。
【0027】
図3は、少なくとも1つの電極102を有するリード線であって、少なくとも1つの電極102がターゲットDRG上に位置するように患者の生体構造を通って前進させられたリード線100の実施形態を図解している。この例では、リード線100は、硬膜外に挿入され、脊髄Sに沿って順行方向に前進させられる。
図に示されるように、各DRGは、後根DRに沿って配置され、典型的には、少なくとも部分的に、茎(ペディクル:pedicle)PD間または孔内に存在する。各後根DRは、或る角度θで脊髄Sから出て来る。この角度θは、神経根スリーブの角度姿勢(アンギュレーション:angulation)と考えられ、患者によって、また脊柱に沿った位置によって、僅かに変化する。しかし、平均的な神経根アンギュレーションは、90度よりも著しく小さく、典型的には45度よりも小さい。
従って、この方法でのリード線100のターゲットDRGに向かっての進行は、角度θに沿って鋭い折り返し(ターン:turn)をなすことを伴うものとなる。この過酷な折り返しは、送給用具(ツール:tool)と、かかるリード線の配置に特有の設計上の特徴と、を利用することによって達成される。この設計上の特徴については、後の段落にてより詳しく説明する。更に、神経根,DRG及び周囲の組織構造の間の空間的な関係は、変性変化(degenerative change)、特に腰椎(lumber spine)の変性変化によって、大きな影響を受ける。このように、患者は、例えば、より難しい折り返しを必要とする、より小さいアンギュレーションを有するなど、通常の生体構造とは異なる神経根アンギュレーションを有することができる。前述の送給ツール及び装置は、これらの生体構造に適応するものである。
【0028】
図4は、DRG上に位置したリード線100の実施形態の概略的な図解をもたらす図である。図に示されるように、DRGは、小型のソーマSM及び大型のソーマSM’を包含している。各ソーマは、連繋する軸索または神経根を通って伸長する神経繊維と接続されている。軸索または神経繊維は、神経細胞の、若しくはニューロンのセルボディから電気的な刺激を導くニューロンの、長くてほっそりした突起である。小型のソーマSMは小さい軸索AXを有し、大型のソーマSM’は大きい軸索AX’を有している。典型的には、軸索または神経繊維は、サイズに応じて電気的に補給される。
図5を参照すれば、閾値の刺激と神経繊維の直径との例示的な関係を図解するグラフが与えられている。一般に、神経繊維の直径が大きくなるに連れて、閾値の刺激は小さくなっている。従って、図6に示されるように、大径のマイレネイテッド(mylenated)繊維(Aβ繊維)は、小径のアンマイレネイテッド(unmylenated)繊維(C繊維)より前に補給される小径のマイレネイテッド繊維(Aδ繊維)より更に前に補給される。
【0029】
図7を参照すれば、神経繊維と対比して、セルボディについて反対のことが言える。一般に、より小さいセルボディ又はソーマ膜(メンブレイン:membrane)を補給または調節するのに、大きいものよりも電流が少なくて済む。従って、図8に示されるように、範囲Aに(セルボディSM’,SMに)弱い刺激が与えられているときには、直径がより大きいセルボディSM’よりも前に、直径がより小さいセルボディSMが、選択的に刺激を受けることになる。これは、より小さいセルボディの膜機能を効率良く調節するのに、比較的少ない電荷で済むことによるものである。
しかしながら、範囲Bに(軸索AX’,AXに)弱い刺激が与えられると、より小さい軸索AXよりも前に、より大きい軸索AX’が刺激を受ける。図4に戻って参照すれば、セルボディ又はソーマはDRG内に位置しているので、範囲Aは大略DRGに押す透視、範囲Bは大略後根DRに相当している。
【0030】
患者が痛みを経験するとき、侵害または疼痛性の刺激は、直径が小さい,薄く髄鞘を有する、また、髄鞘のない、求心性の神経繊維または軸索AXを介して、末梢組織から中心の神経系へ変換される。電気的には、これらの繊維は、選択的にターゲットにするのがより難しい、というのは、直径がより大きい繊維または軸索AX’は、上述のサイズ原理に基づいて電流により優先的に活性化されるからである。これらより大きい繊維AX’は、例えば、軽い接触,圧力および振動など、また同様に、例えばSCSによって生み出される錯感覚と組み合わされる。
【0031】
本発明は、直径がより大きい軸索/より大きいソーマニューロンに対して、直径がより小さい軸索/より小さいソーマニューロンを、優先的に神経調節するための方法および装置を与えるものである。このことは、錯感覚を最小限に止め或いは無くする一方で、痛覚の伝達を遮る。
再び図4に戻って参照すれば、DRGを選択的に刺激する一方、例えば後根DRの部分など、他の生体構造の望ましくない刺激は最小限に止めるか排除するために、少なくとも1つの電極102が配置されるように、位置決めされたリード線100の例が図解されている。このことは、直径がより小さい軸索/より小さいソーマニューロンが、直径がより大きい軸索/より大きいソーマニューロンに先駆けて、補給されることができるようにする。
その結果として、痛感の伝達に関与するこれらのニューロンは、錯感覚を生み出すことなく調節されることができる。このことは、低電流または低電力の刺激、つまり錯感覚に対する閾値レベルでの刺激、を用いて達成される。この優先的な、ターゲットにされた神経調節の効果は、結果として生じる錯感覚を伴わない痛感消失である。更に、低電力の刺激は、低電力消費およびより長い電池寿命を意味している。
【0032】
従来の脊髄刺激システムは、典型的には、約30−120Hzの周波数を用いて刺激を与えるものである。それにひきかえ、ここに記載された装置および方法を用いて、従来の刺激システムで用いられているよりも低い刺激周波数で、治療的な利点が達成された。或る態様においては、ここに記載されたDRG刺激法に用いられる刺激周波数は、25Hzよりも低い。別の態様においては、刺激周波数は、例えば15Hz以下の範囲など、更に低くすることができる。更に別の態様においては、刺激周波数は10Hzよりも低い。或る特別な実施形態では、刺激周波数は5Hzである。今一つの特別な実施形態では、刺激周波数は2Hzである。
刺激周波数を低くすることに加えて、本発明の装置および方法のための他の刺激パターンは、従来の刺激システムで用いられていたものよりも低い。例えば、本発明の実施形態は、500マイクロアンペアよりも小さい振幅,120マイクロ秒よりも小さいパルス幅、及び先に議論したような低い刺激周波数を有する刺激信号を用いて、再現性のある皮節(dermatome)の特定の疼痛緩和を達成した。本発明の実施形態は、60マイクロ秒から120マイクロ秒までの範囲内で選択されたパルス幅を有する信号を用いて、皮節の特定の疼痛緩和を達成することができると信じられている。また、本発明の実施形態は、約200マイクロアンペア振幅を有する信号を用いて、皮節の特定の疼痛緩和を達成することができると信じられている。或る特定の例では、成人女性において、200マイクロアンペア振幅,60マイクロ秒のパルス幅および2Hzの周波数を有する信号を用いて、再現性のある皮節の特定の疼痛緩和が達成された。
あらゆる目的のために、引用することによりここに組み込まれるものであるが、例えば、2009年10月27日に出願された、「病状に対する選択的な刺激システム及び信号パラメータ」と題する米国特許出願第12/607,009号において提供されるものなど、他の好適な刺激信号パラメータを一緒に用いることができることも、理解されてもよい。
【0033】
ニューロン細胞,非ニューロン細胞に加えて、例えば神経膠細胞(グリア細胞:glial cell)などがDRG内に在る。グリア細胞は、ニューロンを取り囲み、それらを定位置に保持し、栄養素を与え、恒常性の維持を助け、電気絶縁性をもたらし、病原菌を殺し、ニューロン修復および死んだニューロンの除去を制御し、また、神経系における信号の伝達に関与する。更に、グリア細胞は、神経系の創成を導く助けとなり、また、ニューロンの化学的環境およびイオン環境を制御する。グリア細胞は、また、慢性の疼痛状態での機能不全の増進および維持において一定の役割を果たす。例えば、衛星細胞やシュワン細胞(Schwann cell)など、様々な特定のタイプのグリア細胞がDRG内に見出される。
【0034】
衛星細胞は、DRG内でニューロン・セルボディを取り囲む。衛星細胞は、周囲のニューロンに栄養素を供給するとともに、ある種の構造的機能も有している。衛星細胞は、また、保護的な緩衝作用のある細胞として働く。更に、衛星細胞は、DRG内でニューロンと共に細隙結合(gap junction)を形成することができる。神経系における旧知の化学的な伝達とは対照的に、細胞間の細隙結合は直接の電気的結合をもたらす。このことは、次に、擬似的なグリア・ニューロン合胞体(glial-neuronal syncytium)の形態を創成することができる。
病態生理学的状態は、疼痛に関するニューロンの変換情報が機能不全になることができるように、グリアとセルボディとの間の関係を変化させることができる。従って、DRGの神経刺激(neurostimulation)は、ニューロンに対して直接に影響を及ぼすだけではなく、グリア細胞の機能にも影響を与えることができる。神経刺激を用いたグリア細胞の機能の調節は、次に、ニューロンの機能性を変化させることができる。かかる調節は、錯感覚の感覚を生じさせる閾値以下のレベルで起こり得る。
【0035】
図9は、DRG上に位置決めされたリード線100の実施形態の概略的な図解をもたらす図である。図に示されるように、DRGは、小型のソーマSM及び大型のソーマSM‘を取り囲む衛星細胞SCを包含している。幾つかの実施形態では、少なくとも1つの電極102によって与えられる刺激エネルギーは、衛星細胞SCを神経調節する。かかる神経調節(neuromodulation)は、その機能に影響を及ぼし、2次的には、例えば疼痛などの知覚情報の処理を妨げ或いは変化させるために、連繋するニューロンの機能にも影響を及ぼす。その結果、DRG衛星細胞の神経調節は、慢性の疼痛に対する治療となり得る。
【0036】
今一つのタイプのグリア細胞は、シュワン細胞(Schwann cell)である。ニューロ・レンモサイト(neurolemnocyte)とも呼ばれるシュワン細胞は、ニューロンの生存を助けるものである。髄鞘の有る軸策(myelinated axon)において、シュワン細胞は髄鞘(ミリエン鞘:myelin sheath)を形成する。脊椎動物の神経系は、絶縁のための、また、軸策における膜の静電容量を低減する方法として、髄鞘に依存する。シュワン細胞の配置は、伝導の速度を大幅に高めエネルギーを節約する跳躍伝導を可能にする。髄鞘の無いシュワン細胞は、軸策の維持に関与している。シュワン細胞は、また、DRG内のニューロンに対して、軸策の支持,栄養作用および別の支持作用をもたらす。
【0037】
再び図9を参照すれば、DRG内のニューロンの軸策に沿ってシュワン細胞SWCが図解されている。幾つかの実施形態では、リード線100の少なくとも1つの電極102によって与えられた刺激エネルギーは、シュワン細胞SWCを神経調節する。かかる神経調節は、シュワン細胞の機能に影響を及ぼし、2次的には、連繋するニューロンの機能にも影響を及ぼす。シュワン細胞の神経調節は、ニューロンの処理,疼痛を含む知覚情報の変換(transduction)及び伝達に影響を及ぼす。このように、DRG刺激は、シュワン細胞の機能に影響を及ぼすことにより、短期間および長期間にわたって疼痛を緩和する。このことは、また、錯感覚の感覚を生じさせる閾値以下の刺激レベルで達成されることができる。
【0038】
DRG内に存在する神経系の細胞(ニューロン,グリア等)のかなた、DRG内および周囲に移動して、DRGをカプセルに包み、この代謝的に非常に活性な神経系組織に血液供給および酸素を与える、血管の密接なネットワークがある。図9は、DRGに連繋した血管BV及びDRGを概略的に図解している。幾つかの実施形態では、リード線100の少なくとも1つの電極102によって刺激エネルギーが与えられる。
DRGの刺激は、ニューロン,グリア及び/又は血管から、疼痛を含む知覚情報の変換および処理に関与するニューロンの機能に対して最終的に影響を及ぼす、様々の作用物質(エイジェント:agent)の放出を生じさせることができる。例えば、幾つかの実施形態では、DRGの刺激は、1つ若しくはそれ以上のタイプのニューロン或いは1つ若しくはそれ以上のタイプのグリア細胞に、少なくとも1つの血管に影響を及ぼす血管作用性物質を放出させる。前記少なくとも1つの血管は、次に、疼痛を処理するに際して、ニューロンの機能に影響を及ぼすニューロン作用性の物質を放出する。或いは、前記少なくとも1つの血管は、疼痛を処理するに際して、間接的にニューロンの機能に影響を及ぼすグリア活性物質を放出する。
別の実施形態では、DRGの刺激は、ニューロン細胞の信号伝達に対する導管もしくはグリア細胞の信号伝達に対する導管をもたらす、連繋する血管に直接に作用する。かかる細胞信号伝達は、最終的には、例えば、新陳代謝率を変えることにより、或いは、ひいては細胞機能を直接に変化させる神経反応性化学物質の放出を誘導することにより、ニューロンの機能に影響を及ぼす。細胞機能の変化は、短期,中期および長期にわたって痛覚消失もしくは疼痛緩和を誘導する。かかる変化は、錯感覚の感覚を生じせしめる閾値以下の刺激レベルで起こり得る。
【0039】
例えばDRGなど、ターゲットにした生体構造近辺へのリード線100の所望の位置決めは、様々の送給システム,装置および方法を用いて達成することができる。図3に戻って参照すれば、かかる位置決めの例が図解されている。この例では、リード線100は、硬膜外に挿入され、脊髄Sに沿って順行方向に進行させられる。
図に示されるように、各DRGは、後根DRに沿って配置され、典型的には、少なくとも部分的に、茎(ペディクル:pedicle)PD間または孔内に存在する。各後根DRは、或る角度θで脊髄Sから出て来る。この角度θは、神経根スリーブの角度姿勢(アンギュレーション:angulation)と考えられ、患者によって、また脊柱に沿った位置によって、僅かに変化する。しかし、平均的な神経根アンギュレーションは、90度よりも著しく小さく、典型的には45度よりも小さい。
従って、この方法でのリード線100のターゲットDRGに向かっての進行は、角度θに沿って鋭い折り返し(ターン:turn)をなすことを伴うものとなる。更に、神経根,DRG及び周囲の組織構造の間の空間的な関係は、変性変化(degenerative change)、特に腰椎(lumber spine)の変性変化によって、大きな影響を受ける。このように、患者は、例えば、より難しい折り返しを必要とする、より小さいアンギュレーションを有するなど、通常の生体構造とは異なる神経根アンギュレーションを有することができる。この過酷な折り返しは、かかるリード線の配置に特有の設計上の特徴を有する送給用具を用いることによって達成される。
【0040】
図10A〜10Dを参照すれば、ターゲットDRGにアクセスためのリード線および送給装置の例が図解されている。図10Aは、それ自体に配置された4つの電極102を備えた遠位端部101を有する軸部103を備えたリード線100の実施形態を図解するものである。1,2,3,4,5,6,7,8若しくはそれ以上を含む任意の数の電極102が存在してもよいことが、理解されよう。この実施形態では、遠位端部101は、終端が閉じられた遠位先端部106を有している。この遠位先端部106は、2,3例を挙げると、例えば(図に示されている)球形などの丸形、或いは涙の形および円錐形を含む様々な形状を有することができる。これらの形状は、他の目的を果たすと同様に、リード線100に傷付けない先端部をもたらすものである。リード線100には、終端が閉じられた遠位先端部106に向かって延びる探り針内腔部104が在る。送給システム120は、また、鞘状の覆い122(図10B),探り針124(図10C)及び導入ニードル126(図10D)を含めて、図解されている。
【0041】
図10Bを参照すれば、鞘状の覆い(シース:sheath)122の実施形態が図解されている。この実施形態では、シース122は、角度αを有するように予め湾曲させられた遠位端部128を有している。ここに、角度αは約80度から165度の範囲内にある。シース122は、図11に示されるように、その遠位端部128の一部がリード線100の遠位先端部106に当接するまで、リード線100の軸部103を覆って前進させられるように、寸法設定されて構成されている。このように、この実施形態の球状先端部106は、シース122がそれを越えて伸長することも防止している。リード線100を覆うシース122の通路は、シース122の予備的な湾曲に従ってリード線100に曲げを生じさせる。このように、シース122は、脊髄Sに沿って、また、例えば横向きなど、ターゲットDRGに向かって、リード線100を操縦する際に助けとなる。
【0042】
図10Cに戻って参照すれば、探り針124の実施形態が図解されている。探り針124は、曲率半径が略0.1〜0.5の範囲内にあるように予め湾曲させられている遠位端部130を有している。この探り針124は、リード線100の探り針内腔104内で前進させられるように、寸法設定されて構成されている。典型的には、探り針124は、その遠位端部130がリード線100の遠位端部101と整列するように、伸長している。リード線100を通る探り針124の通路は、探り針124の予備的な湾曲に従ってリード線100に曲げを生じさせる。典型的には、探り針124は、シース122よりも小さい曲率半径つまりより過酷な曲がりを有している。
従って、図12に示されるように、探り針124がリード線100内に配置されている場合、シース122を通るリード線100及び探り針124の延長部は、リード線100を第1湾曲部123を通って曲げ、若しくは指向させる。更に、シース122の遠位端部128を越えるリード線100及び探り針124の延長部は、リード線100が第2湾曲部125に沿って更に曲がることを許容する。このことは、横方向に指向したリード線100が、神経根の角度姿勢に沿ってターゲットDRGに向かって湾曲することを許容する。この2段階の湾曲は、少なくとも1つの電極102がターゲットDRG上に,その付近に或いはその周囲に、特に、角度θに沿った鋭い折り返しをなすことにより、リード線100が首尾良く位置決めされることを許容する。
【0043】
このように、リード線100は、それ自体、トルクが加わることはなく、また、操縦されることもないので、高剛性あるいは高トルク耐性の構造を有する必要はない。リード線100は、2段階の湾曲を介して当該リード線100を指向させるシース122と探り針124とを用いて位置決めされる。このことは、オペレータが、複合的に手を用いて、リード線100に、また、随意的にはシース122にトルクを加える必要を無くする。このことは、また、リード線100が、非常に軟質でフレキシブルであるだけでなく目立たない構造を有することも可能にする。このことは、ひいては、一旦リード線100が植え込まれると、例えばターゲットDRG及び/又は神経根などの神経組織を加圧することによって生み出される不快や腐食を最小限に止める。例えば、このような軟質でフレキシブルなリード線100は、本体の挙動(例えば、湾曲,伸張,捩り)によってリード線100に伝えられた力の大きさを最小限に止めることであろう。
【0044】
図10Dに戻って参照すれば、導入ニードル(introducing needle)126の実施形態が図解されている。導入ニードル126は、脊髄Sの硬膜上腔(epidural space)へのアクセスのために用いられる。ニードル126は、中空の軸部127を有し、また、典型的にはごく僅かに湾曲した遠位端部132を有している。軸部127は、リード線100,シース122及び探り針124の通過を許容するように寸法設定されている。幾つかの実施形態では、ニードル126は、硬膜上腔内に従来の経皮的なリード線を配置するのに用いられる硬膜外ニードルのサイズと一致した14番ゲージ(gauge)のものである。しかしながら、他のサイズの針、特に16〜18番ゲージのものなどより小さい針も、用いることができることが理解されよう。同様に、施術者に知られている様々な先端部や、特定の用途のために設計された特別注文の先端部も、用いることができることが理解されよう。ニードル126は、また、典型的には、その近位端部の付近に、ルアーロック(Luer-Lok:登録商標)接続具134を備えている。ルアーロック接続具134は、タブ付きのハブ(tabbed hub)を有する雌型の接続具で、例えば注射器(シリンジ:syringe)などの雄型接続具のスリーブ内のネジ部に係合するものである。
【0045】
あらゆる目的のために、引用することによりここに組み込まれるものであるが、2009年1月14日に出願された米国特許出願第611144,690号に、かかる送給システム120を用いてターゲットDRGにアプローチする方法が、本発明と共に用いるのに適用可能な他の送給システム,装置および方法と一緒に、更に説明され図解されている。
【0046】
錯感覚に対する刺激閾値を与えるために、他のタイプのリード線および相当する送給システムが、かかるリード線を所望の方位に位置決めするのに用いることができる、ことが理解されよう。例えば、リード線は、予め湾曲させられた形状を有していてもよく、当該リード線は、真っ直ぐな形状、例えば実質的に真っ直ぐな形状、或いはリード線よりも大きい曲率半径を有する湾曲した形状など、を有するシースを通って送給可能である。シースからのリード線の前進は、リード線が、その予め湾曲させられた形状に向かって、反動することを許容する。リード線とシースとの間での様々な湾曲の組み合わせは、1次的および2次的な湾曲の多様性を許容する。リード線が一旦望ましく配置されると、シースは除去されてもよい。
【0047】
DRGへの様々なアプローチを用いることができることも理解されよう。2,3の例を挙げれば、順行性硬膜外アプローチ,逆行性硬膜外アプローチ,トランスフォーラメナル(transforamenal)アプローチ,エクストラフォーラミナル(extraforaminal)アプローチ(脊柱の外側から末梢神経に沿ったアプローチ)及び対側(contralateral)アプローチなどである。同様に、前記少なくとも1つの電極は、DRGの中,上または周囲、DRGに近接して,付近に,または近辺に、位置決めされてもよい。
【0048】
前述の発明は、理解の明瞭化の目的で、図および例を用いて多少詳しく説明されてきたが、様々の変更,修正および均等物を用いることができることは明白であり、また、上述の説明は、添付の請求の範囲によって規定される本発明の範囲を制限するものと解されるべきではない。

【特許請求の範囲】
【請求項1】
患者の疼痛を治療するためのシステムであって、
少なくとも1つの電極を有するリード線であって、後根神経節に近接して配置されるように構成されたリード線と、
実質的な錯感覚の感覚を生じせしめることなく疼痛感覚に作用するように、前記後根神経節を刺激するために、前記リード線が前記後根神経節に近接して位置決めされている間、前記少なくとも1つの電極の少なくとも1つに刺激エネルギーを供給するように構成された、パルス発生器と、
を備えている、ことを特徴とするシステム。
【請求項2】
前記パルス発生器は、Aβ繊維の補給のための閾値以下のレベルで刺激エネルギーを供給する、ことを特徴とする請求項1に記載のシステム。
【請求項3】
前記パルス発生器は、Aβ繊維のセルボディ補給のための閾値以下のレベルで刺激エネルギーを供給する、ことを特徴とする請求項2に記載のシステム。
【請求項4】
前記パルス発生器は、Aδ繊維のセルボディ補給のための閾値を越えるレベルで刺激エネルギーを供給する、ことを特徴とする請求項3に記載のシステム。
【請求項5】
前記パルス発生器は、C繊維のセルボディ補給のための閾値を越えるレベルで刺激エネルギーを供給する、ことを特徴とする請求項3に記載のシステム。
【請求項6】
前記パルス発生器は、髄鞘が有る小型の繊維のセルボディ補給のための閾値を越えるレベルで刺激エネルギーを供給する、ことを特徴とする請求項3に記載のシステム。
【請求項7】
前記パルス発生器は、髄鞘が無い繊維のセルボディ補給のための閾値を越えるレベルで刺激エネルギーを供給する、ことを特徴とする請求項3に記載のシステム。
【請求項8】
前記パルス発生器は、前記後根神経節内のグリア細胞の機能を調節することができるレベルで刺激エネルギーを供給する、ことを特徴とする請求項1に記載のシステム。
【請求項9】
前記パルス発生器は、前記後根神経節内の衛生細胞の機能を調節することができるレベルで刺激エネルギーを供給する、ことを特徴とする請求項8に記載のシステム。
【請求項10】
前記パルス発生器は、前記後根神経節内のシュワン細胞の機能を調節することができるレベルで刺激エネルギーを供給する、ことを特徴とする請求項8に記載のシステム。
【請求項11】
前記パルス発生器は、前記後根神経節内のニューロン若しくはグリア細胞に連繋する少なくとも1つの血管に、作用物質を放出するか、又は後根神経節内のニューロン若しくはグリア細胞に作用する細胞信号を送らせる、ことができるレベルで刺激エネルギーを供給する、ことを特徴とする請求項1に記載のシステム。
【請求項12】
前記リード線は、硬膜上腔を通って順行方向に進行させられるように構成され、前記リード線の少なくとも一部が神経根スリーブの角度姿勢に沿って伸長するように位置決めされる、ことを特徴とする請求項1に記載のシステム。
【請求項13】
患者の疼痛を治療するための方法であって、
少なくとも1つの電極を有するリード線を位置決めするステップであって、前記少なくとも1つの電極の少なくとも1つが、後根神経節に近接するように位置決めするステップと、
前記後根神経節の少なくとも一部を刺激するために、前記少なくとも1つの電極の少なくとも1つに刺激エネルギーを供給するステップと、を備え、
前記リード線の位置決めステップと前記刺激エネルギーの供給ステップとが合わさって、実質的な錯感覚の感覚を生じせしめることなく疼痛感覚に作用する、
ことを特徴とする方法。
【請求項14】
前記刺激エネルギーを供給するステップは、Aβ繊維の補給のための閾値以下のレベルで刺激エネルギーを供給することを包含している、ことを特徴とする請求項13に記載の方法。
【請求項15】
前記刺激エネルギーを供給するステップは、Aβ繊維のセルボディ補給のための閾値以下のレベルで刺激エネルギーを供給することを包含している、ことを特徴とする請求項14に記載の方法。
【請求項16】
前記刺激エネルギーを供給するステップは、Aδ繊維のセルボディ補給のための閾値を越えるレベルで刺激エネルギーを供給することを包含している、ことを特徴とする請求項15記載の方法。
【請求項17】
前記刺激エネルギーを供給するステップは、C繊維のセルボディ補給のための閾値を越えるレベルで刺激エネルギーを供給することを包含している、ことを特徴とする請求項15に記載の方法。
【請求項18】
前記刺激エネルギーを供給するステップは、髄鞘が有る小型の繊維のセルボディ補給のための閾値を越えるレベルで刺激エネルギーを供給することを包含している、ことを特徴とする請求項15に記載の方法。
【請求項19】
前記刺激エネルギーを供給するステップは、髄鞘が無い繊維のセルボディ補給のための閾値を越えるレベルで刺激エネルギーを供給することを包含している、ことを特徴とする請求項15に記載の方法。
【請求項20】
前記刺激エネルギーを供給するステップは、前記後根神経節内のグリア細胞の機能を調節することができるレベルで刺激エネルギーを供給することを包含している、ことを特徴とする請求項13に記載の方法。
【請求項21】
前記刺激エネルギーを供給するステップは、前記後根神経節内の衛生細胞の機能を調節することができるレベルで刺激エネルギーを供給することを包含している、ことを特徴とする請求項20に記載の方法。
【請求項22】
前記刺激エネルギーを供給するステップは、前記後根神経節内のシュワン細胞の機能を調節することができるレベルで刺激エネルギーを供給することを包含している、ことを特徴とする請求項20に記載の方法。
【請求項23】
前記刺激エネルギーを供給するステップは、前記後根神経節内のニューロン若しくはグリア細胞に連繋する少なくとも1つの血管に、作用物質を放出するか、又は後根神経節内のニューロン若しくはグリア細胞に作用する細胞信号を送らせる、ことができるレベルで刺激エネルギーを供給することを包含している、ことを特徴とする請求項13に記載の方法。
【請求項24】
前記リード線を位置決めするステップは、前記リード線の少なくとも一部が神経根スリーブの角度姿勢に沿って伸長するように、前記リード線を硬膜上腔を通って進行させることを包含している、ことを特徴とする請求項13に記載の方法。
【請求項25】
前記リード線を硬膜上腔を通って順行方向に進行させるステップは、順行方向に進行させることを包含している、ことを特徴とする請求項24に記載の方法。
【請求項26】
患者を治療するための方法であって、患者の後根神経節と共にAβ繊維セルボディを除きつつ、当該患者の後根神経節内の小型の繊維セルボディを選択的に刺激する、ことを特徴とする方法。
【請求項27】
前記小型の繊維セルボディはAδ繊維セルボディを包含する、ことを特徴とする請求項26に記載の方法。
【請求項28】
前記小型の繊維セルボディはC繊維セルボディを包含する、ことを特徴とする請求項26に記載の方法。
【請求項29】
患者を治療するための方法であって、
患者による疼痛の感覚に関連した後根神経節を特定するステップと、
患者による疼痛の感覚を低減するために、前記後根神経節内の少なくとも1つのグリア細胞を神経調節するステップと、
を備えている、ことを特徴とする方法。
【請求項30】
前記少なくとも1つのグリア細胞は衛生細胞を包含している、ことを特徴とする請求項29に記載の方法。
【請求項31】
前記少なくとも1つのグリア細胞はシュワン細胞を包含している、ことを特徴とする請求項29に記載の方法。
【請求項32】
前記神経調節するステップは、実質的な錯感覚の感覚を生じせしめることなく疼痛感覚を抑制するレベルで刺激を与えることを包含している、ことを特徴とする請求項29に記載の方法。
【請求項33】
患者を治療するための方法であって、
少なくとも1つの電極を有するリード線を位置決めするステップであって、前記少なくとも1つの電極の少なくとも1つが、後根神経節に近接するように位置決めするステップと、
少なくとも1つの血管が後根神経節内のニューロンを細胞調節する作用物質を放出せしめるように、前記後根神経節に連繋した前記少なくとも1つの血管を刺激するように、前記少なくとも1つの電極に刺激エネルギーを供給するステップと、
を備える、ことを特徴とする方法。
【請求項34】
前記作用物質は、疼痛感覚の変換に関与するニューロンの機能に作用する細胞調節薬品を包含する、ことを特徴とする請求項33に記載の方法。

【図1A】
image rotate

【図1B】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図10C】
image rotate

【図10D】
image rotate

【図11】
image rotate

【図12】
image rotate


【公表番号】特表2012−521801(P2012−521801A)
【公表日】平成24年9月20日(2012.9.20)
【国際特許分類】
【出願番号】特願2012−502199(P2012−502199)
【出願日】平成22年3月24日(2010.3.24)
【国際出願番号】PCT/US2010/028450
【国際公開番号】WO2010/111358
【国際公開日】平成22年9月30日(2010.9.30)
【出願人】(507075624)スパイナル・モデュレーション・インコーポレイテッド (10)
【氏名又は名称原語表記】SPINAL MODULATION INC.
【Fターム(参考)】