説明

電気泳動分析装置および電気泳動分析用マイクロチップ

【課題】 小型化を図るとともに、より長時間の分析を可能とする電気泳動分析装置および電気泳動分析用マイクロチップを提供すること。
【解決手段】 本発明の電気泳動分析装置は、試薬の特定成分を電気泳動によって分離するための分離流路22と、分離流路22につながる接続口211を有する導入槽21と、導入槽21に挿入される導入側電極32と、を備えており、導入側電極32は、導入槽21の中央を挟んで、接続口211とは反対側に位置している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気泳動分析装置および電気泳動分析用マイクロチップに関する。
【背景技術】
【0002】
試料に含まれる特定成分の濃度もしくは量を分析する分析方法として、たとえば、キャピラリー電気泳動法を用いた分析方法が広く実施されている。キャピラリー電気泳動法は、断面積が比較的小である分離流路に泳動液を充填し、さらに上記分離流路の一端寄りに上記試料を導入する。上記分離流路の両端に電圧を加えると、電気泳動により上記泳動液が正極側から負極側へと移動する電気浸透流が生じる。また、上記電圧が印加されることにより、上記特定成分は、それぞれの電気泳動移動度に応じて移動しようとする。したがって、上記特定成分は、上記電気浸透流の速度ベクトルと上記電気泳動による移動の速度ベクトルとを合成した速度ベクトルにしたがって移動する。この移動によって、上記特定成分が他の成分から分離される。この分離された特定成分をたとえば光学的手法によって検出することにより、上記特定成分の量や濃度を分析することができる。
【0003】
図8は、従来の分析装置の一例を示している(たとえば、特許文献1参照)。同図に示された分析装置Xは、マイクロチップ91および電圧印加手段92を備えている。マイクロチップ91には、導入槽911、排出槽913、およびこれらを繋ぐ分離流路912が形成されている。導入槽911および分離流路912には、分析に先立ってたとえば導入ノズルNzによって泳動液Lqが充填される。試料容器Bには、たとえば血液などの分析対象である試料Sが貯蔵されている。試料Sは、導入ノズルNzを介して導入槽911に導入される。電圧印加手段92は、電源921および2つの電極922,923を備えている。分析に際しては、電極922が導入槽911に浸漬され、電極923が排出槽913に浸漬される。2つの電極922,923間に所定の電圧を印加すると、電気泳動による特定成分の分離が開始する。分離流路912の途中部分を挟むように、発光部941および受光部942が配置されている。発光部941には、光源943からの光が供給される。受光部942は、検出部944に接続されている。検出部944によってたとえば試料Sの吸光度を測定することにより、試料Sの特定成分の濃度を測定することができる。
【0004】
しかしながら、キャピラリー電気泳動法を正確に行うには、試料Sに含まれるたとえばA1cなどのヘモグロビンが、他の成分と区別可能なように十分に分離することが重要である。十分な分離を得るためには、電極922,923による電圧印加を長い時間行うほど好ましい。この電圧印加が長時間となるほど、導入槽911および排出槽913に収容された泳動液Lqが電気分解される。電気分解された泳動液Lqは、電気分解を受けない状態の泳動液Lqと比べてpHが変化する。このpHが変化した泳動液Lqが分離流路912に浸入すると、特定成分の分離が阻害されるおそれがあった。特に、分析装置Xやマイクロチップ91の小型化に伴い、導入槽911や排出槽913が小容量となるほど、電気分解による泳動液LqのpH変化が顕著となる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2009−145245号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、上記した事情のもとで考え出されたものであって、小型化を図るとともに、より長時間の分析を可能とする電気泳動分析装置および電気泳動分析用マイクロチップを提供することをその課題とする。
【課題を解決するための手段】
【0007】
本発明の第1の側面によって提供される電気泳動分析装置は、試薬の特定成分を電気泳動によって分離するための分離流路と、上記分離流路につながる接続口を有する液溜槽と、上記液溜槽に挿入される電極と、を備えており、上記電極は、上記液溜槽の中央を挟んで、上記接続口とは反対側に位置している。
【0008】
本発明の好ましい実施の形態においては、上記液溜槽は、上記電極と上記接続口とを結ぶ方向の寸法が、この方向と直角である方向の寸法よりも大である。
【0009】
本発明の好ましい実施の形態においては、上記液溜槽には、上記電極と上記接続口との間に位置する拡散抑制領域が設けられている。
【0010】
本発明の好ましい実施の形態においては、上記拡散抑制領域は、部分的に断面積が小とされたくびれ部からなる。
【0011】
本発明の好ましい実施の形態においては、上記くびれ部は、上記液溜槽の深さを部分的に浅くする堰部によって構成されている。
【0012】
本発明の好ましい実施の形態においては、上記くびれ部は、上記電極と上記接続口とを結ぶ方向、および上記液溜槽の深さ方向、のいずれとも直角である方向の寸法が部分的に小とされることによって構成されている。
【0013】
本発明の好ましい実施の形態においては、上記電極と上記接続口との距離が、上記電極と上記接続口とを結ぶ方向における上記液溜槽の寸法の60%以上である。
【0014】
本発明の好ましい実施の形態においては、上記電極と上記接続口との距離が、上記電極の幅または直径の2倍以上である。
【0015】
本発明の好ましい実施の形態においては、上記液溜槽は、上記接続口から遠ざかる方向に長く延びる配管によって構成されている。
【0016】
本発明の好ましい実施の形態においては、上記液溜槽の容量が、50μL以下である。
【0017】
本発明の好ましい実施の形態においては、上記電極と上記接続口とを結ぶ方向と直角である断面における上記液溜槽の平均断面積が、上記分離流路の断面積の100倍以上である。
【0018】
本発明の第2の側面によって提供される電気泳動分析装置は、試薬の特定成分を電気泳動によって分離するための分離流路と、上記分離流路につながる接続口を有する液溜槽と、上記液溜槽に挿入される電極と、を備えており、上記液溜槽は、上記電極と上記接続口とを結ぶ方向の寸法が、この方向と直角である方向の寸法よりも大である。
【0019】
本発明の第3の側面によって提供される電気泳動分析用マイクロチップは、試薬の特定成分を電気泳動によって分離するための分離流路と、上記分離流路につながる接続口、および電極が挿入される電極挿入位置を有する液溜槽と、を備えており、上記電極挿入位置は、上記液溜槽の中央を挟んで、上記接続口とは反対側に位置している。
【0020】
本発明の好ましい実施の形態においては、上記液溜槽は、上記電極挿入位置と上記接続口とを結ぶ方向の寸法が、この方向と直角である方向の寸法よりも大である。
【0021】
本発明の好ましい実施の形態においては、上記液溜槽には、上記電極挿入位置と上記接続口との間に位置する拡散抑制領域が設けられている。
【0022】
本発明の好ましい実施の形態においては、上記拡散抑制領域は、部分的に断面積が小とされたくびれ部からなる。
【0023】
本発明の好ましい実施の形態においては、上記くびれ部は、上記液溜槽の深さを部分的に浅くする堰部によって構成されている。
【0024】
本発明の好ましい実施の形態においては、上記くびれ部は、上記電極挿入位置と上記接続口とを結ぶ方向、および上記液溜槽の深さ方向、のいずれとも直角である方向の寸法が部分的に小とされることによって構成されている。
【0025】
本発明の好ましい実施の形態においては、上記電極挿入位置と上記接続口との距離が、上記電極挿入位置と上記接続口とを結ぶ方向における上記液溜槽の寸法の60%以上である。
【0026】
本発明の好ましい実施の形態においては、上記電極と上記接続口との距離が、上記電極の幅または直径の2倍以上である。
【0027】
本発明の好ましい実施の形態においては、上記液溜槽の容量が、50μL以下である。
【0028】
本発明の好ましい実施の形態においては、上記電極挿入位置と上記接続口とを結ぶ方向と直角である断面における上記液溜槽の平均断面積が、上記分離流路の断面積の100倍以上である。
【0029】
本発明の第4の側面によって提供される電気泳動分析用マイクロチップは、試薬の特定成分を電気泳動によって分離するための分離流路と、上記分離流路につながる接続口、および電極が挿入される電極挿入位置を有する液溜槽と、を備えており、上記液溜槽は、上記電極挿入位置と上記接続口とを結ぶ方向の寸法が、この方向と直角である方向の寸法よりも大である。
【0030】
本発明の第5の側面によって提供される電気泳動分析装置は、本発明の第3または第4の側面によって提供される電気泳動分析用マイクロチップが用いられることを特徴としている。
【0031】
このような構成によれば、キャピラリー電気泳動による分析を行うため、上記電極に電圧を印加すると、たとえば泳動液の電気分解は、もっぱら上記電極のごく近傍で生じる。電気分解によってpHが変化した上記泳動液は、拡散によって上記接続口へと広がっていく。上記電極は、上記拡散抑制領域を挟んで上記接続口とは反対側に配置されている。このため、pHが変化した上記泳動液の拡散を抑制することが可能である。これにより、上記分離流路内の上記泳動液のpHが不当に変化してしまうことを回避可能である。したがって、より長時間を要するキャピラリー電気泳動法による分析を行うことができる。また、pHが変化した上記泳動液の拡散が抑制される分、上記液溜槽の小型化を図るのに有利である。
【0032】
本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
【図面の簡単な説明】
【0033】
【図1】本発明に係る電気泳動分析装置の一例を示す全体構成図である。
【図2】本発明の第1実施形態に基づく電気泳動分析用マイクロチップを示す平面図である。
【図3】図2のIII−III線に沿う断面図である。
【図4】本発明の第2実施形態に基づく電気泳動分析用マイクロチップを示す平面図である。
【図5】図4のV−V線に沿う断面図である。
【図6】本発明の第3実施形態に基づく電気泳動分析用マイクロチップを示す平面図である。
【図7】本発明に係る電気泳動分析装置の一例を示す要部平面図である。
【図8】従来の電気泳動分析装置の一例を示す全体構成図である。
【発明を実施するための形態】
【0034】
以下、本発明の好ましい実施の形態につき、図面を参照して具体的に説明する。
【0035】
図1は、本発明に係る電気泳動分析装置の一例を示している。本実施形態の電気泳動分析装置A1は、マイクロチップ11、電圧印加手段3、および分析手段4を備えている。電気泳動分析装置A1は、キャピラリー電気泳動法を用いた分析を行う。マイクロチップ11を用いることによってキャピラリー電気泳動法による分析が可能に構成されている。
【0036】
図2および図3に示すように、マイクロチップ11は、たとえばシリカからなる基板17と透明樹脂からなるシート18とが張り合わされた構造とされており、導入槽21、分離流路22、および排出槽23を有する。導入槽21は、キャピラリー電気泳動法においていわゆるバッファとして機能する泳動液Lq、および分析の対象である試料Sが導入される槽であり、本発明で言う液溜槽の一例に相当する。泳動液Lqとしては、たとえば100mMりんご酸−アルギニンバッファ(pH5.0)+1.5%コンドロイチン硫酸Cナトリウムが挙げられる。試料Sは、たとえば血液である。
【0037】
図2および図3に示すように、導入槽21は、x方向を長軸方向、y方向を短軸方向とする平面視略楕円形状である。導入槽21のx方向寸法は、5.6mm程度、y方向寸法は1.2mm程度である。導入槽21には、接続口211および堰部213が形成されている。接続口211は、分離流路22の上流側端とつながる部分であり、断面形状が直径25〜100μmの円形、または辺の長さが25〜100μmの矩形である。導入槽21の容量は、50μL以下が好ましい。また、導入槽21のyz平面における平均断面積は、接続口211の断面積の100倍以上であることが好ましい。
【0038】
堰部213は、導入槽21のx方向中央においてy方向を横切るように形成されている。図3によく表れているように、堰部213は、導入槽21の底からz方向上方に隆起した部分であり、導入槽21のz方向深さを部分的に浅くしている。導入槽21の堰部213以外の部分のz方向深さは、たとえば1.5mm程度であり、堰部213が形成された部分のz方向深さは、0.5mm程度である。堰部213は、導入槽21のyz平面における断面積を部分的に縮小させる部分であり、くびれ部212を構成している。くびれ部212は、本発明で言う拡散抑制領域に相当する。導入側電極32は、導入槽21のうち堰部213を挟んで接続口211とは反対側に挿入されている。この導入側電極32が挿入されている位置が、本発明で言う電極挿入位置に相当する。導入側電極32と接続口211との距離は、導入層21のx方向寸法の60%以上であることが好ましい。
【0039】
図2および図3に示すように、排出槽23は、導入槽21とyz平面について対称な構造とされており、接続口231および堰部233を有している。接続口231は、分離流路22の下流側端とつながる部分である。排出側電極33は、堰部233を挟んで接続口231とは反対側に挿入されている。これ以外の詳細については、導入槽21と同様である。
【0040】
分離流路22は、キャピラリー電気泳動法を用いた分析が行われる場であり、一般的に微細な流路として形成されている。分離流路22の寸法の一例を挙げると、断面形状が直径25〜100μmの円形、または辺の長さが25〜100μmの矩形であることが好ましく、長さが30mm程度であることが好ましいが、これに限定されるものではない。
【0041】
排出槽23は、分離流路22に対してキャピラリー電気泳動法における流動下流側に位置している。排出槽23には、たとえば図示しない排出ノズルが取り付けられる。この排出ノズルは、図外の吸引ポンプによって分析が終了した試料Sおよび泳動液Lqを排出するためのものである。
【0042】
電圧印加手段3は、分離流路22を挟んで導入槽21および排出槽22からキャピラリー電気泳動法に必要な電圧を印加するためのものであり、電源部31、導入側電極32、および排出側電極33を備える。
【0043】
電源部31は、キャピラリー電気泳動法に必要な電圧を発生するためのものであり、たとえば1.5kV程度の電圧を発生する。導入側電極32および排出側電極33は、電源部31の端子に接続されており、たとえば断面直径0.8〜1.0mmのたとえばCuからなる棒状である。導入側電極32は、導入槽21に浸漬され、排出側電極33は、排出槽23に浸漬される。なお、導入側電極32および排出側電極33と接続口211,231との距離は、導入側電極32および排出側電極33の直径(断面形状が矩形状であるときはその幅)の2倍以上であることが好ましい。
【0044】
分析手段4は、たとえば吸光度の測定を実行するものであり、図1に示すように、発光部41、受光部42、光源43、および検出部44によって構成されている。光源43は、吸光度測定に用いられる光を発生するためのものであり、たとえばレーザー素子(図示略)を備える。たとえばA1cなどのヘモグロビンの濃度を分析する場合、光源43は、波長が415nmの光を発生するが、これに限定されるものではない。発光部41は、たとえば光ファイバーを介して光源43と接続されており、光源43からの光を分離流路22の一部に向けて照射する。受光部42は、分離流路22からの光を受光する部位であり、たとえば光ファイバーを介して検出部44と接続されている。検出部44は、受光部42が受けた光を検出する。
【0045】
電気泳動分析装置A1を用いた分析に際しては、たとえば導入ノズルNzから導入槽21へと泳動液Lqが導入される。この泳動液Lqは、導入槽21、分離流路22、および排出槽23を満たす。ついで、試料容器Bに蓄えられた血液などの試料Sが導入ノズルNzに所定量だけ導入される。分析のために、試料Sを希釈することが必要な場合、図示しない希釈手段によって希釈された試料Sが用いられる。電源部31から導入側電極32および排出側電極33に電圧が印加されると、試料Sの分離が始まる。電圧印加の時間が経過するにつれ、特定成分(たとえばA1c)が他の成分から分離される。この分離された特定成分が分離流路22を排出槽23に向かって移動する。分離流路22のうち発光部41および受光部42に挟まれた部分を特定成分が通過すると、吸光度測定の原理によってその濃度(通過量)が検出される。
【0046】
次に、電気泳動分析装置A1およびマイクロチップ11の作用について説明する。
【0047】
本実施形態によれば、キャピラリー電気泳動による分析を行うため、導入側電極32および排出側電極33に電圧を印加すると、泳動液Lqの電気分解は、もっぱら導入側電極32および排出側電極33のごく近傍で生じる。電気分解によってpHが変化した泳動液Lqは、拡散によって接続口211,231へと広がっていく。導入側電極32および排出側電極33は、それぞれ堰部213,233を挟んで接続口211,231とは反対側に配置されている。導入槽21および排出槽23のうち堰部213,233が形成された部分は、部分的に断面積が縮小されている。このため、堰部213,233(くびれ部212,232)によってpHが変化した泳動液Lqの拡散を抑制することが可能である。これにより、分離流路22内の泳動液LqのpHが不当に変化してしまうことを回避可能である。したがって、より長時間を要するキャピラリー電気泳動法による分析を行うことができる。また、pHが変化した泳動液Lqの拡散が抑制される分、導入槽21,23の小型化を図るのに有利である。
【0048】
堰部213,233を設けることは、導入槽21,23のyz平面における断面積を確実に縮小させるのに適している。
【0049】
図4〜図7は、本発明の他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付している。
【0050】
図4および図5は、本発明の第2実施形態に基づく電気泳動分析用マイクロチップを示している。本実施形態のマイクロチップ12は、導入槽21および排出槽23の構成が、上述した実施形態と異なっている。本実施形態においては、導入槽21および排出槽23は、その平面視形状が2つのひし形の端部どうしを重ね合わせた形状とされており、xy平面における断面形状がz方向において一定である。そして、導入槽21および排出槽23のx方向中央部には、くびれ部212,232が形成されている。導入槽21および排出槽23の最大y方向寸法は、3.0mm程度、くびれ部212,213は、y方向寸法が0.5mm程度とされている。
【0051】
このような実施形態によっても、導入側電極32および排出側電極33付近から接続口211,231へと、pHが変化した泳動液Lqが拡散することを抑制することが可能である。また、xy平面における断面形状がz方向において一定であるため、基板17を金型によって形成することが比較的容易である。
【0052】
図6は、本発明の第3実施形態に基づく電気泳動用マイクロチップを示している。本実施形態のマイクロチップ13は、導入槽21および排出槽23の構成が上述した実施形態と異なっている。本実施形態においては、導入槽21および排出槽23は、y方向を長手方向とする細長状とされている。接続口211,231は、導入槽21および排出槽23のy方向一端に形成されている。一方、導入側電極32および排出側電極33は、導入槽21および排出槽23のy方向他端に挿入されている。本実施形態においては、導入槽21および排出槽23のうち、導入側電極32および排出側電極33と接続口211,231とに挟まれた細長状の部分が、本発明で言う拡散抑制領域を構成している。導入槽21および排出槽23は、x方向寸法が2.0mm程度、y方向寸法が5.0mm程度、z方向深さが1.5mm程度とされている。
【0053】
本実施形態によっても、導入側電極32および排出側電極33と接続口211,231とが比較的離間していることにより、導入側電極32および排出側電極33付近から接続口211,231へと、pHが変化した泳動液Lqが拡散することを抑制することが可能である。導入槽21および排出槽23がy方向を長手方向とする細長状であることは、拡散の抑制に有利である。
【0054】
図7は、本発明に係る電気泳動分析装置の他の例を示している。本実施形態の電気泳動分析装置A2は、分離流路22と導入配管51および排出配管52とを備えている。これ以外の構成要素については、上述した電気泳動装置A1と同様である。
【0055】
導入配管51は、接続口511において分離流路22の上流側端に接続されており、本発明で言う液溜槽の一例に相当する。導入配管51の上流側端には、導入側電極32が挿入されている。導入配管51のうち導入側電極32と接続口511とに挟まれた部分が本発明で言う拡散抑制領域を構成している。
【0056】
排出配管52は、接続口521において分離流路22の下流側端に接続されており、本発明で言う液溜槽の一例に相当する。排出配管52の下流側端には、排出側電極33が挿入されている。排出配管52のうち排出側電極33と接続口521とに挟まれた部分が本発明で言う拡散抑制領域を構成している。
【0057】
本実施形態においては、分離流路22は、断面形状が直径25〜100μm程度の円形、または辺の長さが25〜100μm程度の矩形状とされており、その長さは30mm程度とされている。導入配管51および排出配管52は、断面形状が直径0.2〜5.0mm程度の円形、または辺の長さが0.2〜0.5mm程度の矩形状とされており、その長さは10mm程度とされている。
【0058】
このような実施形態によっても、導入側電極32および排出側電極33付近から接続口511,521へと、pHが変化した泳動液Lqが拡散することを抑制することが可能である。また、本実施形態から理解されるように、本発明に係る電気泳動分析装置は、電気泳動分析用マイクロチップを用いるものに限定されず、たとえば分離流路22のみが試料Sごとに交換され、本発明で言う液溜槽が電気泳動分析装置に備えられた構成であってもよい。また、液溜槽が電気泳動分析装置に備えられた構成のばあい、その液溜槽をマイクロチップ11〜13に備えられた導入槽21および排出槽23の構成としてもよい。
【0059】
本発明に係る電気泳動分析装置および電気泳動分析用マイクロチップは、上述した実施形態に限定されるものではない。本発明に係る電気泳動分析装置および電気泳動分析用マイクロチップの各部の具体的な構成は、種々に設計変更自在である。
【符号の説明】
【0060】
A1,A2 電気泳動分析装置
B 試料容器
Lq 泳動液
S 試料
Nz 導入ノズル
11〜13 (電気泳動分析用)マイクロチップ
17 基板
18 シート
21 導入槽(液溜槽)
211 接続口
212 くびれ部(拡散抑制領域)
213 堰部
22 分離流路
23 排出槽(液溜槽)
231 接続口
232 くびれ部(拡散抑制領域)
233 堰部
3 電圧印加手段
31 電源部
32 導入側電極
33 排出側電極
4 分析手段
41 発光部
42 受光部
43 光源部
44 検出部
51 導入配管
52 排出配管

【特許請求の範囲】
【請求項1】
試薬の特定成分を電気泳動によって分離するための分離流路と、
上記分離流路につながる接続口を有する液溜槽と、
上記液溜槽に挿入される電極と、を備えており、
上記電極は、上記液溜槽の中央を挟んで、上記接続口とは反対側に位置している、電気泳動分析装置。
【請求項2】
上記液溜槽は、上記電極と上記接続口とを結ぶ方向の寸法が、この方向と直角である方向の寸法よりも大である、請求項1に記載の電気泳動分析装置。
【請求項3】
上記液溜槽には、上記電極と上記接続口との間に位置する拡散抑制領域が設けられている、請求項2に記載の電気泳動分析装置。
【請求項4】
上記拡散抑制領域は、部分的に断面積が小とされたくびれ部からなる、請求項3に記載の電気泳動分析装置。
【請求項5】
上記くびれ部は、上記液溜槽の深さを部分的に浅くする堰部によって構成されている、請求項4に記載の電気泳動分析装置。
【請求項6】
上記くびれ部は、上記電極と上記接続口とを結ぶ方向、および上記液溜槽の深さ方向、のいずれとも直角である方向の寸法が部分的に小とされることによって構成されている、請求項4に記載の電気泳動分析装置。
【請求項7】
上記電極と上記接続口との距離が、上記電極と上記接続口とを結ぶ方向における上記液溜槽の寸法の60%以上である、請求項2ないし6のいずれかに記載の電気泳動分析装置。
【請求項8】
上記電極と上記接続口との距離が、上記電極の幅または直径の2倍以上である、請求項2ないし7のいずれかに記載の電気泳動分析装置。
【請求項9】
上記液溜槽は、上記接続口から遠ざかる方向に長く延びる配管によって構成されている、請求項1に記載の電気泳動分析装置。
【請求項10】
上記液溜槽の容量が、50μL以下である、請求項1ないし9のいずれかに記載の電気泳動分析装置。
【請求項11】
上記電極と上記接続口とを結ぶ方向と直角である断面における上記液溜槽の平均断面積が、上記分離流路の断面積の100倍以上である、請求項1ないし10のいずれかに記載の電気泳動分析装置。
【請求項12】
試薬の特定成分を電気泳動によって分離するための分離流路と、
上記分離流路につながる接続口を有する液溜槽と、
上記液溜槽に挿入される電極と、を備えており、
上記液溜槽は、上記電極と上記接続口とを結ぶ方向の寸法が、この方向と直角である方向の寸法よりも大である、電気泳動分析装置。
【請求項13】
試薬の特定成分を電気泳動によって分離するための分離流路と、
上記分離流路につながる接続口、および電極が挿入される電極挿入位置を有する液溜槽と、を備えており、
上記電極挿入位置は、上記液溜槽の中央を挟んで、上記接続口とは反対側に位置している、電気泳動分析用マイクロチップ。
【請求項14】
上記液溜槽は、上記電極挿入位置と上記接続口とを結ぶ方向の寸法が、この方向と直角である方向の寸法よりも大である、請求項13に記載の電気泳動分析用マイクロチップ。
【請求項15】
上記液溜槽には、上記電極挿入位置と上記接続口との間に位置する拡散抑制領域が設けられている、請求項14に記載の電気泳動分析用マイクロチップ。
【請求項16】
上記拡散抑制領域は、部分的に断面積が小とされたくびれ部からなる、請求項15に記載の電気泳動分析用マイクロチップ。
【請求項17】
上記くびれ部は、上記液溜槽の深さを部分的に浅くする堰部によって構成されている、請求項16に記載の電気泳動分析用マイクロチップ。
【請求項18】
上記くびれ部は、上記電極挿入位置と上記接続口とを結ぶ方向、および上記液溜槽の深さ方向、のいずれとも直角である方向の寸法が部分的に小とされることによって構成されている、請求項16に記載の電気泳動分析用マイクロチップ。
【請求項19】
上記電極挿入位置と上記接続口との距離が、上記電極挿入位置と上記接続口とを結ぶ方向における上記液溜槽の寸法の60%以上である、請求項14ないし18のいずれかに記載の電気泳動分析装置。
【請求項20】
上記電極と上記接続口との距離が、上記電極の幅または直径の2倍以上である、請求項14ないし19のいずれかに記載の電気泳動分析用マイクロチップ。
【請求項21】
上記液溜槽の容量が、50μL以下である、請求項13ないし20のいずれかに記載の電気泳動分析用マイクロチップ。
【請求項22】
上記電極挿入位置と上記接続口とを結ぶ方向と直角である断面における上記液溜槽の平均断面積が、上記分離流路の断面積の100倍以上である、請求項13ないし21のいずれかに記載の電気泳動分析用マイクロチップ。
【請求項23】
試薬の特定成分を電気泳動によって分離するための分離流路と、
上記分離流路につながる接続口、および電極が挿入される電極挿入位置を有する液溜槽と、を備えており、
上記液溜槽は、上記電極挿入位置と上記接続口とを結ぶ方向の寸法が、この方向と直角である方向の寸法よりも大である、電気泳動分析用マイクロチップ。
【請求項24】
請求項13ないし請求項23のいずれかに記載の電気泳動分析用マイクロチップが用いられることを特徴とする、電気泳動分析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−68213(P2012−68213A)
【公開日】平成24年4月5日(2012.4.5)
【国際特許分類】
【出願番号】特願2010−215603(P2010−215603)
【出願日】平成22年9月27日(2010.9.27)
【出願人】(000141897)アークレイ株式会社 (288)