説明

非線形バルク光材料中でのコンティニューム発生増大

【課題】本発明は、バルク材料からの「増大された」(すなわち、比較的高いパワーおよび/またはより広い帯域幅の)光コンティニュームの発生に関する。
【解決手段】本発明においては、バルク光材料を処理して、フォトニック・バンドギャップ構造などの空間的なマイクロ構造の要素を形成する。超短レーザ・パルスが、バルク光PBG構造へ印加される入力信号として使用され、増大されたコンティニューム出力を発生する。PBG構造は、1、2または3次元のグレーティング構造のいずれのタイプも備えることができ、選択された構造は、発生されるコンティニューム中に存在する増大作用のタイプを、一般に拡大されたコンティニュームの形で、またはコンティニューム中の1つまたは複数のピークを含む形で決定付ける。比較的小さな寸法のバルク材料を使用して、どのようなタイプの光閉じ込め(導波路)も必要なく、コンティニュームの発生が可能になる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、バルク材料からの「増大された」(すなわち、比較的高いパワーおよび/またはより広い帯域幅の)光コンティニューム(optical continuum)の発生に関し、より詳しくは、発生されるコンティニュームを増大させるために、さらに処理を受けたバルク材料内にフォトニック・バンドギャップ構造を含めることに関する。
【背景技術】
【0002】
高パワー、低ノイズの広帯域光源は、光通信システム中に用途が多くある。たとえば、現在「スペクトル・スライス」に向けた努力がなされており、そこでは共通の光源を使用して、多数の(独立した)波長分割多重(WDM)光信号が生成される。したがって、スペクトル・スライスを使用し1つの光源を使用して、従来技術で要求されたような複数の別々で狭い線幅のレーザの代わりをすることができる。コンティニューム光源に対する他の用途は、ただしこれらには限定されないが、特殊ファイバについて行われる周波数計量、デバイスの特性付け、分散測定、および光学的グレーティングの透過特性の決定である。これらの様々な診断ツールすべては、そのような広帯域の源を利用することで大いに強化することができる。
【0003】
一般に、コンティニューム発生は、材料の非線形の結果パルス列が著しくスペクトルを拡大される光材料中に、比較的高いパワーのレーザ光線(ほとんどの場合、パルス放射線)を発射することを含む。コンティニュームを発生させるための大部分の従来技術の構成には、高非線形の光ファイバ、マイクロ構造のファイバおよび/または非線形の平面導波路を使用することが含まれる。各構成には、誘導構造が画定され、光が非線形材料中を通過するとき、光を閉じ込めるために使用される。
【0004】
1オクターブより広い波長範囲のコンティニューム光は、フェムト秒(10−15秒)のオーダーの持続期間を有する光パルスをファイバの端面中に発射することによって、マイクロ構造で先細の光ファイバ中で発生されてきた。そのように生成された極限のスペクトルは、たとえばパルス・ツウ・パルス搬送波包絡線位相(pulse−to−pulse carrier envelope phase)の測定および安定化、ならびに高精度の光周波数コムにおいて実用的である。
【発明の開示】
【発明が解決しようとする課題】
【0005】
バルク光材料(すなわち、フォトニック結晶)は、その屈折率の周期的変調によって加工することができることもよく知られている。その例には、フォトニック・バンドギャップ(PBG)構造が含まれ、そこでは、マイクロ構造は、2つの(またはそれより多い)相異なる屈折率(たとえば、空気とシリカ)が2または3次元で導波路層内に周期的または準周期的なパターンを生じるように、バルク光材料中にパターン形成される。したがって、そのような構造では、1つまたは複数の周波数の印加された光信号がバルク材料中を伝播しないことになるところの「バンドギャップ」が生じる。光のコンティニュームは、いかなるタイプの誘導する屈折率構造も含まないバルク材料中に高パワーのパルスを発射することによって、発生することもできる。誘導波のコンティニュームと同様に、バルク材料の色分散が、コンティニューム発生特性を決定する上において重要な役割を果たす。しかし、そのような構造に関する1つの問題は、材料分散に対する制御性がほとんどなく、その結果、発生されるコンティニュームに対して制御性/柔軟性がほとんどないことである。したがって、バルク非誘導材料の分散を制御する手段は、好都合になるはずである。
【課題を解決するための手段】
【0006】
本発明は、従来技術に残された要求に対処し、本発明は、バルク光材料からの「増大された」(すなわち、比較的高いパワーおよび/またはより広い帯域幅の)光コンティニュームの発生に関し、より詳しくは、材料中にいかなる光誘導構造も含める必要がなくてコンティニュームを発生するように、比較的小さい寸法のバルク材料内にフォトニック・バンドギャップ構造を含めることに関する。本発明の一実施例では、バルクPBG構造が1つまたは複数の追加の処理(紫外線露光、電磁場印加など)を受けて、固有の色分散を減少し、発生されるコンティニュームを増大する。
【0007】
本発明によれば、バルク光材料(たとえば、シリカ)が、フォトニック・バンドギャップ(PBG)構造を形成するように処理される。この構造は、1、2および3次元のグレーティング構造のいずれのタイプも備えることができ、選択された構造は、発生されるコンティニューム中に存在する増大作用のタイプが、一般に拡張されるコンティニュームの形で、および/またはコンティニューム中に1つまたは複数のピークを含める形で決定される。
【0008】
本発明のバルク光PBGコンティニューム発生デバイスは、好ましくは、極端に高い非線形のバルク材料(たとえば、ポリスチレン、カルコゲナイド・ガラスまたはビスマス・ドープ・シリカ・ガラスなど)であって、したがって非常に大きい帯域幅のコンティニューム出力を発生することができるバルク材料から形成されることである。バルクPBG要素は、入力光のレイリー範囲のオーダー、通常1mmまたはそれより小さいオーダーの比較的小さくてコンパクトなデバイスとして、形成される。この小さなサイズによって、従来技術が必要とした光閉じ込めが省かれ、その光閉じ込めは、構造中を通過するパルスを「誘導」する手段である。したがって、本発明の有利な特徴は、バルクPBGコンティニューム発生構造内に導波路を形成する必要がないことである。すなわち、「むき出し(bare)」の結晶の比較的小さくてコンパクトな部分を利用して、所望のコンティニュームを発生することができる。
【0009】
本発明の他の実施形態では、バルク光材料自体の非線形特性、なお、1つの非線形特性はその色分散であるが、その非線形特性を実質的に変更するために、所定のタイプの後処理(たとえば、照射、加熱、静電場の印加)をバルクPBG構造に施すことができる。したがって、この変更によって、バルク材料を使用して、従来技術の分散に関する問題を被ることなく、スーパーコンティニューム光線を生成することが可能になる。
【0010】
1つの具体的な後処理処置では、バルクPBG構造は、化学線による後処理を受け、その化学線は、光材料の材料吸収特性を変更することが知られている。代替実施形態では、紫外線(UV)の露光など、材料の屈折率(および、それによる色分散)を実質的に変更することが知られている後処理技法を使用することができる。
【0011】
様々な他の「後処理」技法を使用して発生されるコンティニュームを増大することができる。たとえば、引張処理および熱処理を代替として使用して、バルク材料の特性を修正することができる。同様に、強いDC電磁場(多分、加熱または引っ張りを伴う)は、バルクPBG構造の線形および非線形の両方の特性を変更することになる。機械的操作、ならびにその構造内に様々な液体またはガスを含めることを使用して、バルク材料の非線形特性を修正し、そのコンティニューム発生能力を増大することもできる。これらの様々な技術のいずれかを使用して、本発明のバルクPBG構造の非線形特性に所望の変更を行うことができる。
【0012】
本発明の他の、およびさらなる利点および実施形態は、以下の議論の経過にしたがい、および添付図面を参照することによって明らかになる。
【発明を実施するための最良の形態】
【0013】
超短レーザ・パルスのバルク材料との相互作用の最も重要な特性の1つは、恒久的にバルク構造を損なうことなく、フェムト秒のオーダーの非常に短い期間で、高エネルギーを伝達することである。光パルス自体は、材料中を伝播するとき、全範囲の物理現象を生じさせることができる。レーザ・パルスのElightで示す電場が、材料中の原子の内部電場Eatと同程度であるとき、レーザ光は、原子を「駆動し」、次いで、この相互作用によって修正されることになる。そのような相互作用の簡単な説明が、図1および2の従来技術の構成に示してあり、そこでは、レーザ・ビーム10と非線形バルク光材料12との相互作用の「前」(図1)および「後」(図2)のそのシステムが示されている。具体的には、図1aに巨視的レベルで状態を示し、図1bに微視的レベルで同じ関係を示す。図2では、図2aおよび2b両方に、短レーザ・パルスと非線形バルク光材料12との相互作用に基づく、追加の範囲の波長(コンティニューム)の発生が示されている。図2aに、この結果を巨視的なレベルで示し、一方図2bに、波長間の具体的な相互作用を示す。
【0014】
相互作用は、図2に示すように、コンティニュームが発生される程度までの、または離散的な入力および出力の波長が特定に組み合わされてなる、パルスの広がりの形を取ることができ、パラメトリック効果として知られている。相互作用の強さは、レーザ・パルス特性(たとえば、スポット・サイズ、パルス・エネルギー、パルス持続期間)だけでなく、バルク材料の性質によっても決定される。
【0015】
これらの個々の現象を定量化するキー・パラメータは、バルク光材料12の屈折率nへの強度に依存する高次の寄与によって特性化される、非線形性の強さであり、それは、次のように定義することができる。

n(λ,r,t)=n(λ)+n(λ)φ(r,t)

ただし、n(λ)は、バルク材料12の通常の線形屈折率であり、n(λ)は、バルク材料12の非線形屈折率であり、φ(r,t)は、レーザ・パルスの時間的、空間的に変化する強度として定義される。さらに高次の非線形性もあり得、ここではそれは明快化のために省略されていることに留意すべきである。実際には、材料中に適切な対称性があるため、2次の非線形性もあり得、2次高調波を生じさせる。しかし、上記の式は、例示の例として、3次の非線形性の場合だけを与えている。線形項の性質は、屈折および反射などの光現象を生じるものとして、すでに述べられており、そこでは、光は単に反射される、または遅延させられるが、その周波数(波長)に関しては変化しないままである。非線形項は、かなり異なり、レーザ波長における材料の特性非線形係数およびレーザ・パルスの空間、時間的特性の両方に依存する。非線形屈折率nが大きくなるにつれて、および/またはレーザ・パルスの強度が高くなるにつれて、ますます非線形効果が強くなり、全屈折率への非線形の寄与がさらに大きくなる。
【0016】
したがって、図2に示すように、高強度の光照射は、バルク光材料に入射されたとき、入力信号の波長のまわりでコンティニューム・スペクトルを発生させることになることが、従来技術において知られている。図3には、この従来技術の方式の比較的簡単なシステム・レベルのブロック図が含まれる。この場合、パルス・レーザ源20を使用して、所定の比較的狭いパルス幅を有し所定の初期波長λに中心があるパルスを発生する。ほとんどの場合、源20は、通常フェムト秒の持続期間の超短パルスを発生する。その後、パルスは、従来のレンズ22(オプション)を通過し、バルク光要素24に集中する。バルク光要素24は、たとえば、バルク・ガラス、ニオブ酸リチウム、ポリスチレンなどを備えることができる。図示するように、バルク光要素24からの出力光線は、初期波長λのまわりの比較的広い波長範囲にわたるコンティニュームの形を取る。この種のコンティニューム発生は、従来技術において一般に理解されているように、入力パルス中にあるスペクトル成分の外側(下側および/または上側)への追加のスペクトル成分の発生と一般に言われる。通常、全コンティニューム帯域幅は、入力帯域幅の2倍より広いが、それは、入力帯域幅の10倍にまでなることもある。図3にさらに示すように、発生されたコンティニュームが、波長範囲の間の様々な位置においてゼロを示すことは、通常の結果でもある。
【0017】
上記の議論のように、そのようなバルク構造中でのコンティニューム発生は、非線形の光の相互関係と材料自体の線形分散の間の相互作用に依存する。今まで、これらの分散的特性の制御は、通常非常に低い分散および慎重に選択されたゼロ分散波長値を有する適切な材料の入念な設計および加工に、もっぱら頼っていた。
【0018】
本発明によれば、バルク光材料要素は、発生されるコンティニュームをフォトニック・バンドの縁部の近くで増大/変更するために、少なくともバルク材料の範囲の一部分を介してフォトニック・バンドギャップ(PBG)構造を内蔵するように変更する(PBG材料は、入力光がPBG部分を通過する限り、他の非PBG材料と組合すことができることに留意されたい)。PBG構造それ自体は、1、2または3次元とすることができ、具体的な構成が、所望の増大作用を生み出すように(すなわち、スペクトル範囲が広げられる、コンティニュームの間にピークが増大される、など)、選択される。多くのPBG構造は、厳密に周期的であるが、単一障害点、変調周期のチャーピングなど、この周期性からの逸脱を組み込むことも可能である。そのようなPBG構造は、より広く「マイクロ構造の」材料と言われることもあり、「マイクロ構造」は、2以上の「材料」を備える(この場合、用語「材料」は、線形および/または非線形の感受性が異なる、異なる光学的特性を有する2つの要素を意味する)。2つの材料間の特性差を変調することによって、PBG効果を発生することができる。そのような材料の対の例は、ただしこれらには限定されないが、1)ポリスチレンと空気(たとえば、自己組織化フォトニック結晶)、2)シリカとポリマ、3)未照射ゲルマノケイ酸塩ガラス(unirradiated germanosilicate glass)と照射ゲルマノケイ酸塩ガラス(irradiated germanosilicate glass)(たとえば、紫外線誘起グレーティング)、4)2つの異なるドーピング・レベルの半導体、および5)2つの異なる誘電材料の層(ただし、「層」は、材料の性質が連続的に変化する、すなわち材料は、「段階的」に変化する構造を含むと考えられる)。
【0019】
コンティニューム発生がバルクPBG材料中に起きているとき、PBG構造自体が誘起する増大作用も起きることが判明している。これは、PBG構造が光の分散を変更するだけであることから得られ、また、PBG構造に近接する光の分散が、それらの波長において場増大を生じさせることが示されている。さらに、上記に述べたように、本発明によるバルク光PBG材料の使用によって、具体的な「誘導」構造(導波路または他のタイプの閉じ込め)の必要性がなくなる。というのは、比較的短い材料の部分(たとえば、長さLが1cmより短い)だけが、所望のコンティニュームを発生するために必要であるからである。したがって、「非誘導構造」と言われる、比較的小さくてコンパクトな「裸の」結晶の部分(すなわち、誘導構造を有しないマイクロ構造材料)を使用して、所望のコンティニュームを発生することができる。高強度の光ビームが、カー効果(Kerr effect)によって、一時的なレンズまたは導波路を生成するように、局部的に材料の屈折率を増加して「自己収束」、または「自己誘導」さえも行うことが可能であることに留意すべきである。これらの効果は、時には「空間ソリトン」(または自己収束)として知られる。また、そのような自己誘導には、誘導構造は必要でない。
【0020】
図4に、上記に定義されたように形成されたバルクPBG要素30を使用した、本発明の構成を示す。図3の構成と同様に、パルス・レーザ源20およびレンズ22が使用されて、パルス列を発生し、そのパルスをバルクPBG要素30に集中させる。要素30の長さLが、導波路または他のいずれかのタイプの光閉じ込め構造を含める必要をなくすように、本発明によって選択される。なお、具体的なPBG構造は、発生されるコンティニュームのスペクトルを広げる増大作用を発生するように、構成する。図示するように、バルク光要素30中に組み込まれる具体的なPBG構造は、図4の領域Aとして示すように、元のコンティニュームの短い波長側に、3dBより多く追加することになる。図示していないが、増大作用は、コンティニューム帯域幅の完全に外側に現れる、元のコンティニュームとスペクトルが重ならない、分離したスペクトル形状の形を取ることもある。
【0021】
他の例として、一定の波長が強度を増大されるコンティニュームを発生することが、しばしば所望される。通常、そのような増大作用は、関連する従来技術の非線形構造のコンティニュームよりも少なくとも3dB高いことが望ましい。増大ピークが、導光ファイバ中のファイバ・グレーティングなど、1次元のフォトニック・バンドギャップ構造中に現れるようにさせることができることは、これまでに示されている。しかし、そのような1次元のグレーティングは、一般的に弱く(通常、屈折率変調が0.01より小さい)、比較的少ない材料(通常ガラス)だけで加工することができる。
【0022】
図5に、本発明の他の実施形態を示し、この構成では、バルク光材料40は、コンティニューム内で増大されたピーク信号を発生するために特別に構成されたPBG構造を形成するように、処理される。すなわち、入力光の波長に相当する穴間隔を有するPBG構造を形成すると、この波長においてバンドギャップを示すことになる。非線形性が十分大きく、図5に示すように、コンティニューム発生が、この波長で増大された光を発生することになる。その結果は、図5のスペクトル図中の増大されたピークBとして示される従来のバルク材料中のコンティニュームより高い増大ピークを有した出力スペクトルである。
【0023】
本発明の別の実施形態によれば、後加工処理を使用して(PBG構造自体の形成の後)、バルク材料の非線形性を修正し、発生されるコンティニュームをさらに増大することができる。一実施形態では、後処理による修正は、照射処理の形を取る。具体的には、バルク構造の基本的な非線形特性が、一様(または、ほぼ一様)の紫外線(UV)照射を使用して、変更される。露光を変化させることによって、バルク材料内の非線形効果が、材料に沿った長さの関数として修正され、それ故、発生されるコンティニュームの特性が修正される。
【0024】
様々な他の「後処理」技法を、例示の紫外線露光の代わりに、使用することができる。たとえば、後処理の引張処理および熱処理は、結晶のそれぞれの部分に沿って、ドーパントを拡散し、および/または特定のひずみを「凍結」するために、使用することができる。熱および引張処理は、周期的PBG構造の物理的特性を修正するために、使用することもできる。あるいは、強いDC電磁場(ポーリング電場など)による処理は、おそらく加熱、引っ張りまたは化学線による露光を伴うが、バルク材料の非線形(ならびに線形)の特性を変更することができる。有利にも、電磁放射処理は、非線形(または線形)の特性の不規則な、または周期的な変更を通じて、材料内に「同調可能な」非線形性を発生することもできる。機械的操作またはバルク材料内に追加して材料を組み込むことは、生成されるスーパーコンティニュームの帯域幅の拡大に、または1つまたは複数の所望の波長におけるコンティニュームの増大に役割を果たすこともできる。
【0025】
図6に、本発明による、フィードバック制御を使用して「同調可能な」システムを生成する本発明の例示のシステムを示す。上記のように、後処理されたPBG構造50として示すこの実施形態では、パルス・レーザ源20を使用して、レンズ22を(多分)通過し、その後バルクPBG構造中に収束される、超短(たとえば、フェムト秒)パルスが供給される。この具体的な例では、調節可能な電磁場発生器52をPBG構造50に結合し、発生器52が印加する場によってPBG構造を形成するバルク材料の非線形性が修正され、その結果、発生されるコンティニュームが修正されることになる。図6に示すように、発生されるコンティニュームの一部分は、スプリッタ54によって、光スペクトル・アナライザ(OSA)などの評価要素56中に誘導される。OSA56は、発生されたコンティニュームの特定の特性(たとえば、帯域幅、ピーク強度のレベルなど)を解析し、この情報をフィードバック信号として発生器52に印加するように機能する。次いで、そのとき発生器52は、PBG構造50に加えられる電磁場を調節し、発生されるコンティニュームの特性を最適化することができる。
【0026】
機械的操作、ならびに様々な液体またはガスを構造内に含めることは、バルク材料の非線形特性を修正し、そのスーパーコンティニューム発生能力を増強することにも使用することができる。これらの様々な技法のいずれも、バルクPBG構造の非線形特性を所望のように変化させ、バルク光材料中にPBG構造を含めることに関連する増大作用をさらに修正するために、使用することができる。
【0027】
これらの様々な後処理方法は、バルク光PBG構造によって発生されている光の実際のスペクトルをモニタしながら実施することができることに留意すべきである。この方法では、後処理修正構成中にフィードバック機構を組み込むことによって、スペクトルは、調整し移動しまたは成形して、最適値にして所望のノイズ低減値を有するようにすることができる。
【0028】
上記の説明で本発明の好ましい実施形態が示されたが、添付のクレームに指摘する本発明の精神および範囲から逸脱することなく、様々な修正を加えることができることは、当業者に明らかであるはずである。
【図面の簡単な説明】
【0029】
【図1】図1(a)は、巨視的なレベルで、例示の入力光信号源および従来技術のバルク非線形光材料を示す図であり、図1(b)は、微視的なレベルで、例示の入力光信号源および従来技術のバルク非線形光材料を示す図である。
【図2】図2(a)は、比較的高い強度で短期間の光パルスをバルク非線形光材料へ入力として印加した図1の構成の「作動している」版を示した、巨視的なレベルで電磁気コンティニュームの発生を表す図であり、図2(b)は、比較的高い強度で短期間の光パルスをバルク非線形光材料へ入力として印加した図1の構成の「作動している」版を示した、微視的なレベルで電磁気コンティニュームの発生を表す図である。
【図3】レーザ・パルス源、収束要素およびバルク光非線形材料要素を含む、従来技術のコンティニューム発生システムを示す図である。
【図4】コンティニュームを増大して発生するために、フォトニック・バンドギャップ構造を含むように形成されたバルク光要素を使用する、本発明の第1の実施形態を表す図である。
【図5】本発明の代替実施形態を示し、バルク光材料内に含まれたフォトニック・バンドギャップ構造が、コンティニューム内に増大されたピーク波長を発生するように構成された場合を示す図である。
【図6】最適コンティニューム・スペクトルを発生するために、出力信号の関数として、本発明の例示のバルク材料PBG構造に現れる非線形を制御するフィードバック・ループを含むシステムの図である。

【特許請求の範囲】
【請求項1】
光源からの一定波長の光を入力に発射したときに、出力においてコンティニューム・スペクトルを発生する光デバイスであって、
コンティニューム・スペクトルを発生するように構成された空間的なマイクロ構造の部分を含む、3次元の高非線形のバルク光要素を備えることを特徴とする光デバイス。
【請求項2】
前記バルク光要素は、線形および/または非線形の光学的特性が異なる少なくとも2つの材料を備えることを特徴とする請求項1に記載の光デバイス。
【請求項3】
前記バルク光要素は非誘導バルク要素を備える請求項1に記載の光デバイス。
【請求項4】
前記空間的なマイクロ構造の構成はフォトニック・バンドギャップ(PBG)構造を備えることを特徴とする請求項1に記載の光デバイス。
【請求項5】
前記発生されるコンティニューム・スペクトルは、空間的なマイクロ構造の構成が存在しないことに関連する公称値より3dB大きい少なくとも1つの増大されたスペクトル領域を含むことを特徴とする請求項1に記載の光デバイス。
【請求項6】
前記高非線形のバルク光要素の前記非線形の光学的特性を修正することによって、前記発生されるコンティニューム帯域幅を増大するように、前記空間的なマイクロ構造の構成がさらに処理されることを特徴とする請求項1に記載の光デバイス。
【請求項7】
前記高非線形のバルク光要素の前記線形の光学的特性を修正することによって、前記発生されるコンティニューム帯域幅を増大するように、前記空間的なマイクロ構造の構成がさらに処理されることを特徴とする請求項1に記載の光デバイス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate