説明

音響光学フィルタ

相互作用長の長さを短くすることなく、すなわち低電力で、広い光通過特性を得ることを可能とする音響光学フィルタを提供する。音響光学基板2の上面2aに光導波路3が形成されており、音響光学基板2上に表面波を励振させるインターデジタル電極4が形成されており、インターデジタル電極4で励振された表面波の導波路が光導波路と略一致する方向に延ばされており、光導波路3に導波された光モードが表面波により変換される音響光学フィルタであって、光導波路3に導波される光と弾性表面波との相互作用領域における位相整合条件が、位相が整合された状態から0.235%以上変化させるように、位相整合条件変化手段としての薄膜リッジ5が設けられている、音響光学フィルタ1。

【発明の詳細な説明】
【技術分野】
本発明は、光導波路が形成された音響光学基板上に表面波を励振するためのインターデジタル電極が形成されている音響光学フィルタに関し、より詳細には、光と弾性表面波の相互作用領域が改善された音響光学フィルタに関する。
【背景技術】
近年、インターネットの普及及び企業内LANの急増などにより、データトラフィックが急速に増大してきている。それに伴って、大容量通信が可能な光通信システムが、データトラフィックの関係だけでなく、アクセス系トラフィックにまで普及してきている。光通信の大容量化を果たすために、光伝送速度の高速化及び光波長多重化が図られている。波長多重化を実現するための重要な構成部品として、光波長フィルタが存在する。
光波長フィルタは、ある特定の波長の光をフィルタリングするものであり、光波長多重通信の重要な部品である。
下記のLow Drive−Power Integrated Acoustooptic Filter On X−Cut Y−Propagating LiNbO,IEEEPHOTONICS TECHNOLOGY LETTERS,Vol3,No.10 1991には、図12に示す光波長フィルタが開示されている。この光波長フィルタ101では、XカットY伝搬のLiNbO基板102上に、Tiが拡散されている光導波路103が形成されている。また、LiNbO基板102上には、弾性表面波を励振するために、IDT104,105が配置されている。さらに、弾性表面波導波路を構成するために、Tiが拡散されている壁部106,107が弾性表面波伝搬領域の両側に配置されている。ここでは、上記壁部106,107の形成により、低電力かつ狭帯域の光波長フィルタが構成されるとされている。
他方、下記の音響光学効果を用いたLiNbOチューナブル波長フィルタ(200年記念先端技術シンポジウム「圧電材料と弾性波デバイス」2000年2月には、図13に示す光波長フィルタが開示されている。光波長フィルタ111では、XカットY伝搬のLiNbO基板112上にTiが拡散されている光導波路113が形成されている。また、IDT114が、表面波を励振するために設けられている。そして、表面波導波路を形成するために、膜付加型のガイド115が形成されており、それによって集積可能な狭帯域の光波長フィルタが実現される旨が記載されている。
他方、下記の特開平11−84331号公報には、図14に示す光波長フィルタが開示されている。光波長フィルタ121では、基板122上において、光導波路123及びIDT124が形成されている。そして、IDT124で励振された表面波と光導波路123に導波された光の相互作用領域において、光導波路123の複屈折率を変化させることにより、光波長フィルタ121内で生じた複屈折率分布が補償され、それによって周波数特性上のサイドローブの増大を抑制することができると記載されている。
ところで、光波長フィルタのような音響光学フィルタでは、光波長を多重化する波長間隔や多重数は光通信システムにより様々である。特に、アクセス系の光通信システムでは、低価格であることが強く求められており、近年、CWDM(CoarseWDM)などの規格が提案されている。CWDMは、多重化する波長の間隔を広げることにより低価格のシステムを実現するものである。従って、CWDMでは、光波長フィルタは、広帯域であり、かつ平坦な特性を有するものであることが強く求められる。
他方、前述したLow Drive−Power Integrated Acoustooptic Filter On X−Cut Y−Propagating LiNbO,IEEEPHOTONICS TECHNOLOGY LETTERS,Vol3,No.10 1991,音響光学効果を用いたLiNbOチューナブル波長フィルタ(200年記念先端技術シンポジウム「圧電材料と弾性波デバイス」2000年2月に記載の光波長フィルタは、いずれも、狭帯域のフィルタ特性を実現するものである。従って、Low Drive−Power Integrated Acoustooptic Filter On X−Cut Y−Propagating LiNbO,IEEEPHOTONICS TECHNOLOGY LETTERS,Vol3,No.10 1991,音響光学効果を用いたLiNbOチューナブル波長フィルタ(200年記念先端技術シンポジウム「圧電材料と弾性波デバイス」2000年2月に記載の光波長フィルタは、例えばCWDMなどにおいて要求されている、広帯域でありかつ平坦な波長通過特性を有するフィルタを提供し得るものではなかった。
他方、上記特開平11−84331号公報に記載の光波長フィルタでは、光波長フィルタに存在する複屈折率分布を光導波路の複屈折率を変化させることにより補い、相互作用領域における位相整合条件が一定化されている。
しかしながら、この光波長フィルタにおいて広帯域な波長通過特性を得るには、相互作用長を短くしなければならなかった。
すなわち、相互作用領域における位相条件が一定とされている場合の波長通過特性は、図15の実線Xで示されるが、このフィルタの帯域を10倍に広げると、図15の破線Yで示す特性となる。
他方、図15の実線Xで示されている特性が得られている場合の相互作用長、入力電力及び通過帯域をいずれも1として規格化した場合の、該相互作用長に対するフィルタ帯域の変化及び相互作用長に対する必要入力電力の変化を、図16及び図17に示す。図16及び図17から明らかなように、光波長フィルタの帯域を10倍に広げた場合、相互作用長は1/10となり、かつ必要な入力電力は100倍の大きさになることがわかる。
従って、特開平11−84331号公報に記載の先行技術の光波長フィルタでは、低電力で広い帯域に渡り平坦な波長通過特性を実現することはできなかった。
【発明の開示】
本発明は、上述した従来技術の欠点を解消し、広い帯域に渡って平坦な波長通過特性を低電力で実現することを可能とする音響光学フィルタを提供することを目的とする。
本発明は、一方主面に光導波路が形成されている音響光学基板と、前記音響光学基板上に形成されており、前記光導波路において導波される光のモードを変換するための弾性表面波を励振させるインターデジタル電極とを備え、前記インターデジタル電極で励振された表面波の導波路が前記光導波路と略一致する方向に延ばされており、前記光導波路に導波された光のモードが前記弾性表面波により変換される音響光学フィルタにおいて、前記光導波路に導波される光と前記弾性表面波との相互作用領域における位相整合条件を、位相が整合される状態から0.235%以上変化させる位相整合条件変化手段をさらに備えることを特徴とする。
本発明に係る音響光学フィルタのある特定の局面では、前記位相整合条件変化手段が、前記相互作用領域における弾性表面波の位相速度を変化させる手段である。
本発明に係る音響光学フィルタの他の特定の局面では、前記位相整合条件変化手段が、表面波導波路における弾性表面波の位相速度を変化させる手段である。
本発明に係る音響光学フィルタのさらに別の特定の局面では、前記表面波導波路における弾性表面波の位相速度を変化させる手段が、表面波導波路上に設けられた薄膜リッジである。
本発明に係る音響光学フィルタのさらに他の特定の局面では、前記薄膜リッジの膜厚が、前記表面波導波路に沿って変化されており、それによって表面波導波路において弾性表面波の位相速度が変化される。
本発明に係る音響光学フィルタのさらに別の特定の局面では、前記表面波導波路において表面波の位相速度を変化させる手段が、前記表面波導波路の幅が表面波導波路の延びる方向において変化されている構造である。
本発明に係る音響光学フィルタのさらに他の特定の局面では、前記表面波導波路の両側に表面波が反射される一対の壁面が設けられており、該一対の壁面により表面波導波路の位相速度が変化される。
本発明に係る音響光学フィルタのさらに別の特定の局面では、前記一対の壁面を構成する壁面構成部材の構造が表面波導波路に沿って変化されており、それによって弾性表面波の位相速度が変化される。
本発明に係る音響光学フィルタのさらに他の特定の局面では、前記一対の壁面間の間隔が変化されており、それによって表面波導波路の幅が変化されている。
本発明に係る音響光学フィルタのさらに別の特定の局面では、前記位相整合条件変化手段が、前記相互作用領域における弾性表面波の位相速度を変化させる位相速度制御膜である。
本発明に係る音響光学フィルタのさらに別の特定の局面では、前記位相速度制御膜の膜厚が、前記位相整合条件を0.235%以上変化させるように選ばれている。
本発明に係る音響光学フィルタのさらに他の特定の局面では、前記位相整合条件変化手段が、前記相互作用領域における弾性表面波の伝搬定数または光の実効屈折率を変化させる手段である。
本発明に係る音響光学フィルタのさらに別の特定の局面では、前記弾性表面波の伝搬定数または光の実効屈折率を変化させる手段が、前記相互作用領域の温度分布設定手段である。
本発明に係る音響光学フィルタのさらに他の特定の局面では、前記温度分布設定手段が、前記音響光学基板上に設けられた発熱体である。
本発明に係る音響光学フィルタのさらに別の特定の局面では、前記発熱体がヒーター素子である。
本発明に係る音響光学フィルタのさらに他の特定の局面では、前記インターデジタル電極が前記発熱体を兼ねている。
本発明に係る音響光学フィルタのさらに別の特定の局面では、前記温度分布設定手段が、前記表面波導波路上に設けられた薄膜より構成されており、該薄膜の膜厚が温度分布を有するように部分的に異ならされている。
本発明に係る音響光学フィルタのさらに他の特定の局面では、前記相互作用領域において表面波の伝搬定数または光の実効屈折率を変化させる手段が、上記光導波路に設けられている。
本発明に係る音響光学フィルタのさらに別の特定の局面では、前記伝搬定数または光の実効屈折率を変化させる手段が、位相整合条件を0.235%以上変化させるように幅が設定された光導波路である。
本発明に係る音響光学フィルタのさらに他の特定の局面では、前記光導波路に設けられた伝搬定数または光の実効屈折率を変化させる手段が、光導波路に拡散された金属である。
【図面の簡単な説明】
図1は、(a)及び(b)は、本発明の第1の実施例に係る音響光学フィルタの外観を示す斜視図及び(a)のA−A線に沿う断面図である。
図2は、本発明において、規格化された帯域と、規格化された入力電力との関係を示す図であり、実線は位相整合条件が変化されている場合、破線は位相整合条件が一定とされている場合を示す図である。
図3は、位相整合条件を0.7%及び1.1%変化させた場合の音響光学フィルタの特性の例を示す図である。
図4は、(a)及び(b)は、本発明において、位相整合条件を変化させた場合の位相整合条件の変化量と規格化帯域との関係を示す各図であり、(b)は、(a)の要部を拡大して示す図である。
図5は、第1の実施例の変形例の音響光学フィルタを示す斜視図である。
図6は、第2の実施例の音響光学フィルタを示す斜視図である。
図7は、第2の実施例の変形例の音響光学フィルタを示す斜視図である。
図8は、第3の実施例の音響光学フィルタを示す斜視図である。
図9は、第4の実施例の音響光学フィルタにおいて相互作用領域に温度勾配を形成した状態を説明するための図である。
図10は、第5の実施例の音響光学フィルタの斜視図である。
図11は、第6の実施例の音響光学フィルタの斜視図である。
図12は、従来の光波長フィルタの一例を示す模式的平面図である。
図13は、従来の光波長フィルタの他の例を示す模式的平面図である。
図14は、従来の光波長フィルタのさらに他の例を示す模式的平面図である。
図15は、音響光学フィルタにおける通過特性を説明するための図である。
図16は、音響光学フィルタにおける規格化相互作用長と規格化帯域との関係を示す図である。
図17は、音響光学フィルタにおける規格化相互作用長と規格化入力電力との関係を示す図である。
【発明を実施するための最良の形態】
以下、図面を参照しつつ、本発明の実施例を説明することにより、本発明を明らかにする。
図1(a)及び(b)は、本発明の第1の実施例に係る音響光学フィルタを示す斜視図及び図1(a)のA−A線に沿う模式的断面図である。音響光学フィルタ1は、XカットY伝搬のLiNbOからなる圧電基板2を有する。
圧電基板1の上面2aには、長さ方向に延びるように、かつ幅方向中央に、光導波路3が形成されている。光導波路3は、Tiを熱拡散することにより構成されている。本実施例では、圧電基板2の上面2aの中央において、幅90nmの領域に、1040℃及び8時間の条件でTiを熱拡散することにより光導波路3が構成されている。なお、光導波路3は、圧電基板2の上面2aにおいて、長さ方向の全長に渡るように形成されている。圧電基板2の長さ方向寸法は60mm、幅方向寸法は5mmである。
また、圧電基板2の上面においては、弾性表面波を励振させるためのインターデジタル電極(IDT)4が形成されている。IDT4は、波長が20μm、電極指交差幅が60μm、中心周波数が170〜180MHzとなるように構成されている。
また、相互作用領域において圧電基板2上に、薄膜リッジ5が形成されている。相互作用領域とは、光導波路3に導かれた光と、表面波とが相互作用する領域であり、本実施例では、IDT4が設けられている部分から、圧電基板2の端面2bまでの領域である。薄膜リッジ5は、ZnOをスパッタリングすることにより形成されている。この薄膜リッジ5の長さは30mmであり、幅方向寸法は50μmであり、膜厚は図1から明らかなように、IDT4に近い側の端部5aから遠ざかるにつれて厚くなっている。より具体的には、IDT4側の端部5aにおいて、薄膜リッジ5の膜厚は0.4μm、反対側の端部5bでは1.0μmとされている。
なお、IDT4の外側には、吸収材6が配置されている。また、相互作用領域の外側端部側にも吸収材7が配置されている。吸収材6,7は、シリコンゴムにより構成されている。もっとも、吸収材6,7は、ポリイミド、エポキシなどにより構成することができる。
本実施例の音響光学フィルタ1の特徴は、上記薄膜リッジ5の膜厚が端部5aから端部5bに向かって上記のように変化されていることにあり、それによって相互作用領域における相互整合条件が、位相が整合される状態から1%程度変化されている。従って、相互作用領域の長さを短くすることなく、光通過帯域が30倍程度広げられることにある。これを、図2〜図4を参照して説明する。
音響光学フィルタは、光のTEモード−TMモード間の変換を利用した素子である。光の波長をλ、TEモード及びTMモードの伝搬定数をβa,βb、実効屈折率をNa,Nbとし、弾性表面波の位相速度をλとすると、位相整合条件は下記の式(1)で表される。

この時、位相整合条件が相互作用領域で一定の場合には、光通過帯域の幅は相互作用長で決定されることになる。ここで、相互作用長内で位相整合条件を変化させることにより、相互作用長に関わらず、光通過帯域を広げることができる。そのため、相互作用長を長くすることができ、低電力で広い帯域の光通過帯域を得ることができることがわかる。
上記のような位相整合条件を変化させる手段としては、相互作用領域において弾性表面波の位相速度を変化させる手段、あるいは弾性表面波の伝搬定数もしくは光の実効屈折率を変化させる手段が挙げられる。
図1に示した実施例では、相互作用領域において、薄膜リッジ5の形成により、弾性表面波の位相速度が変化され、それによって位相整合条件が1%程度変化されている。
ところで、図2は、規格化された通過帯域と、規格化された入力電力との関係を示す図である。図2の破線は位相整合条件が一定の場合を、実線は位相整合条件が変化されている場合を示す。位相整合条件が一定の場合には、相互作用長の寸法により帯域が変化される。
すなわち、位相整合条件が一定の場合には、帯域幅を10倍とするには、相互作用長を1/10とする必要があり、その場合には、図2より入力電力は100倍となる。これに対して、位相整合条件を変化させる場合には、帯域を10倍にすると、相互作用長がそのままの場合には、入力電力は10倍の大きさとすればよい(図2)。
すなわち、位相整合条件が一定とされている場合に比べて、位相整合条件を変化させ、帯域幅を10倍とした場合には、必要入力電力は1/10となる。また、帯域幅を2倍にする場合においても、位相整合条件を変化させる構造では、位相整合条件を一定とした構造に比べて、必要電力は1/2となる。
上記のように帯域幅を広げた場合であっても入力電力を低減し得る効果は、帯域幅が広ければ広いほど大きくなる。また、相互作用長を長くすることにより、入力電力をさらに小さくすることも可能である。
図3は、図15に示した通過帯域特性に比べて、本発明に従って、それぞれ、位相整合条件を0.7%及び1.1%変化させ、帯域を10倍に広げた場合のフィルタ特性を示す図である。図3に示すように、位相整合条件を0.7%変化させることにより、図15の実線で示す帯域を10倍に広げることができ、また位相整合条件を1.1%変化させれば、帯域を35倍に広げることができる。
位相整合条件の変化量に対する規格化帯域の変化を、図4(a)及び(b)に示す。図4(a)及び(a)を拡大して示す(b)から明らかなように、位相整合条件の変化量が0.235%以上になると、帯域幅を効果的に広げ得ることがわかる。従って、本発明では、位相が整合される状態から0.235%以上変化させる位相整合条件変化手段が備えられ、それによって音響光学フィルタの光波長特性の広帯域が図られている。
図1に示した実施例の音響光学フィルタ1では、上記のように薄膜リッジ5が相互作用領域の長さ方向に沿うように形成されており、かつ薄膜リッジ5の膜厚が0.4〜1.0μmの間で変化するように構成されていることにより、相互作用領域における表面波の位相速度が1%変化されている。そのため、位相整合条件が1%近く変化され、それによって広い帯域の光通過特性が得られる。しかも、相互作用領域の長さを短くする必要がないため、低電力で広帯域の光通過特性が得られることがわかる。
なお、音響光学フィルタ1では、薄膜リッジ5の厚みを端部5aから端部5bに向かって増加するように変化させ、位相整合条件が変化されていたが、図5に示すように、薄膜リッジ15の幅が端部15aから端部15bに向かって広げられてもよい。図5に示す変形例における薄膜リッジ15の長さは30mm、膜厚は1.5μmとされており、幅が端部15a側において20μm、端部15b側において40μmとされている。音響光学フィルタ11は、その他の点においては音響光学フィルタ1と同様に構成されている。
音響光学フィルタ11においても、薄膜リッジ15の幅が相互作用領域の長さ方向において上記のように変化されているため、弾性表面波の位相速度が1%近く変化され、第1の実施例の音響光学フィルタ1と同様に、低電力でかつ広帯域の光通過特性を得ることができる。
なお、第1の実施例と上記変形例とを併用し、薄膜リッジの膜厚及び幅方向寸法の双方を相互作用領域の長さ方向に沿って変化させてもよい。
図6は、本発明の第2の実施例に係る音響光学フィルタを示す斜視図である。第2の実施例の音響光学フィルタ21では、図1の薄膜リッジ5に代えて、圧電基板2上に、弾性表面波を反射させる壁面22a,23aを有する壁面構成部材22,23が設けられていることにある。その他の点においては、音響光学フィルタ21は、音響光学フィルタ1と同様に構成されている。
上記壁面構成部材22の壁面22aと、壁面鋼材部材23の壁面23aとは互いに平行に延び、かつ相互作用領域の長さ方向に延びている。壁面構成部材22,23は、圧電基板2を構成しているLiNbOよりも音速が速い材料で構成され、本実施例ではAlNにより構成されている。なお、TiをLiNbOに拡散させても同様の効果がある。
壁面構成部材22,23の壁面22a,23aの長さは30mmとされている。また、壁面構成部材22,23の膜厚は、IDT4に近い側の端部22b,23bから、反対側の端部22c,23cに向かうにつれて、厚くなるように構成されている。すなわち、壁面22a,23aの高さは、端部22b,23b側において0.2μm、端部22c,23c側において0.6μmとなるように変化されている。
第2の実施例の音響光学フィルタ21では、表面波が反射される一対の壁面22a,23aが設けられており、それによって、IDT4で励振された弾性表面波の表面波導波路が構成されている。一対の壁面22a,23aの長さが相互作用領域の長さ方向において変化されているため、表面波の位相速度が表面波導波路において変化されている。従って、前述した位相整合条件が1%程度変化されている。
よって、第1の実施例の音響光学フィルタ1と同様に、上記壁面構成部材22,23を設けることにより位相整合条件が変化されているため、相互作用長を短くすることなく光通過帯域特性の広帯域化を図ることができる。
なお、第2の実施例では、壁面22a,23aの高さを相互作用領域の長さ方向に沿って変化させていたが、図7に示す変形例の音響光学フィルタ31のように、壁面構成部材32,33の壁面32a,33a間の距離が相互作用領域の長さ方向において変化するように構成されていてもよい。図7では、壁面32aと、壁面33aとの間の間隔が、IDT4に近い側の端部32b,33bから、反対側の端部32c,33cに向かうにつれて狭くなるように構成されている。より具体的には、端部32b,33b側において、壁面32a,33a間の間隔が480μm、端部33c,32c側において、壁面32a,33a間の間隔が120μmとされている。この場合においても、音響光学フィルタ21と同様に、位相整合条件が1%程度変化される。従って、同様に、低電力で広い光通過帯域特性を得ることができる。
なお、第2の実施例の音響光学フィルタ21及び変形例の音響光学フィルタ31の双方の構成を組み合わせてもよい。すなわち、弾性表面波導波路で表面波を伝搬させる一対の壁面の高さ及び一対の壁面間の間隔の双方を相互作用領域の長さ方向に沿って変化させてもよい。
図8は、第3の実施例に係る音響光学フィルタを示す斜視図である。
音響光学フィルタ41では、圧電基板2上に、薄膜リッジ5に代えて、位相速度制御膜42が設けられていることを除いては、音響光学フィルタ41は、音響光学フィルタ1と同様に構成されている。ここで、位相速度制御膜42は、ZnOをスパッタリングすることにより形成されており、相互作用領域の長さ方向に延びる長さ方向寸法は30nm、幅方向寸法は圧電基板2の幅方向寸法の全幅に至るように形成されている。
また、位相速度制御膜42の膜厚は、IDT4に近い側の端部42aから反対側の端部42bに至るにつれて厚くなるように変化されている。具体的には、端部42aにおいて膜厚が0.4μm、端部42b側において1.0μmとされている。
音響光学フィルタ41では、上記位相速度制御膜42が設けられていることにより、弾性表面波の位相速度が音響光学フィルタ1の場合と同様に変化され、位相整合条件が1%程度変化される。
本発明においては、相互作用領域において、温度分布を持たし、それによって前述した位相整合条件を位相が整合された状態から0.235%以上変化させてもよい。すなわち、位相整合条件変化手段としては、相互作用領域に温度分布を与える手段を用いてもよい。このような原理による第4の実施例を説明する。
図1に示した音響光学フィルタ1の薄膜リッジ5と同様に、ZnOをスパッタリングすることにより、圧電基板2上にZnO膜を形成する。この場合、図1に示した薄膜リッジ5と同様に、ZnOの膜厚を相互作用領域の長さ方向において変化させる。そして、IDT4に印加される入力電力を変化させることにより、相互作用領域の長さ方向において温度勾配を形成することができる。図9は、ZnO膜の膜厚を2μmと一定とし、入力電力を50mW及び100mWとした場合、ZnO膜の膜厚を一定とし5μmとし、入力電力100mWとした場合の相互作用領域の各温度分布を示す図である。
図9から明らかなように、上記ZnO膜の膜厚及び入力電力を選択することにより、相互作用領域の長さ方向に渡って温度勾配を形成し得ることがわかる。このような温度勾配を形成することにより、弾性表面波の伝搬定数または光の実効屈折率が、相互作用領域において長さ方向において変化され、それによって位相整合条件が変化される。
従って、位相整合条件が、位相が整合されている状態から0.235%以上変化するように、上記温度勾配を設定すればよい。従って、第1の実施例の音響光学フィルタ1と同様に、第4の実施例においても相互作用領域の長さを短くすることなく、広い光通過特性を実現し得ることがわかる。
なお、本実施例においては、ZnO膜を設けたが、ZnO膜を用いずともよく、IDT4の発熱体のみを入力電力の制御により変化させてもよい。また、ZnO膜の膜厚を、薄膜リッジ5と同様に相互作用領域の長さ方向において変化させて温度勾配を設けてもよい。
さらに、図10に示す変形例の音響光学フィルタ51のように、ヒーター52,53を圧電基板2の上面2a上に配置してもよい。ヒーター52,53を相互作用領域の近傍に配置することにより、相互作用領域の長さ方向に温度勾配を設けることができる。
図11は、本発明の第5の実施例に係る音響光学フィルタを説明するための斜視図である。音響光学フィルタ61では、圧電基板2の上面2aに光導波路63が設けられている。ここでは、光導波路63の幅方向寸法が、相互作用領域の長さ方向によって変化されている。すなわち、光導波路63は、Tiを熱拡散することにより形成されているが、その幅方向寸法が、IDT4が設けられている側では6μmとされており、相互作用領域の外側端部、すなわち光導波路63の端部63a側において8μmの幅方向寸法を有するように構成されている。
なお、音響光学フィルタ61では、相互作用領域に、ZnO膜64が設けられており、それによって表面波の位相速度が変化されているが、ZnO膜64は必ずしも設けられずともよい。
本実施例の音響光学フィルタ61では、光導波路63の幅方向寸法が相互作用領域の長さ方向において上記のように変化されているため、位相整合条件が位相が整合された状態から変化される。従って、上記光導波路63の幅方向寸法の変化を、位相整合条件が、位相が整合された状態から0.235%以上変化するように変化させることにより、第1の実施例の音響光学フィルタ1と同様に相互作用領域の長さを短くすることなく、広い光通過特性を得ることができる。
なお、音響光学フィルタ61では、光導波路63の幅方向寸法が相互作用領域の長さ方向に渡って変化されていたが、光導波路63の深さ方向寸法を変化させてもよい。すなわち、Tiを圧電基板2の上面2aに拡散するに際し、Ti拡散領域の深さを、相互体用領域の長さ方向に渡って変化させ、それによって位相整合条件を変化させてもよい。例えば、Tiが拡散されている領域の深さ、すなわち光導波路63の厚みを、80〜100nmの範囲で変化させることにより、音響光学フィルタ61と同様に位相整合条件を0.235%以上変化させることができる。
なお、本発明で用いられる音響光学基板としては、XカットY伝搬以外のカット角のLiNbO基板やその他の圧電基板を用いてもよい。
【産業上の利用可能性】
以上のように、本発明に係る音響光学フィルタでは、光導波路に導波される光と、弾性表面波との相互作用領域における位相整合条件が、位相が整合された状態から0.235%以上変化させるように位相整合条件変化手段が設けられているため、相互作用領域の長さを短くすることなく、広い光通過特性を得ることができる。従って、低電力で広い通過特性を得ることができる。
位相整合条件変化手段が、相互作用領域における弾性表面波の位相速度を変化させる手段である場合には、相互作用領域において、弾性表面波の位相速度を変化させる構成を設けるだけで、本発明に従って広帯域の光通過特性を得ることができる。
例えば、表面波電波路に、弾性表面波の位相速度を変化させる手段を設けたり、表面波導波路上に薄膜リッジを設けることにより、表面波の位相速度を容易に変化させることができる。さらに、上記薄膜リッジの膜厚を、表面波導波路に沿って変化させることにより、表面波導波路における弾性表面波の位相速度を容易に変化させることができる。
あるいは表面波導波路において、表面波導波路の幅自体を表面波導波路の延びる方向において変化させることによっても、表面波の位相速度を容易に変化させることができる。
さらに、表面波電波路の両側に表面波が反射される一対の壁面を設け、一対の壁面を利用して表面波導波路における位相速度を変化させてもよい。例えば、一対の壁面を構成する壁面構成部材の構造が表面波電波路に沿って変化されていてもよい。あるいは一対の壁面間の間隔が変化され、それによって表面波導波路の幅が変化されてもよい。
また、本発明においては、上記位相整合条件変化手段は、相互作用領域における弾性表面波の位相速度を変化させる位相速度制御膜であってもよい。この場合、位相速度制御膜の膜厚を、位相整合条件を0.235%以上変化させるように構成すればよい。
また、本発明においては、上記位相整合条件変化手段は、相互作用領域における弾性表面波の伝搬定数または光の実効屈折率を変化させる手段であってもよく、このような手段としては、相互作用領域に温度勾配を与える温度分布設定手段を挙げることができる。従って、例えば音響光学基板上に発熱体を設けたり、ヒーター素子を設けたりしてもよく、インターデジタル電極自体の入力電力を制御することによりインターデジタル電極を発熱体として用いてもよい。また、温度分布設定手段としては、表面波電波路上に設けられた薄膜を用いてもよく、該薄膜の膜厚を温度分布を有するように部分的に異ならせてもよい。よって、温度分布を相互作用領域に容易に形成することができ、本発明に従って、位相整合条件を変化させることにより、低電力で広い光通過特性を実現することができる。
また、本発明においては、相互作用領域において表面波の伝搬定数または光の実効屈折率を変化させる手段は、光導波路自体により設けられていてもよい。例えば、光導波路の幅を、位相整合条件が0.235%以上変化させるように相互作用領域の長さ方向に変化させてもよく、あるいは光導波路を構成するために拡散されている金属の拡散領域の深さ、すなわち光導波路の深さを相互作用領域の長さ方向に渡って変化させることにより、位相整合条件変化手段を構成してもよい。従って、金属の拡散方法を制御するだけで、容易に、低電力でかつ広い光通過特性を有する音響光学フィルタを提供することができる。
【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】


【特許請求の範囲】
【請求項1】
一方主面に光導波路が形成されている音響光学基板と、
前記音響光学基板上に形成されており、前記光導波路において導波される光のモードを変換するための弾性表面波を励振させるインターデジタル電極とを備え、前記インターデジタル電極で励振された表面波の導波路が前記光導波路と略一致する方向に延ばされており、前記光導波路に導波された光のモードが前記弾性表面波により変換される音響光学フィルタにおいて、
前記光導波路に導波される光と前記弾性表面波との相互作用領域における位相整合条件を、位相が整合される状態から0.235%以上変化させる位相整合条件変化手段をさらに備えることを特徴とする、音響光学フィルタ。
【請求項2】
前記位相整合条件変化手段が、前記相互作用領域における弾性表面波の位相速度を変化させる手段である、請求項1に記載の音響光学フィルタ。
【請求項3】
前記位相整合条件変化手段が、表面波導波路における弾性表面波の位相速度を変化させる手段である、請求項2に記載の音響光学フィルタ。
【請求項4】
前記表面波導波路における弾性表面波の位相速度を変化させる手段が、表面波導波路上に設けられた薄膜リッジである、請求項3に記載の音響光学フィルタ。
【請求項5】
前記薄膜リッジの膜厚が、前記表面波導波路に沿って変化されており、それによって表面波導波路において弾性表面波の位相速度が変化される、請求項4に記載の音響光学フィルタ。
【請求項6】
前記表面波導波路において表面波の位相速度を変化させる手段が、前記表面波導波路の幅が表面波導波路の延びる方向において変化されている構造である、請求項3に記載の音響光学フィルタ。
【請求項7】
前記表面波導波路の両側に表面波が反射される一対の壁面が設けられており、該一対の壁面により表面波導波路の位相速度が変化される、請求項3に記載の音響光学フィルタ。
【請求項8】
前記一対の壁面を構成する壁面構成部材の構造が表面波導波路に沿って変化されており、それによって弾性表面波の位相速度が変化される、請求項7に記載の音響光学フィルタ。
【請求項9】
前記一対の壁面間の間隔が変化されており、それによって表面波導波路の幅が変化されている、請求項7に記載の音響光学フィルタ。
【請求項10】
前記位相整合条件変化手段が、前記相互作用領域における弾性表面波の位相速度を変化させる位相速度制御膜である、請求項2に記載の音響光学フィルタ。
【請求項11】
前記位相速度制御膜の膜厚が、前記位相整合条件を0.235%以上変化させるように選ばれている、請求項10に記載の音響光学フィルタ。
【請求項12】
前記位相整合条件変化手段が、前記相互作用領域における弾性表面波の伝搬定数または光の実効屈折率を変化させる手段である、請求項1に記載の音響光学フィルタ。
【請求項13】
前記弾性表面波の伝搬定数または光の実効屈折率を変化させる手段が、前記相互作用領域の温度分布設定手段である、請求項12に記載の音響光学フィルタ。
【請求項14】
前記温度分布設定手段が、前記音響光学基板上に設けられた発熱体である、請求項13に記載の音響光学フィルタ。
【請求項15】
前記発熱体がヒーター素子である、請求項14に記載の音響光学フィルタ。
【請求項16】
前記インターデジタル電極が前記発熱体を兼ねている、請求項14に記載の音響光学フィルタ。
【請求項17】
前記温度分布設定手段が、前記表面波導波路上に設けられた薄膜より構成されており、該薄膜の膜厚が温度分布を有するように部分的に異ならされている、請求項13に記載の音響光学フィルタ。
【請求項18】
前記相互作用領域において表面波の伝搬定数または光の実効屈折率を変化させる手段が、上記光導波路に設けられている、請求項12に記載の音響光学フィルタ。
【請求項19】
前記伝搬定数または光の実効屈折率を変化させる手段が、位相整合条件を0.235%以上変化させるように幅が設定された光導波路である、請求項18に記載の音響光学フィルタ。
【請求項20】
前記光導波路に設けられた伝搬定数または光の実効屈折率を変化させる手段が、光導波路に拡散された金属である、請求項18に記載の音響光学フィルタ。

【国際公開番号】WO2005/003847
【国際公開日】平成17年1月13日(2005.1.13)
【発行日】平成18年8月17日(2006.8.17)
【国際特許分類】
【出願番号】特願2005−511307(P2005−511307)
【国際出願番号】PCT/JP2004/005780
【国際出願日】平成16年4月22日(2004.4.22)
【出願人】(000006231)株式会社村田製作所 (3,635)
【Fターム(参考)】