説明

DNA断片増幅方法、DNA断片の増幅を行う反応装置およびその製造方法

反応装置(10)は、基板(12)と、基板(12)上に形成された複数の柱状体(14)とを含む。基板(12)および柱状体(14)の表面には、初期鋳型DNA(18)の両端部の配列と相補的な配列を有する固定用オリゴヌクレオチド(16)が付着している。初期鋳型DNA(18)を伸張させた状態で導入することにより、初期鋳型DNA(18)を隣接する柱状体(14)にまたがって固定することができる。この状態で、PCRを行う。

【発明の詳細な説明】
【技術分野】
本発明は、比較的長いDNA断片の増幅を行う反応装置およびその製造方法に関する。
【背景技術】
特定のDNA断片を増幅する方法としてポリメラーゼ連鎖反応(PCR:Polymerase Chain Reaction)が知られている(たとえば米国特許第4,683,195号明細書)。通常のPCR工程において、まず、目的のDNAを熱変性して一本鎖とし、得られた一本鎖のDNAに、そのDNAの端部の塩基配列と相補的な塩基配列を有するプライマーをアニーリングにより結合させる。その後、DNAポリメラーゼによる相補鎖DNAの伸長反応を行い、これらのサイクルを繰り返すことにより、指数関数的に目的のDNAを増幅させる。
従来、DNA等の鎖状高分子に電界を印加することなく伸張させた状態で走査トンネル顕微鏡を用いた観察を行うために、DNAの一端を電極に接し、他端を電極と垂直に伸ばした状態で溶液を加熱し、これによって分子を伸張したまま基板に付着させ、固定する技術が開示されている(たとえば日本国特許第3064001号明細書)。
【発明の開示】
しかし、従来のPCRでは、たとえば数十kb以上の比較的長いDNA断片を鋳型としてPCRにより増幅させるのは困難であった。
上記の事情に鑑み、本発明は、鋳型のDNA断片が長い場合であっても、効率よく増幅することのできる技術を提供することを目的とする。
本願の発明者は、たとえば数十kb以上の比較的長いDNA断片を鋳型とするPCRを効率よく行うことができない原因は、鋳型のDNA断片が長すぎるためにねじれてしまい、そのために相補鎖DNAの伸長反応が途中で止まってしまうためだと考え、本発明を考案するに至った。最初に鋳型となる長いDNA断片、たとえば染色体DNAまたはこれを超音波等で切断したDNA断片は、増幅対象部分以外の配列を多く含むことから大きいねじれが生じ、DNA増幅時の障害となる。このような場合、そのDNA断片のねじれを防ぐことにより第一次相補鎖の伸長反応を効率よく行うことができると考えられる。
本発明によれば、DNA断片の増幅を行う方法であって、DNA断片を、基材表面に形成された結合部に結合する工程と、DNA断片を基材表面に結合させた状態で、DNA断片を鋳型として当該DNA断片の相補鎖を合成する工程と、を含むことを特徴とするDNA断片増幅方法が提供される。
このようにすれば、DNA断片の相補鎖を合成する際に、鋳型となるDNA断片が基材表面に結合して固定されているので、比較的長いDNA断片を鋳型とする場合であっても、DNA断片のねじれを低減することができ、相補鎖の合成を良好に行うことができる。
本発明のDNA断片増幅方法において、結合部は、増幅対象のDNA断片の増幅対象部分よりも外側に位置するDNA配列と結合するように構成することができる。
ここで、外側とは、増幅対象のDNA断片の増幅対象部分以外の部分である。増幅対象のDNA断片の増幅対象部分の両外側2カ所を基材表面に結合してもよく、片外側1カ所のみを基材表面に結合してもよい。DNA断片の片外側1カ所のみを基材表面に結合した場合は、相補鎖の合成時にたとえば反応場に流速を生じさせ、DNA断片を伸張させた状態で相補鎖の合成を行うことが好ましい。このようにすれば、DNA断片のねじれを低減することができ、相補鎖の合成を良好に行うことができる。
本発明のDNA断片増幅方法において、結合部は、増幅対象のDNA断片の一部と相補的な配列を有する固定用オリゴヌクレオチドを含むことができる。
このようにすれば、増幅対象のDNA断片の一部と結合部の固定用オリゴヌクレオチドとが水素結合により結合するので、DNA断片を結合部に結合することができる。
本発明のDNA断片増幅方法において、結合部は、増幅対象のDNA断片の増幅対象部分の両外側に位置するDNA配列と相補的な配列を有する2種以上の固定用オリゴヌクレオチドを含むことができる。
このようにすれば、増幅対象のDNA断片の増幅対象部分の両外側2カ所と結合部の固定用オリゴヌクレオチドとが水素結合により結合するので、DNA断片を2点で結合部に結合することができる。
本発明のDNA断片増幅方法において、結合する工程では、DNA断片を伸張させた状態で、基材表面に結合することができる。
このようにすれば、DNA断片のねじれを低減することができ、相補鎖の合成を良好に行うことができる。
本発明のDNA断片増幅方法において、結合する工程では、たとえばせん断応力を利用することにより、DNA断片を伸張させた状態で基板表面に結合することができる。せん断応力としては、反応場に流速を生じさせる方法、また反応場に回転を与える方法が挙げられる。
また、本発明のDNA断片増幅方法において、結合する工程では、DNA断片に低周波電界を印加することによりDNA断片を伸張させた状態で、基材表面に結合することができる。ここで、低周波電界とは、たとえば100Hz以下の電界とすることができる。
本発明のDNA断片増幅方法において、結合する工程では、DNA断片に高電界を印加することによりDNA断片を伸張させた状態で、基材表面に結合することができる。ここで、高電界とは、たとえば500kHz以上の電界とすることができる。
本発明のDNA断片増幅方法において、結合する工程の後に、基材表面を伸張する工程をさらに含むことができる。
このようにすれば、DNA断片のねじれをさらに低減することができ、相補鎖の合成を良好に行うことができる。
本発明のDNA断片増幅方法において、相補鎖を合成する工程は、鋳型としたDNA断片と相補鎖とを変性させて分離する工程を含むことができ、結合する工程においても、分離する工程においてもDNA断片が結合部から分離しないように、当該DNA断片を結合部に固定することができる。
鋳型としたDNA断片と相補鎖とを変性させて分離する工程では、通常約95℃の温度が加えられる。本発明のDNA断片増幅方法において、このような温度が加えられた場合であっても、DNA断片が結合部から分離しないようにDNA断片を結合部に固定しておくことが好ましい。たとえば、結合部が上述した固定用オリゴヌクレオチドを含む場合、DNA断片と結合部とを水素結合で結合しただけでは、鋳型としたDNA断片と相補鎖とを変性させて分離する工程において、DNA断片と結合部との結合もはずれてしまう可能性がある。本発明において、このような場合にもDNA断片と結合部との結合がはずれないように、DNA断片と結合部とをたとえば共有結合で固定する。
本発明のDNA断片増幅方法において、増幅対象のDNA断片は、10kb以上の長さを有することができる。従来の増幅方法では、このような比較的長いDNA断片を鋳型とした場合に、DNA断片のねじれが発生する可能性があるが、本発明のDNA断片増幅方法によれば、比較的長いDNA断片を鋳型とした場合でも、DNA断片のねじれを低減して、増幅反応を良好に行うことができる。
本発明のDNA断片増幅方法において、結合部は、増幅対象のDNA断片の増幅対象部分の一部と結合するように構成されてよく、相補鎖を合成する工程の途中で、DNA断片と結合部との結合を解除する工程をさらに含むことができる。DNA断片と結合部との結合を解除する方法としては、約75℃〜85℃程度の熱を加えることができる。上述したように、鋳型としたDNA断片と相補鎖とを変性させて分離する際には約90℃程度の熱が加えられるが、結合部とDNA断片との結合は、DNA断片と相補鎖との結合に比べて結合するDNAの塩基数が非常に小さい。結合しているDNAの塩基数が少ない方が、DNAの塩基数が多い場合に比べて二本鎖間の結合力が弱く、約75℃〜85℃程度の温度を加えると鋳型DNAと伸長中の相補鎖とは分離しないが、結合部とDNA断片との結合を解除することができる。鋳型としたDNA断片の相補鎖がある程度伸長した段階で鋳型としたDNA断片と結合部とを分離することにより、結合部分と相補的な配列も合成することができる。これにより、合成された相補鎖も結合部分を含むので、次の増幅工程で、相補鎖をも基材表面に固定することができ、比較的長いDNA断片の増幅を効率よく行うことができる。
本発明によれば、DNA断片の増幅を行う反応装置であって、基材表面と、基材表面に形成され、増幅対象のDNA断片と結合する結合部と、を含むことを特徴とする反応装置が提供される。
このように構成された反応装置に増幅対象のDNA断片を導入すれば、DNA断片が結合部に結合して固定されるので、比較的長いDNA断片を鋳型とする場合であっても、DNA断片のねじれを低減することができ、DNA断片の増幅を良好に行うことができる。
本発明の反応装置において、結合部は、所定の間隔で設けられた複数の領域に形成することができる。ここで、各領域の間隔は、増幅対象のDNA断片の増幅対象部分の長さと同等程度とされることが好ましい。このようにして、DNA断片の増幅対象部分の外側のDNA配列を結合部と結合させれば、DNA断片をある程度伸張させた状態で基材表面に固定することができるので、DNA断片のねじれを低減することができる。
本発明の反応装置において、結合部は、基材表面に形成された複数の突起部を含むことができる。ここで、突起部は微細加工により形成された柱状体とすることができる。突起部の間隔は、増幅対象のDNA断片の増幅対象部分の長さと同等程度とされることが好ましい。このようにして、DNA断片の増幅対象部分の外側のDNA配列を結合部と結合させれば、DNA断片をある程度伸張させた状態で基材表面に固定することができるので、DNA断片のねじれを低減することができる。また、結合部が突起部を有することにより、DNA断片が突起部にひっかかり、固定をしやすくなる。
本発明の反応装置において、結合部は、増幅対象のDNA断片の両外側2点と結合するように構成することができる。このようにすれば、DNA断片をある程度伸張させた状態で基材表面に固定することができるので、DNA断片のねじれを低減することができる。
本発明の反応装置において、結合部は、増幅対象のDNA断片の一部と相補的な配列を有する固定用オリゴヌクレオチドを含むことができる。
本発明の反応装置において、基材は、伸張可能な材料により構成することができる。基材は、たとえばゴムやプラスチック材料により構成することができる。
また、本発明の反応装置は、DNA断片を伸張させた状態で固定する手段をさらに含むことができる。このような手段としては、低周波電界や高電界を印加する電界付与手段や、反応場にせん断応力を与えるせん断応力付与手段を挙げることができる。せん断応力付与手段としては、反応場に流速を生じさせるたとえば攪拌部や、反応容器を回転させる回転手段等が例示される。
本発明によれば、DNA断片の増幅を行う反応装置の製造方法であって、基材表面に、増幅対象のDNA断片と結合する結合部を形成する工程と、増幅対象のDNA断片を結合部に結合する工程と、を含むことを特徴とする反応装置の製造方法が提供される。
本発明の反応装置の製造方法において、結合部を形成する工程では、増幅対象のDNA断片の一部と相補的な配列を有する固定用オリゴヌクレオチドを基材表面に固定することができる。
本発明の反応装置の製造方法において、DNA断片を結合する工程では、当該DNA断片を、伸張させた状態で基材表面に結合することができる。
本発明の反応装置の製造方法において、DNA断片を結合する工程の後に、基材表面を伸張する工程をさらに含むことができる。
本発明によれば、比較的長いDNA断片を鋳型として用いた場合であっても、良好にDNAを増幅することができる。
【図面の簡単な説明】
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
図1は、本発明の実施の形態におけるPCR法の手順を示すフローチャートである。
図2は、本発明の実施の形態における反応装置の製造工程を示す斜視図である。
図3は、本発明の実施の形態で用いられる初期鋳型DNAの一例を示す図である。
図4は、本発明の実施の形態における反応装置の柱状体の形成方法を示す図である。
図5は、本発明の実施の形態における反応装置の柱状体の形成方法を示す図である。
図6は、本発明の実施の形態における反応装置の柱状体の形成方法を示す図である。
図7は、本発明の実施の形態における反応装置の製造工程を示す図である。
図8は、本発明の実施の形態における反応装置の構成を示す図である。
図9は、本発明の実施の形態における反応装置の製造工程を示す図である。
図10は、本発明の実施の形態における初期鋳型DNAの固定方法を示す図である。
図11は、本発明の実施の形態における反応装置を示す図である。
図12は、本発明の実施の形態における反応装置の他の例を示す図である。
図13は、本発明の実施の形態における初期鋳型DNAの増幅方法を示す図である。
図14は、本発明の実施の形態におけるDNA鎖の固定方法を示す概念図である。
図15は、本発明の実施の形態における基板の作製方法を示す工程図である。
【発明を実施するための最良の形態】
図1は、本発明の実施の形態におけるPCR法の手順を示すフローチャートである。
まず、増幅対象部分を含む染色体DNAを超音波等で切断して初期鋳型DNAを得る(S10)。このとき、染色体DNAはランダムに切断されるが、一部の断片が増幅対象部分と、当該増幅対象部分の両外側に位置する固定用部分とを含むように切断される。この一部の断片が初期鋳型DNAとして機能する。本実施の形態において、初期鋳型DNAを鋳型として初期鋳型DNAの増幅対象部分の第一次相補鎖が合成され、その後は合成された相補鎖を鋳型として順次対応する相補鎖が合成される。初期鋳型DNAはランダムに切断されたものなので、増幅対象部分以外の塩基配列をも含み、長い構造となっている。そのため、初期鋳型DNAはそのままの状態だと鋳型として機能させるのは困難である。本実施の形態において、初期鋳型DNAを固定して相補鎖を合成した後は、その相補鎖は増幅対象部分だけで構成されているので、固定しなくても対応する相補鎖を効率よく合成することができる。これにより、初期鋳型DNAの増幅対象部分を準指数関数的に増幅することができる。
次に、アルカリまたは熱により初期鋳型DNA断片を変性させ、二本鎖の初期鋳型DNA断片を一本鎖にする(S12)。一方、初期鋳型DNA断片を固定させるための固定表面を形成しておく(S14)。固定表面には、初期鋳型DNA断片と化学結合を形成する固定用オリゴヌクレオチドを固定しておく。固定用オリゴヌクレオチドは、初期鋳型DNAの固定用部分と相補的な配列を有する。固定表面の形成方法については各実施の形態において後述する。
つづいて、一本鎖にした初期鋳型DNA断片を固定表面の固定用オリゴヌクレオチドに化学結合により付着させる(S18)。ここでは、固定用オリゴヌクレオチドは初期鋳型DNA断片の固定用部分と相補的な配列を有するため、初期鋳型DNA断片と固定用オリゴヌクレオチドとが水素結合を形成する。次いで、この後のPCR工程において、熱が加えられても初期鋳型DNA断片と固定用オリゴヌクレオチドとの結合が切断されないように、初期鋳型DNA断片を固定表面に固定する(S20)。ここで、たとえばプソラレン等のクロスリンカーを用いて、初期鋳型DNA断片と固定用オリゴヌクレオチドとを共有結合で結合することができる。
このとき、初期鋳型DNAは、伸張させた状態で固定用オリゴヌクレオチドに付着させるか(S16)、または固定用オリゴヌクレオチドに固定した後に初期鋳型DNAを伸張させる等して、初期鋳型DNAを伸張させた状態で以下のPCR工程を行う。
まず、固定表面を、PCR用の反応容器に導入する。次いで、PCR用バッファ溶液、プライマー(センスプライマー、アンチセンスプライマー)、耐熱性DNAポリメラーゼ、デオキシリボヌクレオチド三リン酸(dNTP:dATP、dGTP、dCTP、dTTPの混合物)を所定量ずつ混合した反応溶液を調整して反応容器に導入する。つづいて、プライマーとなるオリゴヌクレオチドの融解温度に応じ、たとえば約50℃〜70℃の温度を加え、プライマーを初期鋳型DNA断片にアニーリングして結合させる(S22)。次いで、使用する耐熱性DNAポリメラーゼの最適反応温度に応じ、たとえば約70℃で反応させ、耐熱性DNAポリメラーゼにより初期鋳型DNA断片の相補鎖DNAを合成する(S24)。
この後、たとえば約95℃の温度を加え、合成された初期鋳型DNA断片および相補鎖DNAを変性させ、一本鎖とし、アニーリング、相補鎖伸長、変性の通常のPCR工程を繰り返す。また、使用する耐熱性DNAポリメラーゼの性質に応じ、2温度反応系を利用することもできる。
本発明の実施の形態において、初期鋳型DNA断片を伸張させた状態で固定表面に固定してPCR工程を行うため、初期鋳型DNA断片が長い場合であっても、DNA断片のねじれを低減することができ、良好にDNAの増幅を行うことができる。
(第一の実施の形態)
図2は、本実施の形態における反応装置10の製造工程を示す斜視図である。
反応装置10は、基板12と、基板12上に形成された複数の柱状体14とを含む(図2(a))。なお、ここでは基板12を平面として示しているが、基板12の柱状体14が形成された領域は、くぼみ状に形成することもでき、基板12に種々の試薬を導入可能に構成することもできる。また、基板12を反応容器に導入した状態で、反応容器内に種々の試薬を導入することもできる。
ここで、柱状体14は、円柱として示されているが、楕円柱等、擬円柱形状;円錐、楕円錐、三角錐、四角錐等の錐体;三角柱、四角柱等の角柱のほか、ストライプ状の突起等、初期鋳型DNA断片を固定可能な突起部が形成されていればどのような形状とすることもできる。各柱状体14の間隔dは、初期鋳型DNAを伸張させた状態で、初期鋳型DNAの増幅対象部分の両外側に設けられた固定用部分間の距離と同等、または固定用部分間の距離よりもわずかに短い長さとすることができる。初期鋳型DNAの長さは、たとえば、2〜100kbとすることができる。DNAの長さは1bpで約0.33nmであるので、各柱状体14の間隔dは、たとえば、約600nm〜35μmとすることができる。
基板12は、シリコン、ガラス、石英、各種プラスチック材料、またはゴム等の弾性材料により構成される。プラスチック材料としては、成形加工が容易な材料が好ましく用いられ、たとえばPMMA(ポリメタクリル酸メチル)、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)等の熱可塑性樹脂や、エポキシ樹脂などの熱硬化性樹脂等のプラスチック材料が例示される。基板12および柱状体14表面は、金(Au)等の金属により被覆することもできる。基板12および柱状体14表面は、清浄な状態に保たれることが好ましい。基板12をシリコンにより構成した場合、基板12および柱状体14表面はシリコン酸化膜(SiO)により被覆された状態とすることもできる。
以上のように構成された基板12および柱状体14表面に、初期鋳型DNAの固定用部分と相補的な配列を有する固定用オリゴヌクレオチド16を付着させる(図2(b))。基板12をガラスにより構成した場合、基板12および柱状体14表面をシリコン酸化膜により被覆した場合、または金属により被覆した場合、基板12および柱状体14表面を清浄な状態としておくことにより、固定用オリゴヌクレオチド16を基板12および柱状体14表面に吸着させることができる。
以下、基板12がシリコンにより構成される場合を例として説明する。この場合、固定用オリゴヌクレオチド16としては、たとえば5’末端にチオール基を付けたものを用いることができる。この場合、基板12および柱状体14表面には、予めチオールと結合する化合物を固定しておく。このような化合物の固定方法について説明する。まず、基板12をたとえば1:1の濃HCl:CHOHで約30分間浸し、蒸留水で洗浄した後濃HSOに約30分間浸し、蒸留水で洗浄した後、脱イオン水中で数分間煮沸させる。つづいて、たとえば1%蒸留トリメトキシシリルプロピルジエチレントリアミン(DETA)溶液またはN−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン(EDA)(1mM酢酸水溶液中)等のアミノシランを基板12に導入し、室温で約20分間反応させる。これにより、基板12表面にDETAまたはEDAが固定される。この後、蒸留水で残さを洗浄し、不活性ガス雰囲気下で約120℃で3〜4分加熱して乾燥させる。つづいて、1%のm,p−(アミノエチルアミノメチル)フェネチルトリメトキシシラン(PEDA)溶液(95:5のCHOH:1mM酢酸水溶液中)を室温で約20分間基板12に作用させ、次いでCHOHで洗浄する。その後、不活性ガス雰囲気下で約120℃で3〜4分加熱して乾燥させる。
つづいて、1mMのスクシンイミジル4−[マレイミドフェニル]ブチレート(SMPB)溶液等の二官能性のクロスリンカーを準備し、少量のDMSOに溶解後、DMF、DMSO、またはDMSOとCOH、DMSOとCHOHとの混合溶媒で希釈する。基板12をこの希釈溶液に室温で約2時間浸し、希釈溶媒で洗浄した後不活性ガス雰囲気下で乾燥する。
これにより、SMPBのエステル基がEDA等のアミノ基と反応し、基板12および柱状体14表面にマレイミドが露出した状態となる。このような状態で、反応装置10にチオール基が付いた固定用オリゴヌクレオチド16を導入すると、固定用オリゴヌクレオチド16のチオール基と基板12および柱状体14表面のマレイミドとが反応し、固定用オリゴヌクレオチド16が基板12および柱状体14表面に固定される(たとえばChriseyら、Nucleic Acids Research,1996,Vol.24,No.15,3031頁〜3039頁)。これにより、基板12および柱状体14表面に固定用オリゴヌクレオチド16を固定することができる。
その後、初期鋳型DNA18を伸張させた状態で、基板12および柱状体14表面に初期鋳型DNA18を付着させる(図2(c))。初期鋳型DNA18は、上述したように、通常のPCRの初期鋳型DNAと同様の手法で準備することができる。たとえば染色体DNAのように巨大なDNAを用いる場合、まず、超音波等で切断してDNA断片とし、つづいてアルカリまたは熱によりDNA断片を変性させて一本鎖にする。このようにして一本鎖としたDNA断片を基板12および柱状体14表面に作用させると、基板12および柱状体14表面には固定用オリゴヌクレオチド16が固定されているので、初期鋳型DNA18の固定用部分は固定用オリゴヌクレオチド16と相補的な結合を形成する。このとき、図示したように、初期鋳型DNA18の一部は、収縮した状態や丸まった状態で付着する可能性があるが、少なくとも一部が複数の柱状体14間にまたがって付着していれば、その初期鋳型DNA18を鋳型としてこの後のPCRをスムーズに進行させることができる。
初期鋳型DNA18を伸張させるために、たとえば、基板12に低周波電界を印加した状態で基板12に初期鋳型DNA18を導入する。ここで、低周波電界とは、たとえば100Hz以下の電界とすることができる。これにより、ランダムコイル状の初期鋳型DNA18を伸張させることができる。また、初期鋳型DNA18を伸張させるために、たとえば、基板12に高電界を印加した状態で基板12に初期鋳型DNA18を導入することもできる。ここで、高電界とは、たとえば500kHz以上の電界とすることができる。これにより、誘電泳動が生じ、初期鋳型DNA18を伸張させることができる。
さらに、初期鋳型DNA18を伸張させるために、せん断応力を利用することもできる。たとえば、スプレーで初期鋳型DNA18を噴霧して基板12および柱状体14表面に付着させる方法、反応場に流速を生じ、その中に初期鋳型DNA18を導入して基板12および柱状体14表面に付着させる方法等がある。流速を生じさせるための方法の一つとして、たとえば基板12を回転させながら反応場に初期鋳型DNA18を導入して基板12および柱状体14表面に付着させることができる。
つづいて、初期鋳型DNA18を固定用オリゴヌクレオチド16に固定する(図2(d))。初期鋳型DNA18と固定用オリゴヌクレオチド16との固定には、たとえば4,5’,8−トリメチルプソラレン等のプソラレン20を用いる。プソラレン20は、DNAの二本鎖配列の間にインターカレートし、320nm〜400nm程度の光を照射することにより、隣接するピリミジン塩基と結合して二本鎖間を強力に結合する。この工程の後、基板12および柱状体14表面に固定されなかった初期鋳型DNA18をたとえばバッファ等で洗い流して除去することができる。
このようにして基板12および柱状体14表面に初期鋳型DNA18が固定された反応装置10に、PCR用バッファ溶液、プライマー(センスプライマー、アンチセンスプライマー)、耐熱性DNAポリメラーゼ、デオキシリボヌクレオチド三リン酸(dNTP:dATP、dGTP、dCTP、dTTPの混合物)を所定量ずつ混合した反応溶液を調整して導入する。
この後、反応場の温度を適宜調整することにより、ブライマーの初期鋳型DNA18へのアニーリング、耐熱性DNAポリメラーゼによる初期鋳型DNA18の相補鎖DNAの伸長を行う。初期鋳型DNA18の相補鎖が形成された後、今度はこれらの相補鎖をも鋳型として変性、アニーリング、相補鎖伸張の通常のPCR工程を所定回数行う。初期鋳型DNA18を鋳型として形成された相補鎖は、固定しなくても鋳型として機能し得る長さなので、この後は効率よく相補鎖の伸張を行うことができる。これにより、初期鋳型DNA18の相補鎖を準指数関数的に増幅させることができる。
図3は、本実施の形態で用いられる初期鋳型DNAの一例を模式的に示す図である。
図3(a)に示すように、初期鋳型DNAは、5’末端側からDNA配列A’、D’、B’を有する初期鋳型DNA18aと、5’末端側からDNA配列B、C’、Aを有する初期鋳型DNA18bとの二本鎖を分解したものである。ここで、DNA配列A’、B’、A、およびBは、固定用部分として機能する。また、DNA配列D’およびC’は、増幅対象部分の開始点で、プライマーが結合する部分として機能する。ここで、AはA’と相補的な配列、BはB’と相補的な配列、CはC’と相補的な配列、DはD’と相補的な配列を示す。
図3(b)は、基板12に付着した固定用オリゴヌクレオチド16aおよび16bを示す図である。固定用オリゴヌクレオチド16aは、初期鋳型DNA18aを基板12に付着させるために、初期鋳型DNA18aの固定用部分のDNA配列A’およびB’と相補的なDNA配列AおよびBを有する。固定用オリゴヌクレオチド16bは、初期鋳型DNA18bを基板12に付着させるために、初期鋳型DNA18Bの固定用部分のDNA配列AおよびBと相補的なDNA配列A’およびB’を有する。
図3(c)は、初期鋳型DNA18aが固定用オリゴヌクレオチド16aに付着した状態を示す。この後、プソラレン20で補強することにより、図3(d)に示すように、初期鋳型DNA18aを固定用オリゴヌクレオチド16aに固定することができる。つづいて、図3(e)に示すように、初期鋳型DNA18aのDNA配列D’と相補的なDNA配列Dを有するプライマーを導入し、PCRを開始する。初期鋳型DNA18aの相補的な配列を有する初期鋳型DNA18bについても、図3(f)に示すように、固定用オリゴヌクレオチド16bに固定され、DNA配列C’と相補的な配列Cを有するプライマーを導入することにより、PCRを開始することができる。
次に、基板12における柱状体14の形成方法を説明する。まず、基板12をシリコンにより構成した場合の柱状体14の形成方法について、図4、図5、および図6を参照して説明する。基板12上への柱状体14の形成は、基板12を所定のパターン形状にエッチング等を行うことができるが、その形成方法には特に制限はない。
ここで、各分図において、中央が上面図であり、左右の図が断面図となっている。この方法では、フォトレジストを用いたリソグラフィ技術を利用して柱状体14を形成する。
ここでは、基板12として面方位が(100)のシリコン基板を用いる。まず、図4(a)に示すように、基板12上にシリコン酸化膜185、スミレジストNEB(住友化学製)183をこの順で形成する。シリコン酸化膜185、スミレジストNEB183の膜厚は、それぞれ300nm、400nmとする。次に、柱状体14となる領域を露光する。現像はキシレンを用いて行い、イソプロピルアルコールによりリンスする。この工程により、図4(b)に示すように、スミレジストNEB183がパターニングされる。
つづいて全面にポジフォトレジスト155を塗布する(図4(c))。膜厚は1.8μmとする。その後、反応容器112となる領域が露光するようにマスク露光をし、現像を行う(図5(a))。
次に、シリコン酸化膜185をCF、CHFの混合ガスを用いてRIEエッチングする。エッチング後の膜厚を300nmとする(図5(b))。スミレジストNEB183をアセトン、アルコール、水の混合液を用いた有機洗浄により除去した後、酸化プラズマ処理をする(図5(c))。つづいて、基板12をHBrガスを用いてECRエッチングする。エッチング後のシリコン基板の段差(あるいは柱状体の高さ)を3μmとする(図6(a))。つづいてBHFバッファードフッ酸でウエットエッチングを行い、シリコン酸化膜を除去する(図6(b))。以上により、基板12上に柱状体14が形成される。
なお、基板12にプラスチック材料を用いる場合、柱状体14は、エッチングやエンボス成形等の金型を用いたプレス成形、射出成形、光硬化による形成等、基板12の材料の種類に適した公知の方法で行うことができる。
基板12をプラスチック材料により構成した場合、機械加工あるいはエッチング法によりマスタを製作し、このマスタを電気鋳造反転して製作した金型を用いて、射出成形または射出圧縮成形により柱状体14が形成された基板12を形成することができる。また、柱状体14は、金型を用いたプレス加工により形成することもできる。さらに、光硬化性樹脂を用いた光造形法により、柱状体14が形成された基板12を形成することもできる。
(第二の実施の形態)
図7は、本発明の第二の実施の形態における反応装置10の製造工程を示す図である。本実施の形態において、基板12上に初期鋳型DNA18を導入した後、基板12を押し伸ばすことにより柱状体14に付着した初期鋳型DNA18をさらに伸張させる。本実施の形態において、基板12は、伸縮性を有する各種プラスチック材料、またはゴム等の弾性材料により構成される。このような材料としてたとえばポリジメチルシロキサン(PDMS)がある。
上述したように、初期鋳型DNA18を伸張させた状態で基板12および柱状体14表面に付着させ固定した場合でも、図7(a)に示すように、初期鋳型DNA18の一部が収縮したままのことがある。これらをさらに伸張させて、より効率よくPCRを行うために、本実施の形態では、図7(b)に示すように、押圧体22により基板12の裏面側から基板12を押圧し、図7(c)に示すように、基板12を伸張させる。これにより、柱状体14間の間隔も広がり、隣接する柱状体14間に一端と他端が固定された初期鋳型DNA18も伸張した状態となる。
また、本実施の形態において、図8に示すように、基板12に凹部を設けておき、凹部内に柱状体14を形成した状態で初期鋳型DNA18を導入し(図8(a))、初期鋳型DNA18導入後に基板12の凹部を反転させて(図8(b))基板12の柱状体14が形成された面を伸張させることもできる。
(第三の実施の形態)
図9は、本実施の形態における反応装置10の製造工程を示す図である。本実施の形態において、基板12に柱状体14を形成しない点で第一および第二の実施の形態と異なる。
まず、基板12表面に固定用オリゴヌクレオチド16を付着させる(図9(a))。固定用オリゴヌクレオチド16を基板12表面に付着させる方法は第一の実施の形態と同様である。つづいて、基板12に初期鋳型DNA18を固定する(図9(b))。ここでも、第一の実施の形態と同様、たとえば、低周波をかける、高電界をかける、せん断応力を利用する等の方法で初期鋳型DNA18を伸張させた状態で基板12表面に付着させる。その後、第一の実施の形態で説明したのと同様に、クロスリンカーを用いて初期鋳型DNA18を固定用オリゴヌクレオチド16に固定する。本実施の形態において、第一の実施の形態と同様、この状態でPCRを行ってもよいが、以下のように基板12を伸張させた後にPCRを行うこともできる。
図9(c)に示すように、基板12の側方に均等な力を加えて基板12を伸張させる。これにより、基板12が伸び、基板12表面に固定されていた初期鋳型DNA18も伸張する(図9(d))。基板12をこのように伸張させる場合、基板12は、均一に伸張するとともに伸張後に収縮しないような材料により構成されるのが好ましい。このような材料として、たとえばPDMSを用いることができる。
このようにすれば、簡易な方法で初期鋳型DNA18を伸張させた状態でPCRを行うことができる。
(第四の実施の形態)
本実施の形態において、基板12表面ではなく、ビーズ表面に固定用オリゴヌクレオチド16を付着し、初期鋳型DNA18を固定用オリゴヌクレオチド16に固定した後にビーズを動かすことにより、初期鋳型DNA18を伸張させる点で第一〜第三の実施の形態と異なる。本実施の形態において、ビーズを動かす手段として、光ピンセットを用いる。
図10は、本実施の形態における初期鋳型DNA18の固定方法を示す図である。まず、標識ビーズ30に固定用オリゴヌクレオチド16a(DNA配列AおよびB)を固定したものを反応装置10に導入する(図10(a))。標識ビーズ30としては、たとえばポリスチレンビーズ、金コロイド、ラテックスビーズ、シリカ等の微小粒子を用いることができる。
つづいて、標識ビーズ30に初期鋳型DNA18aを導入する。これにより、標識ビーズ30に固定された固定用オリゴヌクレオチド16aと初期鋳型DNA18aの固定用部分(DNA配列A’およびB’)が相補的な結合を形成する(図10(b))。その後、第一の実施の形態で説明したのと同様に、固定用オリゴヌクレオチド16aと初期鋳型DNA18aの固定用部分とを固定する。このとき、導入された初期鋳型DNA18aのうちの少なくとも一部は、図示したように2つの標識ビーズ30にまたがって結合する。
つづいて、光ピンセット32を用いて標識ビーズ30を移動する(図10(c))。光ピンセットとは、開口数の大きなレンズで集光したレーザ光によって、非接触的、非侵襲的に水中の微小物体を捕捉する方法である。したがって、上記標識ビーズ30としては、水の波長よりも大きな直径を有し、水より大きい屈折率を有する透明な粒子を用いるのが好ましい。また、標識ビーズ30としては、水の波長より小さい金属微粒子を用いることもできる。これにより、レーザ光で標識ビーズ30を捕らえることができる。これらの標識ビーズ30は、光学顕微鏡を用いて可視化することができ、標識ビーズ30間隔が、たとえば初期鋳型DNA18の増幅対象部分よりも少しだけ短い距離となるように標識ビーズ30を移動する。これにより、2つの標識ビーズ30にまたがって結合した初期鋳型DNA18aを伸張することができる(図10(d))。
(第五の実施の形態)
図11は、本発明の第五の実施の形態における反応装置10を示す図である。ここで、反応装置10としては、内部に固定用オリゴヌクレオチド(不図示)が固定された試験管34を用いることができる。試験管34内にたとえばバッファを導入して試験管34を回転させ、その状態で初期鋳型DNA18をバッファに溶解して調整した溶液を試験管34に導入する(図11(a))。ここで、試験管34を回転させているので、導入された初期鋳型DNA18にはせん断応力が働き、初期鋳型DNA18は伸張した状態で試験管34の側壁に付着する(図11(b))。この後、バッファを真空除去等により除去することにより、試験管34の側壁に初期鋳型DNA18が固定された反応装置10を得ることができる(図11(c))。
図12は、本実施の形態における反応装置10の他の例を示す図である。ここで、初期鋳型DNA18は、基板12に形成されたウェル36内に導入することができる(図12(a))。図12(b)は、図12(a)のA−A’断面図である。この場合も、基板12を回転させながら初期鋳型DNA溶液をウェル36に導入する。これにより、ウェル36の側壁に初期鋳型DNAが固定された反応装置10を得ることができる。
(第六の実施の形態)
以上の第一〜第五の実施の形態においては、初期鋳型DNA18は増幅対象部分と、増幅対象部分よりも外側に位置する固定用部分とを含み、固定用部分が固定された状態で増幅対象部分を鋳型として相補鎖を合成する例を説明したが、初期鋳型DNA18の固定用部分をも増幅対象として相補鎖を合成することもできる。このようにすれば、初期鋳型DNA18を鋳型として合成された相補鎖も固定用部分を有するため、合成された相補鎖をも基板12表面に固定することができ、長いDNA鎖を効率よく増幅させることができる。
図13は、本実施の形態における初期鋳型DNA18の増幅方法を示す図である。図13(a)に示すように、初期鋳型DNA18は、配列a’a’a’および配列b’b’b’を有する。基板12には、初期鋳型DNA18の配列a’a’a’と相補的な配列aaaを有する固定用オリゴヌクレオチド16が固定されている。ここで、配列a’a’a’および配列b’b’b’は、初期鋳型DNA18の増幅対象部分の端部に位置する。このような状態で、配列b’b’b’と相補的な配列bbbを有するプライマーを導入し、PCRを開始する。
図13(b)に示すように、配列bbbを有するプライマーは、初期鋳型DNA18の配列b’b’b’との間で水素結合を形成し、PCRにより初期鋳型DNA18の相補鎖が合成される。PCRの相補鎖の合成は、たとえば約70℃で行われる。つづいて、PCR工程がある程度進んだところで反応容器内の温度を約75〜85℃程度に上昇すると、配列aaaを有する固定用オリゴヌクレオチド16と初期鋳型DNA18の配列a’a’a’との結合が外れ、初期鋳型DNA18の配列a’a’a’の相補鎖も合成され、初期鋳型DNA18の相補鎖である二次鋳型DNA18’が得られる(図13(c))。初期鋳型DNA18および二次鋳型DNA18’は、数kb以上の長いDNA鎖であるが、固定用オリゴヌクレオチド16は数十〜数百b程度と初期鋳型DNA18の長さと比すと非常に短いDNA鎖である。DNA鎖が短い方がDNA鎖が長いものよりも二本鎖間の結合力が弱いため、加熱した際に生じる分子エネルギーの影響で二本鎖の結合が外れやすくなる。そのため、本実施の形態において、PCR工程で初期鋳型DNA18と合成された二次鋳型DNA18’とを分離する変性工程の前に、変性工程で印加する温度よりも低い温度を加えることにより、初期鋳型DNA18と二次鋳型DNA18’とを結合させた状態で二次鋳型DNA18’を伸長させつつ、初期鋳型DNA18を固定用オリゴヌクレオチド16から外して二次鋳型DNA18’を合成することができる。
つづいて、反応容器内の温度を約90〜98℃程度に上昇して初期鋳型DNA18と二次鋳型DNA18’とを変性させて一本鎖にする(図13(d))。ここで、第一の実施の形態において説明したように、低周波電界や高電界を印加する電界付与手段や、反応場にせん断応力を与えるせん断応力付与手段により、初期鋳型DNA18および二次鋳型DNA18’を伸張させる。
二次鋳型DNA18’は、初期鋳型DNA18の配列a’a’a’と相補的な配列aaaを含むように合成されているので、図13(e)に示すように、基板12に、配列a’a’a’を有する固定用オリゴヌクレオチド16を固定しておくことにより、合成された二次鋳型DNA18’をも伸張させた状態で基板12に固定することができる。つづいて、配列bbbを有するプライマーおよび配列b’b’b’を有するプライマーを導入することにより、初期鋳型DNA18および二次鋳型DNA18’を鋳型としてそれぞれ相補鎖を合成することができる。
以上の工程を繰り返すことにより、初期鋳型DNA18を順次増幅することができる。本実施の形態においては、合成されたDNA鎖が基板12に固定されるので、比較的長いDNA鎖であっても効率よく指数関数的に合成することができる。
(第七の実施の形態)
また、以上の実施の形態で説明した鋳型DNAの伸張方法および基板への固定方法は、DNA鎖を特定の部位で切断する切断する技術に応用することができる。本実施の形態では、DNA鎖の切断したい部位がデオキシリボヌクレアーゼ(DNase)と接触してその部位が特異的に切断される確率を高めるように、DNA鎖を基板に固定する方法を説明する。
図14は、本実施の形態におけるDNA鎖の固定方法を示す概念図である。ここで、図示したように、切断対象の被切断DNA48は、固定用部分である配列a’a’a’および配列b’b’b’を含む。基板40には配列aaaを有する固定用オリゴヌクレオチド42および配列bbbを有する固定用オリゴヌクレオチド44が固定されている。配列aaaは配列a’a’a’と相補的、配列bbbは配列b’b’b’と相補的である。基板40において、固定用オリゴヌクレオチド42および固定用オリゴヌクレオチド44の間には、切断対象の被切断DNA48が伸張した状態で固定用オリゴヌクレオチド42および固定用オリゴヌクレオチド44に固定されたときに、被切断DNA48の切断すべき被切断部位cに対応する位置に切断酵素46が固定されている。基板40をこのように構成することにより、被切断DNA48を基板40に固定させたときに、被切断部位cが切断酵素46と接触する確率が高くなり、特定の部位を効率よく切断することができる。切断酵素46は、DNaseである。
図15は、本実施の形態における基板12の作製方法を示す工程図である。
まず、図15(a)に示すように、基板40上に固定用オリゴヌクレオチド42を帯状に付着させる。つづいて、図15(b)に示すように、固定用オリゴヌクレオチド42と所定の間隔を隔てて固定用オリゴヌクレオチド44を帯状に付着させる。固定用オリゴヌクレオチド42と固定用オリゴヌクレオチド44との間隔は、被切断DNA48の固定用部分の間隔と同等またはそれよりも少し狭い間隔とされることが好ましい。その後、図15(c)に示すように、被切断DNA48を伸張させて固定用オリゴヌクレオチド42および固定用オリゴヌクレオチド44に固定したときに、被切断部位が位置する箇所に切断酵素46を帯状に付着させる。このようにして形成された基板40に被切断DNA48を導入することにより、被切断DNA48の固定用部分が固定用オリゴヌクレオチド42および固定用オリゴヌクレオチド44と結合して被切断DNA48が基板40に固定される。このとき、被切断DNA48の被切断部位は基板40の切断酵素46の近傍に配置されるので、被切断DNA48の被切断部位が切断酵素46により効率よく切断される。
固定用オリゴヌクレオチド42、固定用オリゴヌクレオチド44、および切断酵素46の基板40への固定は種々の方法で行うことができるが、いくつかの方法を例示する。一例として、基板40をシリコンにより構成した場合、第一の実施の形態で説明したのと同様のアミノシラン等のシランカップリング剤を介して固定用オリゴヌクレオチド42、固定用オリゴヌクレオチド44、および切断酵素46を基板40に固定することができる。まず、基板40表面の固定用オリゴヌクレオチド42を固定すべき箇所にシランカップリング剤を選択的に導入し、シランカップリング剤を介して固定用オリゴヌクレオチド42を基板40に固定させる。つづいて、基板40表面の固定用オリゴヌクレオチド44を固定すべき箇所に同様のシランカップリング剤を選択的に導入し、シランカップリング剤を介して固定用オリゴヌクレオチド44を基板40に固定させる。その後、基板40表面の切断酵素46を固定すべき箇所に同様のシランカップリング剤を選択的に導入し、シランカップリング剤を介して切断酵素46を基板40に固定させる。
また、他の例として、基板40表面に疎水性領域を形成し、疎水性領域以外の領域に固定用オリゴヌクレオチド42、固定用オリゴヌクレオチド44、および切断酵素46を順次付着させることもできる。この場合、基板40をたとえばガラスにより構成するか、基板40表面をシリコン酸化膜により被覆するか、または金属により被覆する。この状態で、基板40表面を清浄な状態として、基板40の固定用オリゴヌクレオチド42を固定すべき領域以外の領域を疎水性にする。基板40表面を疎水性にする処理は、スタンプやインクジェットなどの印刷技術を用いて行うことができる。スタンプによる方法では、PDMS樹脂を用いる。PDMS樹脂はシリコーンオイルを重合して樹脂化するが、樹脂化した後も分子間隙にシリコーンオイルが充填された状態となっている。そのため、PDMS樹脂を親水性の表面、例えば、ガラス表面に接触させると、接触した部分が強い疎水性となり水をはじく。これを利用して、固定用オリゴヌクレオチド42を形成すべき領域に対応した凹部を形成したPDMSブロックをスタンプとして、親水性の基板40に接触させることにより、固定用オリゴヌクレオチド42を形成すべき領域以外の領域を疎水性にすることができる。
インクジェットプリントによる方法では、粘稠性が低いタイプのシリコーンオイルをインクジェットプリントのインクとして用い、基板40表面の固定用オリゴヌクレオチド42を形成する領域以外の領域にシリコーンオイルが付着するようなパターンに印刷する。
固定用オリゴヌクレオチド42を基板40表面に付着させた後、有機溶剤を用いて基板40表面に塗布されたシリコーンオイル等を洗い流し、固定用オリゴヌクレオチド42を基板40表面に付着させたのと同様の方法で固定用オリゴヌクレオチド44を基板40表面に付着させる。その後、再び有機溶剤を用いて基板40表面に塗布されたシリコーンオイル等を洗い流す。
つづいて、インクジェットプリントのインクとして切断酵素46を含む溶液を用い、基板40表面の該当個所に切断酵素46を付着させる。
なお、固定用オリゴヌクレオチド42および固定用オリゴヌクレオチド44を含む溶液をそれぞれインクとして固定用オリゴヌクレオチド42および固定用オリゴヌクレオチド44をもインクジェットプリントにより基板40表面に付着させることもできる。インクジェットプリントのインクは、切断酵素46、固定用オリゴヌクレオチド42および固定用オリゴヌクレオチド44等の変性を防ぐための防腐剤を含むことが好ましい。
また、本実施の形態においても、第一の実施の形態で説明したのと同様に柱状体等の突起部を形成して突起部に被切断DNA48が固定されるようにすることもできる。
また、第一の実施の形態においても、第七の実施の形態で説明したのと同様に、インクジェットプリントの技術を用い、柱状体14の代わりに所定の間隔で固定用オリゴヌクレオチドをパターニングすることもできる。また、以上の第一〜第七の実施の形態において、固定用オリゴヌクレオチドの基板への固定は、上述した方法の他に、光リソグラフィー等種々の既知の技術を用いて行うことができる。
【実施例】
以下、本発明を実施例により説明するが、本発明はこれに限定されるものではない。
本実施例において、初期鋳型DNA18としては、線虫(C.エレガンス:C.elegans)のゲノムDNAを用いた。線虫には、16000−19000の遺伝子があるが、本実施例では、これらの遺伝子の中の4番染色体上にあるtpa−1遺伝子からdaf−1までを含む領域(図3(a)における90k−140k周辺)の50kbを増幅させた。ここで、初期鋳型DNA18の固定用部分は、80kと150k周辺の2カ所とした。
本実施例において、固定用オリゴヌクレオチド16としては以下の配列AおよびBを用いた。また、プライマー(センスプライマー、アンチセンスプライマー)としては、以下の配列CおよびDを用いた。

【実施例1】
第一の実施の形態で説明した方法で基板12表面に柱状体14が形成された反応装置10を製造した。ここで、基板12は、(100)面を主面とするシリコン基板により構成した。柱状体14は、図4〜図6を用いて説明した方法で形成した。ここで、柱状体14の間隔dが約20μmとなるようにした。次に、第一の実施の形態で説明した方法で、基板12および柱状体14表面にEDAを固定し、次いで、SMPBをEDAに固定した。この後、上記配列AおよびBの固定用オリゴヌクレオチドを導入することにより、配列Aおよび配列Bの固定用オリゴヌクレオチドを基板12および柱状体14に固定した。
基板12に約10Hzの低周波電界を印加した状態で基板12および柱状体14上に初期鋳型DNA18を導入した。
つづいて、反応装置10にTENバッファ(10mMトリス(pH7.6)、1mMEDTA溶液、50mMNaCl)を導入した後、反応装置10に4,5’,8−トリメチルプソラレンのエタノール溶液を導入し、約2分間インターカレートさせた後、UV装置(UVP社製)を用いて約365nmの光を約20分間照射した。その後、基板12表面をバッファで洗浄して基板12または柱状体14表面に固定されなかった初期鋳型DNAを除去した。
つづいて、TaKaRa LA PCRTM法によりPCR反応を行った。前記の通り初期鋳型DNAの固定された約3mm角の反応装置10を微小遠心管に適宜数入れた。ここへ、10×LA PCR バッファII(Mg2+Free)10μl、25mM−MgCl10μl、dNTP混合物(各2.5mM)16μl、プライマー(センスプライマー、アンチセンスプライマー)それぞれ1μl(100pmol/μl)、TaKaRa LA Taq1μl、を入れた後、滅菌蒸留水を入れて総量を100μlとした。この後、サーマルサイクラーを用い、94℃で1分の変性反応後、98℃で20秒(変性)および68℃で20分(プライマーのアニーリングおよび相補鎖DNAの伸長)の反応サイクルを14サイクル、98℃で20秒(変性)および68℃で20分15秒(プライマーのアニーリングおよび相補鎖DNAの伸長)の反応サイクルを16サイクル行い、最後に72℃で10分反応させた。
以上の反応後の生成物を0.4%の高強度タイプアガロースゲル上で電気泳動させたところ、50kbp付近に増幅されたバンドが観察された。
【実施例2】
第三の実施の形態で説明した方法で、反応装置10を製造した。ここでは、基板12表面に柱状体14が形成されていない点で実施例1と異なる。基板12は、実施例1と同様、(100)面を主面とするシリコン基板により構成した。実施例1と同様に基板12表面に初期鋳型DNAを固定し、PCRを行った。その結果、本実施例においても、反応後の生成物を0.4%の高強度タイプアガロースゲル上で電気泳動させたところ、50kbp付近に増幅されたバンドが観察された。
【配列表】


【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】


【特許請求の範囲】
【請求項1】
DNA断片の増幅を行う方法であって、
前記DNA断片を、基材表面に形成された結合部に結合する工程と、
前記DNA断片を前記基材表面に結合させた状態で、前記DNA断片を鋳型として当該DNA断片の相補鎖を合成する工程と、
を含むことを特徴とするDNA断片増幅方法。
【請求項2】
請求の範囲1に記載のDNA断片増幅方法において、
前記結合部は、増幅対象のDNA断片の増幅対象部分よりも外側に位置するDNA配列と結合するように構成されていることを特徴とするDNA断片増幅方法。
【請求項3】
請求の範囲1に記載のDNA断片増幅方法において、
前記結合部は、増幅対象のDNA断片の増幅対象部分の両外側に位置するDNA配列と相補的な配列を有する2種以上の固定用オリゴヌクレオチドを含むことを特徴とするDNA断片増幅方法。
【請求項4】
請求の範囲1に記載のDNA断片増幅方法において、
前記相補鎖を合成する工程は、鋳型とした前記DNA断片と前記相補鎖とを変性させて分離する工程を含み、
前記結合する工程において、前記分離する工程においても前記DNA断片が前記結合部から分離しないように、当該DNA断片を前記結合部に固定することを特徴とするDNA断片増幅方法。
【請求項5】
請求の範囲1に記載のDNA断片増幅方法において、
前記結合部は、増幅対象のDNA断片の増幅対象部分の一部と結合するように構成され、
前記相補鎖を合成する工程の途中で、前記DNA断片と前記結合部との結合を解除する工程をさらに含むことを特徴とするDNA断片増幅方法。
【請求項6】
請求の範囲1に記載のDNA断片増幅方法において、
前記結合部は、増幅対象のDNA断片の一部と相補的な配列を有する固定用オリゴヌクレオチドを含むことを特徴とするDNA断片増幅方法。
【請求項7】
請求の範囲1に記載のDNA断片増幅方法において、
前記結合する工程において、前記DNA断片を伸張させた状態で、前記基材表面に結合することを特徴とするDNA断片増幅方法。
【請求項8】
請求の範囲7に記載のDNA断片増幅方法において、
前記結合する工程において、前記DNA断片に低周波電界を印加することにより前記DNA断片を伸張させた状態で、前記基材表面に結合することを特徴とするDNA断片増幅方法。
【請求項9】
請求の範囲7に記載のDNA断片増幅方法において、
前記結合する工程において、前記DNA断片に高電界を印加することにより前記DNA断片を伸張させた状態で、前記基材表面に結合することを特徴とするDNA断片増幅方法。
【請求項10】
請求の範囲1に記載のDNA断片増幅方法において、
前記結合する工程の後に、前記基材表面を伸張する工程をさらに含むことを特徴とするDNA断片増幅方法。
【請求項11】
請求の範囲1に記載のDNA断片増幅方法において、
前記増幅対象のDNA断片は、10kb以上の長さを有することを特徴とするDNA断片増幅方法。
【請求項12】
DNA断片の増幅を行う反応装置であって、
基材表面と、
前記基材表面に形成され、増幅対象のDNA断片と結合する結合部と、
を含むことを特徴とする反応装置。
【請求項13】
請求の範囲12に記載の反応装置において、
前記結合部は、所定の間隔で設けられた複数の領域に形成されていることを特徴とする反応装置。
【請求項14】
請求の範囲12に記載の反応装置において、
前記結合部は、前記基材表面に形成された複数の突起部を含むことを特徴とする反応装置。
【請求項15】
請求の範囲12に記載の反応装置において、
前記結合部は、増幅対象のDNA断片の一部と相補的な配列を有する固定用オリゴヌクレオチドを含むことを特徴とする反応装置。
【請求項16】
請求の範囲12に記載の反応装置において、
前記結合部は、増幅対象のDNA断片の増幅対象部分の両側に位置するDNA配列と結合するように構成されていることを特徴とする反応装置。
【請求項17】
請求の範囲12に記載の反応装置において、
前記基材は、伸張可能な材料により構成されたことを特徴とする反応装置。
【請求項18】
DNA断片の増幅を行う反応装置の製造方法であって、
基材表面に、増幅対象のDNA断片と結合する結合部を形成する工程と、
前記増幅対象のDNA断片を前記結合部に結合する工程と、
を含むことを特徴とする反応装置の製造方法。
【請求項19】
請求の範囲18に記載の反応装置の製造方法において、
前記結合部を形成する工程において、前記増幅対象のDNA断片の一部と相補的な配列を有する固定用オリゴヌクレオチドを前記基材表面に固定することを特徴とする反応装置の製造方法。
【請求項20】
請求の範囲19に記載の反応装置の製造方法において、
前記DNA断片を結合する工程において、当該DNA断片を伸張させた状態で、前記基材表面に結合することを特徴とする反応装置の製造方法。
【請求項21】
請求の範囲19に記載の反応装置の製造方法において、
前記DNA断片を結合する工程の後に、前記基材表面を伸張する工程をさらに含むことを特徴とする反応装置の製造方法。

【国際公開番号】WO2004/083429
【国際公開日】平成16年9月30日(2004.9.30)
【発行日】平成18年6月22日(2006.6.22)
【国際特許分類】
【出願番号】特願2005−503720(P2005−503720)
【国際出願番号】PCT/JP2004/003575
【国際出願日】平成16年3月17日(2004.3.17)
【出願人】(000004237)日本電気株式会社 (19,353)
【Fターム(参考)】