説明

IPS又はFFS型液晶表示装置

【課題】視野角コントラストが改善されているのみならず、カラーシフトが軽減されたIPS又はFFS型液晶表示装置の提供。
【解決手段】第1偏光膜(16)と、第1位相差領域(20)及び第2位相差領域(22)からなる光学補償フィルム(F)と、第1基板(12)と、ネマチック液晶材料からなる液晶層(10)と、
第2基板(14)とをこの順序で含み、黒表示時に該ネマチック液晶材料の液晶分子が前記一対の基板の表面に対して平行に配向し、第1位相差領域と第2位相差領域の遅相軸とが互いに平行であり、第2位相差領域のRe(550)が20nm以下、Rth(550)が20nm〜120nmであり、第1位相差領域が傾斜配向したディスコティック液晶化合物を含有する位相差層を含むとともに、Re(450)/Re(550)が1以上1.13以下で、Re(650)/Re(550)が0.94以上1以下を満足するIPS又はFFS液晶表示装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は視野角特性が改善されたIPS又はFFS型液晶表示装置に関する。
【背景技術】
【0002】
近年、IPS型及びFFS型液晶表示装置は、テレビ用表示装置等、その用途が拡大している。従来、垂直配向したディスコティック液晶化合物を含有する位相差層が、IPS型液晶表示装置の視野角特性の改善に寄与することが知られている(特許文献1及び2)。前記位相差層を利用することで、簡易な構成で、視野角コントラストを顕著に改善することができる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特許第4253259号公報
【特許文献2】特開2005−309382号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、テレビ用表示装置等では、より優れた視野角特性が要求される。上記IPS型液晶表示装置については、斜め方向においてカラーシフトが生じる場合があり、改善が求められている。また、斜め方向において階調反転(特に黒の階調とそれより一つ明度の高い階調との反転)が生じる場合があり、改善が求められている。
本発明は、視野角コントラストが改善されているのみならず、斜め方向のカラーシフト及び階調反転が軽減されたIPS又はFFS型液晶表示装置を提供することを課題とする。
【課題を解決するための手段】
【0005】
本発明者が鋭意検討した結果、上記構成のIPS型液晶表示装置で観察されるカラーシフトには、ディスコティック液晶化合物を含有する位相差層のレターデーションの波長分散性が影響していること、さらには階調反転には、液晶層中の液晶分子がわずかに傾斜配向していることが影響していることを見出し、この知見に基づいてさらに検討を重ね、本発明を完成するに至った。本発明の効果は、IPS型のみならず、同様に水平配向モードに分類されるFFS型液晶表示装置においても得られるものである。
【0006】
前記課題を解決するための手段は以下の通りである。
[1] 第1偏光膜と、
第1位相差領域及び該第1位相差領域に接する第2位相差領域からなる光学補償フィルムと、
第1基板と、
ネマチック液晶材料からなる液晶層と、
第2基板と、
をこの順序で含み、黒表示時に該ネマチック液晶材料の液晶分子が前記一対の基板の表面に対して平行に配向する液晶表示装置であって、
第1位相差領域と第2位相差領域の遅相軸とが互いに平行であり、
第2位相差領域の波長550nmの面内レターデーションRe(550)が20nm以下、第2位相差領域の波長550nmの厚み方向のレターデーションRth(550)が20nm〜120nmであり、
第1位相差領域が、平均傾斜角θ(θ>0)で傾斜配向したディスコティック液晶化合物を含有する位相差層を含むとともに、波長450nm、550nm、650nmにおけるRe、Re(450)、Re(550)、及びRe(650)が、Re(450)/Re(550)が1以上1.13以下で、Re(650)/Re(550)が0.94以上1以下を満足するIPS又はFFS液晶表示装置:但し、面内レターデーションRe及び厚み方向レターデーションは、それぞれ面内の屈折率nxとny(nx≧ny)、厚さ方向の屈折率nz、及びフィルムの厚さdを用いて、Re=(nx−ny)×d及びRth={(nx+ny)/2−nz}×dで定義される。
[2] 前記平均傾斜角θが0〜10°である[1]のIPS又はFFS液晶表示装置。
[3] 記第1位相差領域中、前記ディスコティック液晶化合物が、その分子ダイレクターと、黒状態における前記液晶層のダイレクターとの角度が減少する方向に傾斜配向している[1]又は[2]のIPS又はFFS液晶表示装置。
[4] 第1偏光膜、第1位相差領域、及び第2位相差領域の順で配置されている[1]〜[3]のいずれかのIPS又はFFS型液晶表示装置。
[5] 第1偏光膜、第2位相差領域、及び第1位相差領域の順で配置されている[1]〜[3]のいずれかのIPS又はFFS型液晶表示装置。
[6] 前記第1位相差領域のRe(550)が、50nm〜200nmである[1]〜[5]のいずれかのIPS又はFFS型液晶表示装置。
[7] 前記光学補償フィルム全体のRth(550)の絶対値|Rth(550)|が、40nm以下である[1]〜[6]のいずれかのIPS又はFFS型液晶表示装置。
[8] 前記第2位相差領域が複数の層を含み、該複数の層のうち第1位相差領域に接する層が配向膜であり、且つ前記第1位相差領域が、ディスコティック液晶化合物及び配向制御剤を少なくとも含有する組成物からなり、前記配向制御剤が、空気界面側でのディスコティック液晶化合物のダイレクターの傾斜角度を減じる作用を有する[1]〜[7]のいずれかのIPS又はFFS型液晶表示装置。
[9] 前記第1位相差領域が、前記位相差層とともに、ポリマーフィルムを有し、該ポリマーフィルムが前記第1偏光膜に接している[4]〜[8]のいずれかのIPS又はFFS型液晶表示装置。
[10] 前記第2基板のより外側に、第2偏光膜を有する[1]〜[9]のいずれかのIPS又はFFS型液晶表示装置。
[11] 前記第2偏光膜と前記第2基板との間に、ポリマーフィルムを有する[10]のIPS又はFFS型液晶表示装置。
[12] 前記ポリマーフィルムが、波長550nmの面内レターデーションRe(550)の絶対値|Re(550)|が10nm以下であり、且つ同波長の厚み方向のレターデーションRth(550)の絶対値|Rth(550)|が30nm以下である[9]又は[11]のIPS又はFFS型液晶表示装置。
[13] 前記ポリマーフィルムが、|Re(400)−Re(700)|が10nm以下であり、及び|Rth(400)−Rth(700)|が35nm以下である[9]、[11]又は[12]のIPS又はFFS型液晶表示装置。
[14] 前記ポリマーフィルムが、厚みが10〜90μmである[9]、及び[11]〜[13]のいずれかのIPS又はFFS型液晶表示装置。
[15] 前記ポリマーフィルムが、セルロースアシレート系フィルム、環状オレフィン系ポリマーフィルム、又はアクリル系ポリマーフィルムを有する[9]、及び[11]〜[14]のいずれかのIPS又はFFS型液晶表示装置。
[16] 前記アクリル系ポリマーフィルムが、ラクトン環単位、無水マレイン酸単位、及びグルタル酸無水物単位から選ばれる少なくとも1種の単位を含むアクリル系ポリマーを含有するアクリル系ポリマーフィルムである[15]の液晶表示装置。
【発明の効果】
【0007】
本発明によれば、視野角コントラストが改善されているのみならず、斜め方向のカラーシフト及び階調反転が軽減されたIPS又はFFS型液晶表示装置を提供することができる。
【図面の簡単な説明】
【0008】
【図1】本発明のIPS又はFFS型液晶表示装置の一例の断面模式図である。
【図2】本発明のIPS又はFFS型液晶表示装置の他の例の断面模式図である。
【図3】本発明のIPS又はFFS型液晶表示装置の他の例の断面模式図である。
【図4】本発明のIPS又はFFS型液晶表示装置の他の例の断面模式図である。
【図5】本発明に利用可能な画素領域例を示す概略図である。
【図6】第1位相差領域のディスコティック液晶化合物(D−LCD)の傾斜配向状態を、液晶層のネマチック液晶化合物(N−LC)の配向状態とともに示した模式図(A)を、ディスコティック液晶化合物(D−LC)の垂直配向状態の模式図(B)との対比で示した図である。
【図7】本発明の液晶表示装置に入射した偏光状態の軌跡の一例をポアンカレ球上に模式的に示した図である。
【発明を実施するための形態】
【0009】
以下、本発明の液晶表示装置の一実施形態及びその構成部材について順次説明する。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
【0010】
本明細書において、光学的な軸の関係については、本発明が属する技術分野において許容される誤差を含むものとする。具体的には、「平行」、「直交」とは、厳密な角度±10゜未満の範囲内であることを意味し、±5゜未満であることが好ましく、±3゜未満であることがより好ましい。また、「遅相軸」は、屈折率が最大となる方向を意味する。さらに、屈折率の測定波長は特別な記述がない限り、可視光域のλ=550nmでの値である。
【0011】
本明細書において「偏光板」とは、特に断らない限り、長尺の偏光板及び液晶装置に組み込まれる大きさに裁断された(本明細書において、「裁断」には「打ち抜き」及び「切り出し」等も含むものとする)偏光板の両者を含む意味で用いられる。また、本明細書では、「偏光膜」及び「偏光板」を区別して用いるが、「偏光板」は「偏光膜」の少なくとも片面に該偏光膜を保護する透明保護膜を有する積層体を意味するものとする。
【0012】
また、本実施形態の説明において「ダイレクター」とは、分子が回転対称軸を有する場合は、当該ダイレクターを指すが、厳密な意味で、分子が回転対称性であることを要求するものではない。一般的に、ディスコティック液晶性化合物において、ダイレクターは、円盤面の中心を貫く円盤面に対して垂直な軸と一致する。分子対称軸と呼ぶこともある。
【0013】
また、本明細書において、Re(λ)、Rth(λ)は、各々、波長λにおける面内のレターデーション、及び厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADH、又はWR(王子計測機器(株)製)において、波長λnmの光をフィルム法線方向に入射させて測定される。測定波長λnmの選択にあたっては、波長選択フィルターをマニュアルで交換するか、又は測定値をプログラム等で変換して測定することができる。測定されるフィルムが、1軸又は2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)が算出される。なお、この測定方法は、後述する位相差層中のディスコティック液晶分子の配向膜側の平均チルト角、その反対側の平均チルト角の測定においても一部利用される。
Rth(λ)は、前記Re(λ)を、面内の遅相軸(KOBRA 21ADH、又はWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50°まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADH、又はWRが算出する。なお、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値、及び入力された膜厚値を基に、以下の式(A)、及び式(III)よりRthを算出することもできる。
【0014】
【数1】

なお、上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値をあらわす。また、式(A)におけるnxは、面内における遅相軸方向の屈折率を表し、nyは、面内においてnxに直交する方向の屈折率を表し、nzは、nx及びnyに直交する方向の屈折率を表す。
Rth=((nx+ny)/2−nz)×d・・・・・・・・・・・式(III)
【0015】
測定されるフィルムが、1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法により、Rth(λ)は算出される。Rth(λ)は、前記Re(λ)を、面内の遅相軸(KOBRA 21ADH、又はWRにより判断される)を傾斜軸(回転軸)として、フィルム法線方向に対して−50°から+50°まで10°ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。また、上記の測定において、平均屈折率の仮定値は、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについては、アッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADH又はWRはnx、ny、nzを算出する。この算出されたnx,ny,nzよりNz=(nx−nz)/(nx−ny)が更に算出される。
【0016】
Re、Rthの測定波長は特別な記述がない限り、可視光域のλ=550nmでの値である。
【0017】
(チルト角の測定)
ディスコティック液晶化合物を配向させた位相差層において、位相差層の一方の面におけるチルト角(ディスコティック液晶化合物における物理的な対象軸が位相差層の界面となす角度をチルト角とする)θ1及び他方の面のチルト角θ2を、直接的にかつ正確に測定することは困難である。そこで本明細書においては、θ1及びθ2は、以下の手法で算出する。本手法は本発明の実際の配向状態を正確に表現していないが、光学フィルムのもつ一部の光学特性の相対関係を表す手段として有効である。
本手法では算出を容易にすべく、下記の2点を仮定し、位相差層(光学異方性層ともいう)の2つの界面におけるチルト角とする。
1.位相差層はディスコティック液晶化合物を含む層で構成された多層体と仮定する。更に、それを構成する最小単位の層(ディスコティック液晶化合物のチルト角は該層内において一様と仮定)は光学的に一軸と仮定する。
2.各層のチルト角は位相差層の厚み方向に沿って一次関数で単調に変化すると仮定する。
具体的な算出法は下記のとおりである。
(1)各層のチルト角が位相差層の厚み方向に沿って一次関数で単調に変化する面内で、位相差層への測定光の入射角を変化させ、3つ以上の測定角でレターデーション値を測定する。測定及び計算を簡便にするためには、位相差層に対する法線方向を0°とし、−40°、0°、+40°の3つの測定角でレターデーション値を測定することが好ましい。このような測定は、KOBRA−21ADH及びKOBRA−WR(王子計測器(株)製)、透過型のエリプソメーターAEP−100((株)島津製作所製)、M150及びM520(日本分光(株)製)、ABR10A(ユニオプト(株)製)で行うことができる。
(2)上記のモデルにおいて、各層の常光の屈折率をno、異常光の屈折率をne(neは各々すべての層において同じ値、noも同様とする)、及び多層体全体の厚みをdとする。更に各層におけるチルト方向とその層の一軸の光軸方向とは一致するとの仮定の元に、位相差層のレターデーション値の角度依存性の計算が測定値に一致するように、位相差層の一方の面におけるチルト角θ1及び他方の面のチルト角θ2を変数としてフィッティングを行い、θ1及びθ2を算出する。
ここで、no及びneは文献値、カタログ値等の既知の値を用いることができる。値が未知の場合はアッベ屈折計を用いて測定することもできる。位相差層の厚みは、光学干渉膜厚計、走査型電子顕微鏡の断面写真等により測定数することができる。
【0018】
以下、図面を用いて本発明の実施の形態を詳細に説明する。図1は、本発明のIPS又はFFS型液晶表示装置の一実施形態の断面模式図である。
図1に示す液晶表示装置は、一対の第1偏光膜16及び第2偏光膜18と、第1偏光膜16に接する第1位相差領域20及び該第1位相差領域に接する第2位相差領域22を含む光学補償フィルムFと、IPS又はFFS型液晶セルLCとを少なくとも備える。第2偏光膜18のさらに外側には、バックライト26が配置されている。
【0019】
図1の液晶表示装置では、液晶セルLCは、第1基板12、ネマチック液晶材料からなる液晶層10、及び第2基板14を有する。液晶層10は、黒表示時に該ネマチック液晶材料の液晶分子が一対の基板12及び14の表面に対して平行に配向するIPS又はFFS型液晶セルである。液晶層の厚さd(μm)と屈折率異方性Δnとの積Δn・dは透過モードにおいて、ねじれ構造を持たないIPS型では0.2〜0.4μmの範囲が、FFS型では0.3〜0.5μmの範囲が最適値となる。この範囲では白表示輝度が高く、黒表示輝度が小さいことから、明るくコントラストの高い表示装置が得られる。基板12及び14の液晶層10に接触する表面には、配向膜(不図示)が形成されていて、液晶分子を基板の表面に対して略平行に配向させるとともに配向膜上に施されたラビング処理方向等により、電圧無印加状態もしくは低印加状態における液晶分子配向方向が制御されている。また、基板12若しくは14の内面には、液晶分子に電圧印加可能な電極(図1中不図示)が形成されている。
【0020】
液晶層10は、電圧無印加状態では、液晶分子はねじれずに、例えば、基板12及び14の内面に形成された配向膜のラビング処理の方向等によって制御され、一定の水平方向に配向している。電圧を印加すると、面内方向に形成された電界によって、液晶分子が水平に所定の角度だけ回転して、所定の方向に配向する。電極の形状及び配置については種々提案されていて、いずれも利用することができる。図5に、液晶層10の1画素領域中の液晶分子の配向の一例を模式的に示す。図5は、液晶層10の1画素に相当する程度の極めて小さい面積の領域中の液晶分子の配向を、基板12及び14の内面に形成された配向膜のラビング方向4、及び基板12及び14の内面に形成された液晶分子に電圧印加可能な電極2及び3とともに示した模式図の一例である。電界効果型液晶として正の誘電異方性を有するネマチック液晶を用いてアクティブ駆動を行った場合の、電圧無印加状態若しくは低印加状態での液晶分子配向方向は5a及び5bであり、この時に黒表示が得られる。電極2及び3間に印加されると、電圧に応じて液晶分子は6a及び6b方向へとその配向方向を変える。通常、この状態で白表示を行う。
【0021】
再び図1において、第1偏光膜16の吸収軸16aと、第2偏光膜18の吸収軸18aは直交して配置されている。電圧無印加時には、液晶層10の液晶分子は、液晶層10の遅相軸10aが、第2偏光膜18の吸収軸18aと平行になるように水平配向している。従って、バックライト26から入射した光は、偏光状態をほぼ維持したまま液晶層10を追加し、第1偏光膜16の吸収軸16aで遮光され、黒表示になる。しかし、バックライト26から入射した光のうち、斜め方向から入射した光に対しては、偏光膜16及び18の吸収軸16a及び18aが直交関係からずれているために、光漏れが生じ、即ち視野角コントラストを低下させることになる。光学補償フィルムFは、この光漏れを軽減し、視野角コントラストを改善する作用がある。
【0022】
光学補償フィルムFは、例えば支持体となり得るポリマーフィルム等を含む第2位相差領域22と、傾斜配向したディスコティック液晶化合物を含有する位相差層を含む第1位相差領域20からなる。従来、垂直配向ディスコティック液晶化合物を含有する位相差層をIPSモード等の液晶表示装置の視野角補償に利用すると、視野角コントラストは顕著に改善されるが、一方で、斜め方向にカラーシフトが生じる場合があり、視野角コントラストの改善と、カラーシフトの軽減を同時に達成することは困難であった。
【0023】
斜め方向にカラーシフトが生じる一因は、光学補償に利用されている位相差層のレターデーションの波長分散性が適切でないことにある。一般的には、ディスコティック液晶化合物を利用して形成される位相差層のReの波長分散性は、使用するディスコティック液晶化合物の性質によって決定されるものである。カラーシフトの軽減のためには、位相差層のReは可視光域において逆波長分散性であることが理想であるが、一方で、一般的には、ディスコティック液晶化合物を利用して形成される位相差層のReは、順波長分散性になる。本発明者が鋭意検討した結果、第1位相差領域20のReの波長分散性が、Re(450)/Re(550)が1以上1.13以下で、且つRe(650)/Re(550)が0.94以上1以下を満足すると、カラーシフトを、人間の眼で観察しても違和感がない程度まで軽減できることがわかった。この特性を満足するディスコティック液晶化合物の例については、後述する。
【0024】
また、IPS及びFFSモードでは、液晶層中の液晶分子は、白状態及び黒状態のいずれも基板に対して理想的には水平配向しているが、実際には基板に対して低傾斜角で傾斜配向しているものがほとんどであり、この傾斜配向が斜め方向において生じる階調反転(特に黒の階調とそれより一つ明度の高い階調との反転)の原因であることがわかった。本発明者が鋭意検討した結果、この階調反転は、低傾斜角(傾斜角を「チルト角」という場合もある)で傾斜配向したディスコティック液晶化合物を含有する位相差層を利用することで抑制できることがわかった。平均傾斜角θは、θ>0であり、好ましくは0°<θ<10°であり、またより好ましくは0〜5°であり、さらに好ましくは0〜3°である。平均傾斜角が大きくなり過ぎる(例えば、10°を超える)と、視野角コントラストの悪化等の問題が生じる。なお、ここでいう平均傾斜角θは、ディスコティック液晶化合物の分子ダイレクターと層面(層面は一般的にはセル基板と平行である)とのなす角度をいう。例えば、垂直配向(即ち円盤面を層面に対して垂直にして配向)したディスコティック液晶化合物の分子ダイレクターは、円盤面の法線方向にあるので、層面に対して平行になっているので、分子ダイレクターの平均傾斜角は0°になる。
【0025】
この様な低チルト角の傾斜配向状態は、後述する様に、ディスコティック液晶化合物を一旦垂直配向させた後、塗布面に対して水平〜10°で温風を当てることで形成することができる。
【0026】
また、ディスコティック液晶化合物の傾斜方向は、階調反転の抑制効果に影響する。前記ディスコティック液晶化合物が、その分子ダイレクターと、黒状態における前記液晶層のダイレクターとの角度が減少する方向に傾斜配向していると、階調反転に対する抑制効果に優れるので好ましい。図6(A)に、好ましい傾斜配向状態を模式的に示す、図6(B)は、従来例の垂直配向状態の模式図である。図6(B)に模式的に示す通り、液晶層中のネマチック液晶N−LCが理想的な水平配向状態であれば、液晶層中の液晶分子のダイレクターd2は層面に対して平行になり、及び理想的な垂直配向したディスコティック液晶化合物D−LCの分子ダイレクターd1は、円盤面の法線方向にあるので、層面に対して平行になり、即ち、双方は平行であって交差しない。本発明では、図6(A)に模式的に示す通り、ディスコティック液晶化合物D−LCの分子ダイレクターd1は、平均傾斜角θで傾斜配向していて、その傾斜方向は、図6(A)に示す通り、その分子ダイレクターd1と、黒状態における液晶層のダイレクターd2との角度が減少する方向であるのが好ましい。
なお、図6(A)では、液晶層中のネマチック液晶分子のダイレクターが傾斜している例を示したが、勿論、本発明は、液晶層中のネマチック液晶分子のダイレクターが層面に対してスプレー配向であってもよく、スプレー配向であっても、ディスコティック液晶化合物のダイレクターを適切な角度に傾斜させることで階調反転を抑制することができる。
【0027】
第1位相差領域20は、上記光学特性を満足する限り、Re及びRthについては、特に制限はないが、第1位相差領域20と第2位相差領域22とからなる光学補償フィルムF全体としてのRth(550)の絶対値が40nm以下であると、視野角コントラストとカラーシフト改善の点で好ましい。この理由は、図1の構成を例として、黒表示をみた場合、バックライト26から斜め方向に入射した光が、第2の偏光膜18、液晶層10、光学補償フィルムF及び第1の偏光膜16を追加することによる偏光状態の遷移を、ポアンカレ球上に示した場合に、第2の偏光膜通過した偏光(入射偏光)が光学補償フィルムにより、図6のような軌道を通り、第1の偏光膜通過前の偏光(出射偏光)に変化する。このときの出射偏光は第1の偏光膜のクロスニコルの関係にあるため、黒表示の輝度が抑えられる。本発明者が鋭意検討したところ、光学補償フィルムのRth(550)の絶対値が40nm以下の場合に出射偏光と第1の偏光膜のクロスニコルの関係が良好になることを見出した。
【0028】
第2位相差領域22は、Re(550)が20nm以下、且つRth(550)が20〜120nmを満足する。第2位相差領域22は、この光学特性を満足する限り、その材料については特に制限はなく、また単層構造であっても、2層以上からなる積層構造であってもよい。自己支持性のあるポリマーフィルムを含んでいると、塗布等によって形成される第1位相差領域20の支持体としても利用できるので好ましい。一例は、第2位相差領域22が、ポリマーフィルムと配向膜とを含む積層体であり、配向膜が第1位相差領域20に接する例である。配向膜の表面はラビング処理を施されていてもよく、ラビング処理の方向が前記ポリマーフィルムの遅相軸方向(一般的にはポリマーフィルムの長手方向と一致する場合が多い)と平行であると、製造適性に優れるので好ましい。第2位相差領域に利用可能な、ポリマーフィルム及び配向膜の例については後述する。
【0029】
図1の液晶表示装置には、第2偏光膜18と液晶セルLCとの間に、第2偏光膜18の保護フィルム24が配置されている。視野角コントラストの改善の観点では、保護フィルム24は、低位相差であるのが好ましく、具体的には、Re(550)の絶対値|Re(550)|が10nm以下(より好ましくは5nm以下)であり、且つRth(550)の絶対値|Rth(550)|が30nm以下(より好ましくは15nm以下)であるのが好ましい。また、保護フィルム24は、斜め方向に生じるカラーシフトを軽減するという観点では、低波長分散性であるのが好ましく、具体的には、|Re(400)−Re(700)|が10nm以下(より好ましくは5nm以下)であり、及び|Rth(400)−Rth(700)|が35nm以下(より好ましくは15nm以下)であるのが好ましい。また保護フィルム24は、耐久性の観点では、厚みがある程度あるのが好ましく、具体的には厚みが10〜90μm(より好ましくは40〜80μm)であるのが好ましい。保護フィルム24として利用可能なポリマーフィルムの例については後述する。
【0030】
なお、保護フィルム24は、第2偏光膜18の耐久性、第2偏光膜18と基板14との接着性等の改善のために配置されるものであり、第2偏光膜18の耐久性及び基板14との接着性が十分であるならばなくてもよい。
【0031】
第1偏光膜16及び第2偏光膜18の外側表面には、保護フィルムが配置されているのが好ましく、第1偏光膜16は、その一方の表面に光学補償フィルムF、及び他方の表面に保護フィルムを有する偏光板PL1として、並びに、第2偏光膜18は、その一方の表面に保護フィルム24、及び他方の表面に保護フィルムを有する偏光板PL2として、液晶表示装置に組み込まれていてもよい。
【0032】
なお、光学補償フィルムFの第1偏光膜16と接着する面は、傾斜配向したディスコティック液晶を含有する位相差層を含む第1位相差領域20であり、第1位相差領域20が、ディスコティック液晶化合物を含有する硬化性組成物を硬化させて形成される位相差層のみからななる場合は、第1偏光膜16との接着性が弱い場合がある。前記位相差層の表面にポリマーフィルムを積層して、第1偏光膜16との接着性を改善してもよい。視野角コントラストの改善の観点では、当該ポリマーフィルムは、低Re及び低Rth、且つRe及びRthの波長分散性が小さいフィルムであるのが好ましく、即ち保護フィルム24と同様の光学特性を示すのが好ましい。
【0033】
また、第1位相差領域20と第2位相差領域22とを、入れ替えて配置してもよく、即ち、図2に示す構成であってもよい。いずれの構成でも同様のカラーシフトの軽減効果が得られる。図2の構成では、光学補償フィルムFと第1偏光膜16との接着性を改善でき、耐久性の観点では好ましいが、一方で、第1位相差領域20と第2位相差領域22の遅相軸を90度回転する必要があり、一方に粘着剤の敷設された保護フィルム、他方に異なる種類のロール状の光学補償フィルムを互いに搬送しながら粘着するようなロールトゥロール方式には適しておらず、生産性が悪化するため、図1の構成のほうが好ましい。
【0034】
バックライト26の構成については特に制限はない。導光板方式及び直下型方式のいいずれを用いてもよい。導光板方式のバックライト部は、光源及び導光板を備え、直下型方式のバックライト部は、光源及び拡散板を備える。使用される光源についても特に制限はなく、電球、発光ダイオード(LED)、エレクトロルミネッセンスパネル(ELP)、1本又は複数の冷陰極管(CCFL)及び熱陰極蛍光灯(HCFL)等いずれも用いることができる。
また、バックライト26には、光の利用効率を上げるために反射板、輝度向上膜等の部材を用いることができる。さらに、液晶表示装置の形成に際しては、上述の部材以外に例えば、拡散板、保護板、プリズムアレイ、レンズアレイシート、光拡散板等の部品を適宜1層又は2層以上配置することができる。
【0035】
図1及び図2では、バックライト26を第2偏光膜18の外側に配置した構成を示したが、バックライト26は、第1偏光膜16の外側に配置されていてもよく、即ち図3及び図4の構成であってもよい。それぞれ図1及び図2と同様の効果を得ることができる。
【0036】
本発明の液晶表示装置には、画像直視型、画像投影型や光変調型が含まれる。本発明は、TFTやMIMのような3端子又は2端子半導体素子を用いたアクティブマトリックス液晶表示装置に適用した態様が特に有効である。勿論、時分割駆動と呼ばれるパッシブマトリックス液晶表示装置に適用した態様も有効である。
【0037】
以下、本発明の液晶表示装置に使用可能な種々の部材の好ましい光学特性や部材に用いられる材料、その製造方法等について、詳細に説明する。
【0038】
1.光学補償フィルム
本発明の液晶表示装置は、傾斜配向したディスコティック液晶化合物を含有する位相差層を含む第1位相差領域、及び該第1位相差領域に接するとともに、所定の光学特性を満足する第2位相差領域からなる光学補償フィルムを有し、前記第1位相差領域のReの波長分散性が所定の範囲であることを一つの特徴とする。該光学補償フィルムは、第1位相差領域の遅相軸と第2位相差領域の遅相軸とが平行である。第1及び第2位相差領域は、それぞれ単層構造であっても、2層以上を含む積層構造であってもよい。当該補償フィルムを用いることで、本発明では視野角コントラストを改善しているのみならず、斜め方向に生じるカラーシフトを軽減している。
【0039】
第1位相差領域のレターデーションの可視光域における波長分散性は、斜め方向に生じるカラーシフトに影響を与える。カラーシフト軽減の観点では、第1位相差領域のReの波長分散性は、逆波長分散性であることが理想であるが、一般的には、ディスコティック液晶化合物の配向を固定して形成された位相差層のReの波長分散性は、順波長分散性になる傾向がある。本発明者が鋭意検討した結果、第1位相差領域のReが逆波長分散性ではなくても、Re(450)/Re(550)が1以上1.13以下(より好ましくは1〜1.10)で、Re(650)/Re(550)が0.94以上1以下(より好ましくは0.96〜1.0)であると、斜め方向のカラーシフトの発生を軽減でき、実用上問題ないことがわかった。上記波長分散性を達成可能なディスコティック液晶化合物の例には、後述する、式(I)で表わされるディスコティック液晶化合物が含まれる。
【0040】
第2位相差領域のRe(550)は20nm以下であり、Rth(550)は20nm〜120nmである。Re(550)は15nm以下であるのが好ましく、10nm以下であるのがより好ましい。0nmであるのが理想である。Rth(550)は、30〜110nmであるのが好ましく、40〜100nmであるのがより好ましい。
【0041】
一方、第1位相差領域のRe及びRthについては特に制限はないが、光学補償フィルム全体として、視野角コントラスト改善の観点で、Re(550)は50〜200nmであるのが好ましく、Rth(550)の絶対値は40nm以下であるのが好ましい。特に光学補償フィルム全体としての|Rth(550)|が40nmを超えてしまうと、視野角コントラストが悪化する場合がある。上記第2位相差領域及び光学補償フィルム全体としての光学特性を考慮すると、第1位相差領域のRe(55)は50〜200nmであるのが好ましく、80〜170nmであるのがより好ましく、100〜150nmであるのがさらに好ましく;Rth(550)は25〜100nmであるのが好ましく、40〜85nmであるのがより好ましく、50〜75nmであるのがさらに好ましい。
【0042】
前記光学補償フィルムの一例は、ポリマーフィルムとその上に形成された配向膜とからなる第2位相差領域と、配向膜に接して配置される、ディスコティック液晶化合物を含有する組成物から形成される位相差層を含む第1位相差領域とからなる光学補償フィルムである。当該構成の光学補償フィルムを長尺状に連続的に作製する場合は、製造適性の観点から、支持体となるポリマーフィルムの長手方向(通常はポリマーフィルムの遅相軸と一致する)と、配向膜の配向制御方向(例えばラビング配向膜ならばラビング処理方向)とを一致させるのが一般的である。一般的に、円盤状液晶分子は、ラビング処理で形成された配向膜表面の溝に沿って、その円盤面をはめこんで、傾斜配向(以下、「平行傾斜配向」という場合がある)するので、当該配向状態を固定して形成される位相差層の遅相軸は、ポリマーフィルムの遅相軸と平行になる。
【0043】
以下、上記構成の光学補償フィルムについて製造に用いられる材料及び方法を詳細に説明する。
(1)第2位相差領域
上記構成の光学補償フィルムに用いられる第2位相差領域の一例は、支持体となるポリマーフィルムと、その上に配向膜とを少なくとも有する積層フィルムである。
ポリマーフィルム:
上記光学特性を示す限り、第2位相差領域に用いられるポリマーフィルムの材料については特に制限はない。ポリマーの例には、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム(屈折率1.48)、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリエチレンテレフタレートフィルム、ポリエーテルスルホンフィルム、ポリアクリル系樹脂フィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルムポリオレフィン、脂環式構造を有するポリマー(ノルボルネン系樹脂(アートン:商品名、JSR社製、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製))、ポリプロピレンなどが挙げられる。このうちトリアセチルセルロース、ポリエチレンテレフタレート、脂環式構造を有するポリマーが好ましく、特にトリアセチルセルロースが好ましい。
【0044】
前記セルロースアシレートフィルムは、ソルベントキャスト法により製膜されるのが好ましい。ソルベントキャスト法を利用したセルロースアシレートフィルムの製造例については、米国特許第2,336,310号、同2,367,603号、同2,492,078号、同2,492,977号、同2,492,978号、同2,607,704号、同2,739,069号及び同2,739,070号の各明細書、英国特許第640731号及び同736892号の各明細書、並びに特公昭45−4554号、同49−5614号、特開昭60−176834号、同60−203430号及び同62−115035号等の公報を参考にすることができる。また、前記セルロースアシレートフィルムは、延伸処理を施されていてもよい。延伸処理の方法及び条件については、例えば、特開昭62−115035号、特開平4−152125号、同4−284211号、同4−298310号、同11−48271号等の各公報を参考にすることができる。
【0045】
幅方向に延伸(TD延伸)する方法は、例えば、特開昭62−115035号、特開平4−152125号、同4−284211号、同4−298310号、同11−48271号などの各公報に記載されている。幅方向の延伸の場合、フィルムの幅をテンターで保持しながら搬送して、テンターの幅を徐々に広げることによってもフィルムを延伸できる。フィルムの乾燥後に、延伸機を用いて延伸すること(好ましくはロング延伸機を用いる一軸延伸)もできる。長手方向の延伸(MD延伸)の場合、例えば、2対のニップロールを設置し、この間を加熱しながら出口側のニップロールの周速を入口側のニップロールの周速より速くすることで達成できる。この際、ニップロール間の間隔(L)と延伸前のフィルム幅(W)を変えることで厚み方向のレターデーションの発現性を変えることができる。L/Wが2を超え50以下(長スパン延伸)ではRthを小さくでき、L/Wが0.01〜0.3(短スパン延伸)ではRthを大きくできる。本発明では長スパン延伸、短スパン延伸、これらの間の領域(中間延伸=L/Wが0.3を超え2以下)どれを使用しても良いが、配向角を小さくできる長スパン延伸、短スパン延伸が好ましい。さらに高Rthを狙う場合は短スパン延伸、低Rthを狙う場合は長スパン延伸と区別して使用することがより好ましい。
これらの縦延伸の好ましい延伸温度は(Tg−10℃)〜(Tg+50)℃であり、より好ましくは(Tg−5℃)〜(Tg+40)℃であり、さらに好ましくは(Tg+5)〜(Tg+30)℃である。フィルムの搬送ローラーの速度を調節して、フィルムの剥ぎ取り速度よりもフィルムの巻き取り速度の方を速くするとフィルムは延伸される。
なお、上記では、支持体上に位相差層を設けた積層体構造である光学補償フィルムを説明したが、本発明はこの態様に限定されるものではなく、位相差層は、勿論、延伸ポリマーフィルム単独からなっていても、液晶性化合物を含有する組成物から形成された液晶フィルムのみからなっていてもよい。前記延伸ポリマーフィルムの好ましい例は、前記光学フィルムが有する支持体の好ましい例と同様である。また、液晶フィルムの好ましい例も、前記光学補償フィルムが有する位相差層の好ましい例と同様である。
【0046】
なお、第2位相差領域は、延伸ポリマーフィルム単独からなっていても、液晶性化合物を含有する組成物から形成された液晶フィルムのみからなっていてもよい。
【0047】
前記第2位相差領域は長尺の状態で連続的に製造されることが好ましい。第2位相差領域が液晶性化合物から形成される場合には、第2位相差領域の遅相軸の角度はラビングの角度で調整できる。第2位相差領域が延伸処理したポリマーフィルムから形成される場合は、延伸方向によって遅相軸の角度が調整できる。長尺状フィルムの長手方向に対して第2位相差領域の遅相軸を平行または直交の角度にすることで、長尺状の偏光膜とロールトゥロールによる貼り合せが可能になり、貼り合せの軸角度の精度が高く、生産性の高い偏光板の製造が可能になる。
【0048】
前記光学補償フィルムは長尺の状態で連続的に製造されることが好ましい。位相差層が液晶性化合物から形成される場合には、位相差層の遅相軸の角度はラビングの角度で調整できる。位相差層が延伸処理したポリマーフィルムから形成される場合は、延伸方向によって遅相軸の角度が調整できる。長尺状フィルムの長手方向に対して位相差層の遅相軸を平行または直交の角度にすることで、長尺状の偏光膜とロールトゥロールによる貼り合せが可能になり、貼り合せの軸角度の精度が高く、生産性の高い偏光板の製造が可能になる。
【0049】
なお、ポリマーフィルムの表面には、配向膜との接着性の改善を目的として、表面処理(例、グロー放電処理、コロナ放電処理、紫外線(UV)処理、火炎処理、アルカリ鹸化)処理)を実施してもよい。また接着層(下塗り層)を設けてもよい。また、本態様では、ポリマーフィルムの裏面(配向膜及び第2位相差領域が形成されない側の表面)は、偏光膜と接着させるので、当該裏面にも、アルカリ鹸化処理等の表面処理を行うのが好ましい。
【0050】
配向膜:
本態様に利用可能な配向膜の例については特に制限はないが、中でも、ポリマーを主成分とする組成物からなる膜の表面をラビング処理することで形成されるラビング配向膜が好ましい。配向膜の形成に利用可能なポリマーの例には、例えば特開平8−338913号公報明細書中段落番号[0022]記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコール及び変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコール及び変性ポリビニルアルコールが更に好ましく、ポリビニルアルコール及び変性ポリビニルアルコールが最も好ましい。ポリビニルアルコールの鹸化度は、70〜100%が好ましく、80〜100%が更に好ましい。ポリビニルアルコールの重合度は100〜5000であることが好ましい。
【0051】
前記配向膜の形成のために、架橋反応を進行させてもよい。架橋反応を進行させるためには、主成分ポリマーとして、架橋性官能基を側鎖に有するポリマーを用いてもよいし、架橋剤を用いてもよく、また併用してもよい。
配向膜は、ポリマーフィルムの表面に、上記主成分ポリマーを含む塗布液を塗布、乾燥、所望により架橋反応を進行させて、形成することができる。利用可能な塗布方法の例には、スピンコーティング法、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法又はロールコーティング法が含まれる。
好ましい。特にロッドコーティング法が好ましい。また、乾燥後の膜厚は0.1〜10μmが好ましい。
【0052】
製膜後に、膜表面をラビング処理する。製造適性の観点では、ラビング処理は、ポリマーフィルムの搬送方向、即ち連続生産される長尺状のフィルムの長手方向に沿って行うのが好ましい。ラビング処理は、膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより、実施することができる。
【0053】
その他、配向膜として、光配向膜を利用することもできる。
【0054】
この様にして、所定の光学特性を満足するポリマーフィルムと、配向膜とを有し、ポリマーフィルムの遅相軸方向(一般的にはポリマーフィルムの長手方向と一致する場合が多い)と、配向膜の配向制御方向(ラビング配向膜ではラビング処理方向)とが一致した積層フィルムからなる第2位相差領域を作製することができる。
【0055】
(2)第1位相差領域
第1位相差領域の一例は、ディスコティック液晶化合物を含有する硬化性組成物を硬化してなる位相差層、又は当該位相差層とその上にポリマーフィルムを有する積層体である。当該ポリマーフィルムは、第1偏光膜との接着性の改善のために用いられるものであり、第1偏光膜と接着される最表層として配置されるのが好ましい。
前記第1位相差領域の形成に利用可能なディスコティック液晶化合物の例には、様々な文献(C.Destrade et al.,Mol.Crysr.Liq.Cryst.,vol.71,page 111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B.Kohne et al.,Angew.Chem.Soc.Chem.Comm.,page 1794(1985);J.Zhang et al.,J.Am.Chem.Soc.,vol.116,page 2655(1994))に記載されている化合物が含まれる。
【0056】
中でも、下記一般式(I)表される化合物は、上記波長分散性の位相差層の形成に適している。
【0057】
【化1】

【0058】
式中、Y11、Y12及びY13は、それぞれ独立に置換されていてもよいメチン又は窒素原子を表す。
【0059】
11、Y12及びY13がメチンの場合、メチンの水素原子は置換基で置き換わってもよい。メチンが有していてもよい置換基としては、アルキル基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アルキルチオ基、アリールチオ基、ハロゲン原子及びシアノ基を好ましい例として挙げることができる。これらの置換基の中では、アルキル基、アルコキシ基、アルコキシカルボニル基、アシルオキシ基、ハロゲン原子及びシアノ基が更に好ましく、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、炭素数2〜12アルコキシカルボニル基、炭素数2〜12アシルオキシ基、ハロゲン原子及びシアノ基がより好ましい。
11、Y12及びY13は、化合物の合成の容易さ及びコストの点において、いずれもメチンであることがより好ましく、メチンは無置換であることが更に好ましい。
【0060】
1、L2及びL3は、それぞれ独立に単結合又は二価の連結基を表す。
1、L2及びL3が二価の連結基の場合、それぞれ独立に、−O−,−S−、−C(=O)−、−NR7−、−CH=CH−、−C≡C−、二価の環状基及びこれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。上記R7は炭素原子数1〜7のアルキル基又は水素原子であり、炭素原子数1〜4のアルキル基又は水素原子であることが好ましく、メチル基、エチル基又は水素原子であることが更に好ましく、水素原子であることが最も好ましい。
【0061】
1、L2及びL3における二価の環状基とは、少なくとも1種類の環状構造を有する二価の連結基(以下、環状基と呼ぶことがある)である。環状基は5員環、6員環、又は7員環であることが好ましく、5員環又は6員環であることが更に好ましく、6員環であることが最も好ましい。環状基に含まれる環は、縮合環であってもよい。ただし、縮合環よりも単環であることがより好ましい。また、環状基に含まれる環は、芳香族環、脂肪族環、及び複素環のいずれでもよい。芳香族環としては、ベンゼン環及びナフタレン環が好ましい例として挙げられる。脂肪族環としては、シクロヘキサン環が好ましい例として挙げられる。複素環としては、ピリジン環及びピリミジン環が好ましい例として挙げられる。環状基は、芳香族環及び複素環がより好ましい。なお、本発明における2価の環状基は、環状構造のみ(但し、置換基を含む)からなる2価の連結基であることがより好ましい(以下、同じ)。
【0062】
1、L2及びL3で表される二価の環状基のうち、ベンゼン環を有する環状基としては、1,4−フェニレン基が好ましい。ナフタレン環を有する環状基としては、ナフタレン−1,5−ジイル基及びナフタレン−2,6−ジイル基が好ましい。シクロヘキサン環を有する環状基としては1,4−シクロへキシレン基であることが好ましい。ピリジン環を有する環状基としてはピリジン−2,5−ジイル基が好ましい。ピリミジン環を有する環状基としては、ピリミジン−2,5−ジイル基が好ましい。
【0063】
1、L2及びL3で表される二価の環状基は、置換基を有していてもよい。置換基としては、ハロゲン原子(好ましくは、フッ素原子、塩素原子)、シアノ基、ニトロ基、炭素原子数1〜16のアルキル基、炭素原子数2〜16のアルケニル基、炭素原子数が2〜16アルキニル基、炭素原子数1〜16のハロゲン置換アルキル基、炭素原子数1〜16のアルコキシ基、炭素原子数2〜16のアシル基、炭素原子数1〜16のアルキルチオ基、炭素原子数2〜16のアシルオキシ基、炭素原子数2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜16のアルキル基で置換されたカルバモイル基及び炭素原子数2〜16のアシルアミノ基が含まれる。
【0064】
1、L2及びL3としては、単結合、*−O−CO−、*−CO−O−、*−CH=CH−、*−C≡C−、*−二価の環状基−、*−O−CO−二価の環状基−、*−CO−O−二価の環状基−、*−CH=CH−二価の環状基−、*−C≡C−二価の環状基−、*−二価の環状基−O−CO−、*−二価の環状基−CO−O−、*−二価の環状基−CH=CH−及び*−二価の環状基−C≡C−が好ましい。特に、単結合、*−CH=CH−、*−C≡C−、*−CH=CH−二価の環状基−及び*−C≡C−二価の環状基−が好ましく、単結合が最も好ましい。ここで、*は一般式(I)中のY11、Y12及びY13を含む6員環側に結合する位置を表す。
【0065】
一般式(I)中、H1、H2及びH3は、それぞれ独立に一般式(I−A)又は(I−B)の基を表す。
【0066】
【化2】

【0067】
一般式(I−A)中、YA1及びYA2は、それぞれ独立にメチン又は窒素原子を表し;
XAは、酸素原子、硫黄原子、メチレン又はイミノを表し;
*は上記一般式(I)におけるL1〜L3側と結合する位置を表し;
**は上記一般式(I)におけるR1〜R3側と結合する位置を表す。
【0068】
【化3】

【0069】
一般式(I−B)中、YB1及びYB2は、それぞれ独立にメチン又は窒素原子を表し;
XBは、酸素原子、硫黄原子、メチレン又はイミノを表し;
*は上記一般式(I)におけるL1〜L3側と結合する位置を表し;
**は上記一般式(I)におけるR1〜R3側と結合する位置を表す。
【0070】
一般式(I)中、R1、R2及びR3は、それぞれ独立に下記一般式(I−R)を表す。
【0071】
一般式(I−R)
*−(−L21−Q2n1−L22−L23−Q1
一般式(I−R)中、*は、一般式(I)におけるH1〜H3側と結合する位置を表す。
21は単結合又は二価の連結基を表す。L21が二価の連結基の場合、−O−、−S−、−C(=O)−、−NR7−、−CH=CH−及び−C≡C−並びにこれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。上記R7は炭素原子数1〜7のアルキル基又は水素原子であり、炭素原子数1〜4のアルキル基又は水素原子であることが好ましく、メチル基、エチル基又は水素原子であることが更に好ましく、水素原子であることが最も好ましい。
【0072】
21は単結合、***−O−CO−、***−CO−O−、***−CH=CH−及び***−C≡C−(ここで、***は一般式(DI−R)中の*側を表す)のいずれかが好ましく、単結合がより好ましい。
【0073】
2は少なくとも1種類の環状構造を有する二価の基(環状基)を表す。このような環状基としては、5員環、6員環、又は7員環を有する環状基が好ましく、5員環又は6員環を有する環状基がより好ましく、6員環を有する環状基が更に好ましい。上記環状基に含まれる環状構造は、縮合環であっても良い。ただし、縮合環よりも単環であることがより好ましい。また、環状基に含まれる環は、芳香族環、脂肪族環、及び複素環のいずれでもよい。芳香族環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環が好ましい例として挙げられる。脂肪族環としては、シクロヘキサン環が好ましい例として挙げられる。複素環としては、ピリジン環及びピリミジン環が好ましい例として挙げられる。
【0074】
上記Q2のうち、ベンゼン環を有する環状基としては、1,4−フェニレン基が好ましい。ナフタレン環を有する環状基としては、ナフタレン−1,4−ジイル基、ナフタレン−1,5−ジイル基、ナフタレン−1,6−ジイル基、ナフタレン−2,5−ジイル基、ナフタレン−2,6−ジイルナフタレン−2,7−ジイル基が好ましい。シクロヘキサン環を有する環状基としては1,4−シクロへキシレン基であることが好ましい。ピリジン環を有する環状基としてはピリジン−2,5−ジイル基が好ましい。ピリミジン環を有する環状基としては、ピリミジン−2,5−ジイル基が好ましい。これらの中でも、特に、1,4−フェニレン基、ナフタレン−2,6−ジイル基及び1,4−シクロへキシレン基が好ましい。
【0075】
2は、置換基を有していてもよい。置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数1〜16のアルキル基、炭素原子数2〜16のアルケニル基、炭素原子数2〜16のアルキニル基、炭素原子数1〜16のハロゲンで置換されたアルキル基、炭素原子数1〜16のアルコキシ基、炭素原子数2〜16のアシル基、炭素原子数1〜16のアルキルチオ基、炭素原子数2〜16のアシルオキシ基、炭素原子数2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜16のアルキル置換カルバモイル基及び炭素原子数2〜16のアシルアミノ基が含まれる。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基が好ましく、ハロゲン原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のハロゲンで置換されたアルキル基がより好ましく、ハロゲン原子、炭素原子数が1〜3のアルキル基、トリフルオロメチル基が更に好ましい。
【0076】
n1は、0〜4の整数を表す。n1としては、1〜3の整数が好ましく、1若しくは2が更に好ましい。
【0077】
22は、**−O−、**−O−CO−、**−CO−O−、**−O−CO−O−、**−S−、**−NH−、**−SO2−、**−CH2−、**−CH=CH−又は**−C≡C−を表し、**はQ2側と結合する位置を表す。
22は、好ましくは、**−O−、**−O−CO−、**−CO−O−、**−O−CO−O−、**−CH2−、**−CH=CH−、**−C≡C−であり、より好ましくは、**−O−、**−O−CO−、**−O−CO−O−、**−CH2−である。L22が水素原子を含む基であるときは、該水素原子は置換基で置換されていてもよい。このような置換基として、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基、炭素原子数1〜6のアルコキシ基、炭素原子数2〜6のアシル基、炭素原子数1〜6のアルキルチオ基、炭素原子数2〜6のアシルオキシ基、炭素原子数2〜6のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜6のアルキルで置換されたカルバモイル基及び炭素原子数2〜6のアシルアミノ基が好ましい例として挙げられ、ハロゲン原子、炭素原子数1〜6のアルキル基がより好ましい。
【0078】
23は、−O−、−S−、−C(=O)−、−SO2−、−NH−、−CH2−、−CH=CH−及び−C≡C−並びにこれらの組み合わせからなる群より選ばれる二価の連結基を表す。ここで、−NH−、−CH2−、−CH=CH−の水素原子は、置換基で置換されていてもよい。このような置換基として、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基、炭素原子数1〜6のアルコキシ基、炭素原子数2〜6のアシル基、炭素原子数1〜6のアルキルチオ基、炭素原子数2〜6のアシルオキシ基、炭素原子数2〜6のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜6のアルキルで置換されたカルバモイル基及び炭素原子数2〜6のアシルアミノ基が好ましい例として挙げられ、ハロゲン原子、炭素原子数1〜6のアルキル基がより好ましい。これらの置換基に置換されることにより、本発明の液晶性化合物から液晶性組成物を調製する際に、使用する溶媒に対する溶解性を向上させることができる。
【0079】
23は、−O−、−C(=O)−、−CH2−、−CH=CH−及び−C≡C−並びにこれらの組み合わせからなる群より選ばれることが好ましい。L23は、炭素原子を1〜20個含有することが好ましく、炭素原子を2〜14個を含有することがより好ましい。更に、L23は、−CH2−を1〜16個含有することが好ましく、−CH2−を2〜12個含有することが更に好ましい。
【0080】
1は重合性基又は水素原子を表す。本発明の液晶性化合物を光学補償フィルムのような位相差の大きさが熱により変化しないものが好ましい光学フィルム等に用いる場合には、Q1は重合性基であることが好ましい。重合反応は、付加重合(開環重合を含む)又は縮合重合であることが好ましい。すなわち、重合性基は、付加重合反応又は縮合重合反応が可能な官能基であることが好ましい。以下に重合性基の例を示す。
【0081】
【化4】

【0082】
更に、重合性基は付加重合反応が可能な官能基であることが特に好ましい。そのような重合性基としては、重合性エチレン性不飽和基又は開環重合性基が好ましい。
【0083】
重合性エチレン性不飽和基の例としては、下記の式(M−1)〜(M−6)が挙げられる。
【0084】
【化5】

【0085】
式(M−3)、(M−4)中、Rは水素原子又はアルキル基を表し、水素原子又はメチル基が好ましい。
上記式(M−1)〜(M−6)の中、(M−1)又は(M−2)が好ましく、(M−1)がより好ましい。
【0086】
開環重合性基は、環状エーテル基が好ましく、エポキシ基又はオキセタニル基がより好ましい。
【0087】
前記式(I)の化合物の中でも、下記一般式(I’)で表される化合物がより好ましい。
【0088】
【化6】

【0089】
一般式(DI)中、Y11、Y12及びY13は、それぞれ独立にメチン又は窒素原子を表し、メチンが好ましく、メチンは無置換であるのが好ましい。
【0090】
11、R12及びR13は、それぞれ独立に下記一般式(I’−A)、下記一般式(I’−B)又は下記一般式(I’−C)を表す。固有複屈折の波長分散性を小さくしようとする場合、一般式(I’−A)又は一般式(I’−C)が好ましく、一般式(I’−A)がより好ましい。R11、R12及びR13は、R11=R12=R13であることが好ましい。
【0091】
【化7】

【0092】
一般式(I’−A)中、A11、A12、A13、A14、A15及びA16は、それぞれ独立にメチン又は窒素原子を表す。
11及びA12は、少なくとも一方が窒素原子であることが好ましく、両方が窒素原子であることがより好ましい。
13、A14、A15及びA16は、それらのうち、少なくとも3つがメチンであることが好ましく、すべてメチンであることがより好ましい。更に、メチンは無置換であることが好ましい。
11、A12、A13、A14、A15又はA16がメチンの場合の置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数1〜16のアルキル基、炭素原子数2〜16のアルケニル基、炭素原子数2〜16のアルキニル基、炭素原子数1〜16のハロゲンで置換されたアルキル基、炭素原子数1〜16のアルコキシ基、炭素原子数2〜16のアシル基、炭素原子数1〜16のアルキルチオ基、炭素原子数2〜16のアシルオキシ基、炭素原子数2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜16のアルキル置換カルバモイル基及び炭素原子数2〜16のアシルアミノ基が含まれる。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基が好ましく、ハロゲン原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のハロゲンで置換されたアルキル基がより好ましく、ハロゲン原子、炭素原子数が1〜3のアルキル基、トリフルオロメチル基が更に好ましい。
1は、酸素原子、硫黄原子、メチレン又はイミノを表し、酸素原子が好ましい。
【0093】
【化8】

【0094】
一般式(I’−B)中、A21、A22、A23、A24、A25及びA26は、それぞれ独立にメチン又は窒素原子を表す。 A21及びA22は、少なくとも一方が窒素原子であることが好ましく、両方が窒素原子であることがより好ましい。
23、A24、A25及びA26は、それらのうち、少なくとも3つがメチンであることが好ましく、すべてメチンであることがより好ましい。
21、A22、A23、A24、A25又はA26がメチンの場合の置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数1〜16のアルキル基、炭素原子数2〜16のアルケニル基、炭素原子数2〜16のアルキニル基、炭素原子数1〜16のハロゲンで置換されたアルキル基、炭素原子数1〜16のアルコキシ基、炭素原子数2〜16のアシル基、炭素原子数1〜16のアルキルチオ基、炭素原子数2〜16のアシルオキシ基、炭素原子数2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜16のアルキル置換カルバモイル基及び炭素原子数2〜16のアシルアミノ基が含まれる。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基が好ましく、ハロゲン原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のハロゲンで置換されたアルキル基がより好ましく、ハロゲン原子、炭素原子数が1〜3のアルキル基、トリフルオロメチル基が更に好ましい。
2は、酸素原子、硫黄原子、メチレン又はイミノを表し、酸素原子が好ましい。
【0095】
【化9】

【0096】
一般式(I’−C)中、A31、A32、A33、A34、A35及びA36は、それぞれ独立にメチン又は窒素原子を表す。
31及びA32は、少なくとも一方が窒素原子であることが好ましく、両方が窒素原子であることがより好ましい。
33、A34、A35及びA36は、少なくとも3つがメチンであることが好ましく、すべてメチンであることがより好ましい。
31、A32、A33、A34、A35又はA36がメチンの場合、メチンは置換基を有していてもよい。置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数1〜16のアルキル基、炭素原子数2〜16のアルケニル基、炭素原子数2〜16のアルキニル基、炭素原子数1〜16のハロゲンで置換されたアルキル基、炭素原子数1〜16のアルコキシ基、炭素原子数2〜16のアシル基、炭素原子数1〜16のアルキルチオ基、炭素原子数2〜16のアシルオキシ基、炭素原子数2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜16のアルキル置換カルバモイル基及び炭素原子数2〜16のアシルアミノ基が含まれる。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基が好ましく、ハロゲン原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のハロゲンで置換されたアルキル基がより好ましく、ハロゲン原子、炭素原子数が1〜3のアルキル基、トリフルオロメチル基が更に好ましい。
3は、酸素原子、硫黄原子、メチレン又はイミノを表し、酸素原子が好ましい。
【0097】
一般式(I’−A)中のL11、一般式(I’−B)中のL21、一般式(I’−C)中のL31はそれぞれ独立して、−O−、−C(=O)−、−O−CO−、−CO−O−、−O−CO−O−、−S−、−NH−、−SO2−、−CH2−、−CH=CH−又は−C≡C−を表す。好ましくは、−O−、−C(=O)−、−O−CO−、−CO−O−、−O−CO−O−、−CH2−、−CH=CH−、−C≡C−であり、より好ましくは、−O−、−O−CO−、−CO−O−、−O−CO−O−、−C≡C−である。特に、小さい固有複屈折の波長分散性が期待できる、一般式(DI−A)中のL11は、−O−、−CO−O−、−C≡C−が特に好ましく、この中でも−CO−O−が、より高温でディスコティックネマチック相を発現できるため、好ましい。上述の基が水素原子を含む基であるときは、該水素原子は置換基で置き換わってもよい。このような置換基として、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基、炭素原子数1〜6のアルコキシ基、炭素原子数2〜6のアシル基、炭素原子数1〜6のアルキルチオ基、炭素原子数2〜6のアシルオキシ基、炭素原子数2〜6のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜6のアルキルで置換されたカルバモイル基及び炭素原子数2〜6のアシルアミノ基が好ましい例として挙げられ、ハロゲン原子、炭素原子数1〜6のアルキル基がより好ましい。
【0098】
一般式(I’−A)中のL12、一般式(I’−B)中のL22、一般式(I’−C)中のL32はそれぞれ独立して、−O−、−S−、−C(=O)−、−SO2−、−NH−、−CH2−、−CH=CH−及び−C≡C−並びにこれらの組み合わせからなる群より選ばれる二価の連結基を表す。ここで、−NH−、−CH2−、−CH=CH−の水素原子は、置換基で置換されていてもよい。このような置換基として、ハロゲン原子、シアノ基、ニトロ基、水酸基、カルボキシル基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基、炭素原子数1〜6のアルコキシ基、炭素原子数2〜6のアシル基、炭素原子数1〜6のアルキルチオ基、炭素原子数2〜6のアシルオキシ基、炭素原子数2〜6のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜6のアルキルで置換されたカルバモイル基及び炭素原子数2〜6のアシルアミノ基が好ましい例として挙げられ、ハロゲン原子、水酸基、炭素原子数1〜6のアルキル基がより好ましく、特にハロゲン原子、メチル基、エチル基が好ましい。
【0099】
12、L22、L32はそれぞれ独立して、−O−、−C(=O)−、−CH2−、−CH=CH−及び−C≡C−並びにこれらの組み合わせからなる群より選ばれることが好ましい。
【0100】
12、L22、L32はそれぞれ独立して、炭素数1〜20であることが好ましく、炭素数2〜14であることがより好ましい。炭素数2〜14が好ましく、−CH2−を1〜16個有することがより好ましく、−CH2−を2〜12個有することが更に好ましい。
【0101】
12、L22、L32を構成する炭素数は、液晶の相転移温度と化合物の溶媒への溶解性に影響を及ぼす。一般的に炭素数は多くなるほど、ディスコティックネマチック相(ND相)から等方性液体への転移温度が低下する傾向にある。また、溶媒への溶解性は、一般的に炭素数は多くなるほど向上する傾向にある。
【0102】
一般式(I’−A)中のQ11、一般式(I’−B)中のQ21、一般式(I’−C)中のQ31はそれぞれ独立して重合性基又は水素原子を表す。また、Q11、Q21、Q31は重合性基であることが好ましい。重合反応は、付加重合(開環重合を含む)又は縮合重合であることが好ましい。すなわち、重合性基は、付加重合反応又は縮合重合反応が可能な官能基であることが好ましい。以下に重合性基の例については、上記と同様であり、好ましい例も上記と同様である。
【0103】
以下に、一般式(I)で表される化合物の具体例としては、特開2009−97002号公報[0038]〜[0069]記載の化合物や、以下の化合物が挙げられるが、本発明はこれらに限定されるものではない。
【0104】
【化10】

【0105】
【化11】

【0106】
【化12】

【0107】
【化13】

【0108】
【化14】

【0109】
【化15】

【0110】
【化16】

【0111】
【化17】

【0112】
【化18】

【0113】
【化19】

【0114】
【化20】

【0115】
【化21】

【0116】
【化22】

【0117】
【化23】

【0118】
【化24】

【0119】
【化25】

【0120】
【化26】

【0121】
トリフェニレン化合物で、波長分散の小さいディスコティック液晶化合物としては、特開2007−108732号公報の段落[0062]〜[0067]記載の化合物等が挙げられるが、本発明はこれらに限定されるものではない。
【0122】
[垂直配向促進剤]
前記位相差層を形成する際に、液晶性化合物の分子を傾斜配向させるが、本発明では、低チルト角で傾斜配向させるのが好ましく、その態様では、液晶化合物の分子を垂直配向させるとともに、又は垂直配向させた後に、傾斜配向のための処理を行うのが好ましい。液晶分子を一旦垂直配向させるためには、配向膜界面側及び空気界面側において液晶性化合物を垂直に配向制御可能な配向制御剤を用いるのが好ましい。ディスコティック液晶化合物を垂直に配向させる作用は、そのダイレクターの傾斜角度、すなわちダイレクターと液晶空気側表面とがなす角度を減少させる作用に相当する。特に、空気界面側でのディスコティック液晶化合物のダイレクターの傾斜角度を減じる作用を有する空気界面垂直配向促進剤を用いるのが好ましい。
垂直配向促進剤の例には、配向膜に対して、排除体積効果、静電気的効果又は表面エネルギー効果によって液晶性化合物を垂直に配向させる作用を及ぼす化合物、及び液晶性化合物の配向時に空気界面に偏在し、その排除体積効果、静電気的効果、又は表面エネルギー効果によって液晶性化合物を垂直に配向させる作用を及ぼす化合物が含まれる。
【0123】
配向膜界面側で液晶性化合物の分子を垂直に配向させるのを促進する化合物(配向膜界面側垂直配向剤)としては、ピリジニウム誘導体が好適に用いられる。空気界面側で液晶性化合物の分子を垂直に配向させるのを促進する化合物(空気界面側垂直配向剤)としては、該化合物が空気界面側に偏在するのを促進する、フルオロ脂肪族基と、カルボキシル基(−COOH)、スルホ基(−SO3H)、ホスホノキシ基{−OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含む化合物が好適に用いられる。また、これらの化合物を配合することによって、例えば、液晶性組成物を塗布液として調製した場合に、該塗布液の塗布性が改善され、ムラ、ハジキの発生が抑制される。以下に垂直配向剤に関して詳細に説明する。
【0124】
[配向膜界面側垂直配向剤]
本発明に使用可能な配向膜界面側垂直配向剤としては、下記式(II)で表されるピリジニウム誘導体(ピリジニウム塩)が好適に用いられる。該ピリジニウム誘導体の少なくとも1種を前記液晶性組成物に添加することによって、ディスコティック液晶化合物の分子を配向膜近傍で実質的に垂直に配向させることができる。
【0125】
【化27】

【0126】
式中、L23及びL24はそれぞれ二価の連結基を表す。
23は、単結合、−O−、−O−CO−、−CO−O−、−C≡C−、−CH=CH−、−CH=N−、−N=CH−、−N=N−、−O−AL−O−、−O−AL−O−CO−、−O−AL−CO−O−、−CO−O−AL−O−、−CO−O−AL−O−CO−、−CO−O−AL−CO−O−、−O−CO−AL−O−、−O−CO−AL−O−CO−又は−O−CO−AL−CO−O−であるのが好ましく、ALは、炭素原子数が1〜10のアルキレン基である。L23は、単結合、−O−、−O−AL−O−、−O−AL−O−CO−、−O−AL−CO−O−、−CO−O−AL−O−、−CO−O−AL−O−CO−、−CO−O−AL−CO−O−、−O−CO−AL−O−、−O−CO−AL−O−CO−又は−O−CO−AL−CO−O−が好ましく、単結合又は−O−が更に好ましく、−O−が最も好ましい。
【0127】
24は、L4は、単結合、−O−、−O−CO−、−CO−O−、−C≡C−、−CH=CH−、−CH=N−、−N=CH−又は−N=N−であるのが好ましく、−O−CO−又は−CO−O−がより好ましい。mが2以上のとき、複数のL24が交互に、−O−CO−及び−CO−O−であるのが更に好ましい。
【0128】
22は水素原子、無置換アミノ基、又は炭素原子数が1〜25の置換アミノ基である。
22が、ジアルキル置換アミノ基である場合、2つのアルキル基が互いに結合して含窒素複素環を形成してもよい。このとき形成される含窒素複素環は、5員環又は6員環が好ましい。R23は水素原子、無置換アミノ基、又は炭素原子数が2〜12のジアルキル置換アミノ基であるのが更に好ましく、水素原子、無置換アミノ基、又は炭素原子数が2〜8のジアルキル置換アミノ基であるのがより更に好ましい。R23が無置換アミノ基及び置換アミノ基である場合、ピリジニウム環の4位が置換されていることが好ましい。
【0129】
Xはアニオンである。
Xは、一価のアニオンであることが好ましい。アニオンの例には、アニオンの例には、ハロゲン陰イオン(例え、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオンなど)、スルホネートイオン(例えば、メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、メチル硫酸イオン、p−トルエンスルホン酸イオン、p−クロロベンゼンスルホン酸イオン、1,3−ベンゼンジスルホン酸イオン、1,5−ナフタレンジスルホン酸イオン、2,6−ナフタレンジスルホン酸イオンなど)、硫酸イオン、炭酸イオン、硝酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロほう酸イオン、ピクリン酸イオン、酢酸イオン、ギ酸イオン、トリフルオロ酢酸イオン、リン酸イオン(例えば、ヘキサフルオロリン酸イオン)、水酸イオンなどが挙げられる。Xは、好ましくは、ハロゲン陰イオン、スルホネートイオン、水酸イオンである。
【0130】
22及びY23はそれぞれ、5又は6員環を部分構造として有する2価の連結基である。
前記5又は6員環が置換基を有していてもよい。好ましくは、Y22及びY23のうち少なくとも1つは、置換基を有する5又は6員環を部分構造として有する2価の連結基である。Y22及びY23は、それぞれ独立に、置換基を有していてもよい6員環を部分構造として有する2価の連結基であるのが好ましい。6員環は、脂肪族環、芳香族環(ベンゼン環)及び複素環を含む。6員脂肪族環の例は、シクロヘキサン環、シクロヘキセン環及びシクロヘキサジエン環を含む。6員複素環の例は、ピラン環、ジオキサン環、ジチアン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環及びトリアジン環を含む。6員環に、他の6員環又は5員環が縮合していてもよい。
置換基の例は、ハロゲン原子、シアノ、炭素原子数が1〜12のアルキル基及び炭素原子数が1〜12のアルコキシ基を含む。アルキル基及びアルコキシ基は、炭素原子数が2〜12のアシル基又は炭素原子数が2〜12のアシルオキシ基で置換されていてもよい。置換基は、炭素原子数が1〜12(より好ましくは1〜6、更に好ましくは1〜3)のアルキル基であるのが好ましい。置換基は2以上であってもよく、例えば、Y22及びY23がフェニレン基である場合は、1〜4の炭素原子数が1〜12(より好ましくは1〜6、更に好ましくは1〜3)のアルキル基で置換されていてもよい。
【0131】
なお、mは1又は2であり、2であるのが好ましい。mが2のとき、複数のY23及びL24は、互いに同一であっても異なっていてもよい。
【0132】
21は、ハロゲン置換フェニル、ニトロ置換フェニル、シアノ置換フェニル、炭素原子数が1〜25のアルキル基で置換されたフェニル、炭素原子数が1〜25のアルコキシ基で置換されたフェニル、炭素原子数が1〜25のアルキル基、炭素原子数が2〜25のアルキニル基、炭素原子数が1〜25のアルコキシ基、炭素原子数が1〜25のアルコキシカルボニル基、炭素原子数が7〜26のアリールオキシカルボニル基及び炭素原子数が7〜26のアリールカルボニルオキシ基からなる群より選ばれる一価の基である。
mが2の場合、Z21は、シアノ、炭素原子数が1〜25のアルキル基又は炭素原子数が1〜25のアルコキシ基であることが好ましく、炭素原子数4〜20のアルコキシ基であるのが更に好ましい。
mが1の場合、Z21は、炭素原子数が7〜25のアルキル基、炭素原子数が7〜25のアルコキシ基、炭素原子数が7〜25のアシル置換アルキル基、炭素原子数が7〜25のアシル置換アルコキシ基、炭素原子数が7〜12のアシルオキシ置換アルキル基又は炭素原子数が7〜25のアシルオキシ置換アルコキシ基であることが好ましい。
【0133】
アシル基は−CO−R、アシルオキシ基は−O−CO−Rで表され、Rは脂肪族基(アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基)又は芳香族基(アリール基、置換アリール基)である。Rは、脂肪族基であることが好ましく、アルキル基又はアルケニル基であることが更に好ましい。
【0134】
pは、1〜10の整数である。pは、1又は2であることが特に好ましい。Cp2pは、分岐構造を有していてもよい鎖状アルキレン基を意味する。Cp2pは、直鎖状アルキレン基(−(CH2p−)であることが好ましい。
【0135】
前記式(II)で表される化合物の中でも、下記式(II’)で表される化合物が好ましい。
【0136】
【化28】

【0137】
式(II’)中、式(II)と同一の符号は同一の意義であり、好ましい範囲も同様である。L25はL24と同義であり、好ましい範囲も同様である。L24及びL25は、−O−CO−又は−CO−O−であるのが好ましく、L24が−O−CO−で、かつL25が−CO−O−であるのが好ましい。
【0138】
23、R24及びR25はそれぞれ、炭素原子数が1〜12(より好ましくは1〜6、更に好ましくは1〜3)のアルキル基である。n23は0〜4、n24は1〜4、及びn25は0〜4を表す。n23及びn25が0で、n24が1〜4(より好ましくは1〜3)であるのが好ましい。
【0139】
一般式(II)で表される化合物の具体例としては、特開2006−113500号公報明細書中[0058]〜[0061]に記載の化合物が挙げられる。
【0140】
その他にも一般式(II)で表される化合物の具体例としては下記化合物が挙げられる。但し、下記式中、アニオン(X-)は省略した。
【0141】
【化29】

【0142】
【化30】

【0143】
以下に、一般式(II’)で表される化合物の具体例を示す。但し、下記式中、アニオン(X-)は省略した。
【0144】
【化31】

【0145】
【化32】

【0146】
【化33】

【0147】
【化34】

【0148】
式(II)のピリジニウム誘導体は、一般にピリジン環をアルキル化(メンシュトキン反応)して得られる。
【0149】
前記位相差層形成用の組成物中における前記ピリジニウム誘導体の含有量の好ましい範囲は、その用途によって異なるが、前記組成物(塗布液として調製した場合は溶媒を除いた液晶性組成物)中、0.005〜8質量%であるのが好ましく、0.01〜5質量%であるのがより好ましい。
【0150】
[空気界面側垂直配向剤]
空気界面側垂直配向剤は、分子内にフッ素原子と、親水性基を有する化合物であるのが好ましい。本発明に使用可能な空気界面側垂直配向剤には、フルオロ脂肪族基と親水性基とを有するフッ素系ポリマー、及び一般式(III)で表される含フッ素化合物が含まれる。
【0151】
フッ素系ポリマー:
まず、空気界面側垂直配向剤として利用可能なフッ素系ポリマーについて説明する。
本発明に使用可能なフッ素系ポリマーは、フルオロ脂肪族基と、カルボキシル基(−COOH)、スルホ基(−SO3H)、ホスホノキシ基{−OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含有する。ポリマーの種類としては、「改訂 高分子合成の化学」(大津隆行著、発行:株式会社化学同人、1968)1〜4ページに記載があり、例えば、ポリオレフィン類、ポリエステル類、ポリアミド類、ポリイミド類、ポリウレタン類、ポリカーボネート類、ポリスルホン類、ポリカーボナート類、ポリエーテル類、ポリアセタール類、ポリケトン類、ポリフェニレンオキシド類、ポリフェニレンスルフィド類、ポリアリレート類、PTFE類、ポリビニリデンフロライド類、セルロース誘導体などが挙げられる。前記フッ素系ポリマーは、ポリオレフィン類であることが好ましい。
【0152】
前記フッ素系ポリマーは、フルオロ脂肪族基を側鎖に有するポリマーである。前記フルオロ脂肪族基は、炭素数1〜12であるのが好ましく、6〜10であるのがより好ましい。脂肪族基は、鎖状であっても環状であってもよく、鎖状である場合は直鎖状であっても分岐鎖状であってもよい。中でも、直鎖状の炭素数6〜10のフルオロ脂肪族基が好ましい。フッ素原子による置換の程度については特に制限はないが、脂肪族基中の50%以上の水素原子がフッ素原子に置換されているのが好ましく、60%以上が置換されているのがより好ましい。フルオロ脂肪族基は、エステル結合、アミド結合、イミド結合、ウレタン結合、ウレア結合、エーテル結合、チオエーテル結合、芳香族環などを介してポリマー主鎖と結合した側鎖に含まれる。フルオロ脂肪族基の一つは、テロメリゼーション法(テロマー法ともいわれる)又はオリゴメリゼーション法(オリゴマー法ともいわれる)により製造されたフルオロ脂肪族化合物から導かれるものである。これらのフルオロ脂肪族化合物の製造法に関しては、例えば、「フッ素化合物の合成と機能」(監修:石川延男、発行:株式会社シーエムシー、1987)の117〜118ページや、「Chemistry of Organic Fluorine Compounds II」(Monograph 187,Ed by Milos Hudlicky and Attila E.Pavlath,American Chemical Society 1995)の747−752ページに記載されている。テロメリゼーション法とは、ヨウ化物等の連鎖移動常数の大きいアルキルハライドをテローゲンとして、テトラフルオロエチレン等のフッ素含有ビニル化合物のラジカル重合を行い、テロマーを合成する方法である(Scheme−1に例を示した)。
【0153】
【化35】

【0154】
得られた、末端ヨウ素化テロマーは通常、例えば[Scheme2]のごとき適切な末端化学修飾を施され、フルオロ脂肪族化合物へと導かれる。これらの化合物は必要に応じ、更に所望のモノマー構造へと変換され、フルオロ脂肪族基含有ポリマーの製造に使用される。
【0155】
【化36】

【0156】
本発明に使用可能なフッ素系ポリマーの製造に利用可能なモノマーの具体例としては、特開2006−113500公報の段落[0075]〜[0081]に記載の化合物等が挙げられるが、本発明はそれら具体例によってなんら制限されるものではない。
【0157】
本発明に使用可能なフッ素系ポリマーの一態様は、フルオロ脂肪族基含有モノマーより誘導される繰り返し単位と、下記式(IV)で表される親水性基を含有する繰り返し単位とを有する共重合体である。
【0158】
【化37】

【0159】
上記式(IV)において、R1、R2及びR3はそれぞれ独立に、水素原子又は置換基を表す。Qはカルボキシル基(−COOH)又はその塩、スルホ基(−SO3H)又はその塩、ホスホノキシ基{−OP(=O)(OH)2}又はその塩を表す。Lは下記の連結基群から選ばれる任意の基、又はそれらの2つ以上を組み合わせて形成される2価の連結基を表す。
(連結基群)
単結合、−O−、−CO−、−NRb−(Rbは水素原子、アルキル基、アリール基、又はアラルキル基を表す)、−S−、−SO2−、−P(=O)(ORc)−(Rcはアルキル基、アリール基、又はアラルキル基を表す)、アルキレン基及びアリーレン基。
【0160】
式(IV)中、R1、R2及びR3は、それぞれ独立に、水素原子又は下記に例示した置換基群から選ばれる置換基を表す。
(置換基群)
アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8のアルケニル基であり、例えば、ビニル基、アリール基、2−ブテニル基、3−ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8のアルキニル基であり、例えば、プロパルギル基、3−ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12のアリール基であり、例えば、フェニル基、p−メチルフェニル基、ナフチル基などが挙げられる)、アラルキル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12のアラルキル基であり、例えば、ベンジル基、フェネチル基、3−フェニルプロピル基などが挙げられる)、置換若しくは無置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、アニリノ基などが挙げられる)、
【0161】
アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜10のアルコキシ基であり、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは2〜10のアルコキシカルボニル基であり、例えば、メトキシカルボニル基、エトキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは2〜10のアシルオキシ基であり、例えば、アセトキシ基、ベンゾイルオキシ基などが挙げられる)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10のアシルアミノ基であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12のアルコキシカルボニルアミノ基であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12のアリールオキシカルボニルアミノ基であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルホニルアミノ基であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12のスルファモイル基であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のカルバモイル基であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる)、
【0162】
アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のアルキルチオ基であり、例えば、メチルチオ基、エチルチオ基などが挙げられる)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12のアリールチオ基であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルホニル基であり、例えば、メシル基、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルフィニル基であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のウレイド基であり、例えば、無置換のウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のリン酸アミド基であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)が含まれる。これらの置換基は更にこれらの置換基によって置換されていてもよい。また、置換基を二つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
【0163】
1、R2及びR3はそれぞれ独立に、水素原子、アルキル基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、又は後述する−L−Qで表される基であることが好ましく、水素原子、炭素数1〜6のアルキル基、塩素原子、−L−Qで表される基であることがより好ましく、水素原子、炭素数1〜4のアルキル基であることが特に好ましく、水素原子、炭素数1〜2のアルキル基であることが最も好ましい。該アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、sec−ブチル基等が挙げられる。該アルキル基は、適当な置換基を有していても良い。該置換基としては、ハロゲン原子、アリール基、ヘテロ環基、アルコキシル基、アリールオキシ基、アルキルチオ基、アリールチオ基、アシル基、ヒドロキシル基、アシルオキシ基、アミノ基、アルコキシカルボニル基、アシルアミノ基、オキシカルボニル基、カルバモイル基、スルホニル基、スルファモイル基、スルホンアミド基、スルホリル基、カルボキシル基などが挙げられる。なお、アルキル基の炭素数は、置換基の炭素原子を含まない。以下、他の基の炭素数についても同様である。
【0164】
Lは、上記連結基群から選ばれる2価の連結基、又はそれらの2つ以上を組み合わせて形成される2価の連結基を表す。上記連結基群中、−NRb−のRbは、水素原子、アルキル基、アリール基又はアラルキル基を表し、好ましくは水素原子又はアルキル基である。また、−PO(ORc)−のRcはアルキル基、アリール基又はアラルキル基を表し、好ましくはアルキル基である。Rb及びRcがアルキル基、アリール基又はアラルキル基を表す場合の炭素数は「置換基群」で説明したものと同じである。Lとしては、単結合、−O−、−CO−、−NRb−、−S−、−SO2−、アルキレン基又はアリーレン基を含むことが好ましく、−CO−、−O−、−NRb−、アルキレン基又はアリーレン基を含んでいることが特に好ましい。Lがアルキレン基を含む場合、アルキレン基の炭素数は好ましくは1〜10、より好ましくは1〜8、特に好ましくは1〜6である。特に好ましいアルキレン基の具体例として、メチレン、エチレン、トリメチレン、テトラブチレン、ヘキサメチレン基等が挙げられる。Lが、アリーレン基を含む場合、アリーレン基の炭素数は、好ましくは6〜24、より好ましくは6〜18、特に好ましくは6〜12である。特に好ましいアリーレン基の具体例として、フェニレン、ナフタレン基等が挙げられる。Lが、アルキレン基とアリーレン基を組み合わせて得られる2価の連結基(即ちアラルキレン基)を含む場合、アラルキレン基の炭素数は、好ましくは7〜34、より好ましくは7〜26、特に好ましくは7〜16である。特に好ましいアラルキレン基の具体例として、フェニレンメチレン基、フェニレンエチレン基、メチレンフェニレン基等が挙げられる。Lとして挙げられた基は、適当な置換基を有していてもよい。このような置換基としては先にR1〜R3における置換基として挙げた置換基と同様なものを挙げることができる。Lの具体的構造としては、特開2006−113500公報の段落[0090]〜[0091]に記載の構造等が挙げられるが、本発明はそれら具体例によってなんら制限されるものではない。
【0165】
前記式(IV)中、Qはカルボキシル基、カルボキシル基の塩(例えばリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩(例えばアンモニウム、テトラメチルアンモニウム、トリメチル−2−ヒドロキシエチルアンモニウム、テトラブチルアンモニウム、トリメチルベンジルアンモニウム、ジメチルフェニルアンモニウムなど)、ピリジニウム塩など)、スルホ基、スルホ基の塩(塩を形成するカチオンの例は上記カルボキシル基に記載のものと同じ)、ホスホノキシ基、ホスホノキシ基の塩(塩を形成するカチオンの例は上記カルボキシル基に記載のものと同じ)を表す。より好ましくはカルボキシル基、スルホ基、ホスホ基であり、特に好ましいのはカルボキシル基又はスルホ基である。
【0166】
前記フッ素系ポリマーは、前記式(IV)で表される繰り返し単位を1種含んでいてもよいし、2種以上含んでいてもよい。また、前記フッ素系ポリマーは、上記各繰り返し単位以外の他の繰り返し単位を1種又は2種以上有していてもよい。前記他の繰り返し単位については特に制限されず、通常のラジカル重合反応可能なモノマーから誘導される繰り返し単位が好ましい例として挙げられる。以下、他の繰り返し単位を誘導するモノマーの具体例を挙げる。前記フッ素系ポリマーは、下記モノマー群から選ばれる1種又は2種以上のモノマーから誘導される繰り返し単位を含有していてもよい。
【0167】
モノマー群
(1)アルケン類
エチレン、プロピレン、1−ブテン、イソブテン、1−ヘキセン、1−ドデセン、1−オクタデセン、1−エイコセン、ヘキサフルオロプロペン、フッ化ビニリデン、クロロトリフルオロエチレン、3,3,3−トリフルオロプロピレン、テトラフルオロエチレン、塩化ビニル、塩化ビニリデンなど;
(2)ジエン類
1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2−エチル−1,3−ブタジエン、2−n−プロピル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−メチル−1,3−ペンタジエン、1−フェニル−1,3−ブタジエン、1−α−ナフチル−1,3−ブタジエン、1−β−ナフチル−1,3−ブタジエン、2−クロロ−1,3−ブタジエン、1−ブロモ−1,3−ブタジエン、1−クロロブタジエン、2−フルオロ−1,3−ブタジエン、2,3−ジクロロ−1,3−ブタジエン、1,1,2−トリクロロ−1,3−ブタジエン及び2−シアノ−1,3−ブタジエン、1,4−ジビニルシクロヘキサンなど;
【0168】
(3)α,β−不飽和カルボン酸の誘導体
(3a)アルキルアクリレート類
メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、sec−ブチルアクリレート、tert−ブチルアクリレート、アミルアクリレート、n−ヘキシルアクリレート、シクロヘキシルアクリレート、2−エチルへキシルアクリレート、n−オクチルアクリレート、tert−オクチルアクリレート、ドデシルアクリレート、フェニルアクリレート、ベンジルアクリレート、2−クロロエチルアクリレート、2−ブロモエチルアクリレート、4−クロロブチルアクリレート、2−シアノエチルアクリレート、2−アセトキシエチルアクリレート、メトキシベンジルアクリレート、2−クロロシクロヘキシルアクリレート、フルフリルアクリレート、テトラヒドロフルフリルアクリレート、2−メトキシエチルアクリレート、ω−メトキシポリエチレングリコールアクリレート(ポリオキシエチレンの付加モル数:n=2ないし100のもの)、3−メトキシブチルアクリレート、2−エトキシエチルアクリレート、2−ブトキシエチルアクリレート、2−(2−ブトキシエトキシ)エチルアクリレート、1−ブロモ−2−メトキシエチルアクリレート、1,1−ジクロロ−2−エトキシエチルアクリレート、グリシジルアクリレートなど);
【0169】
(3b)アルキルメタクリレート類
メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、イソブチルメタクリレート、sec−ブチルメタクリレート、tert−ブチルメタクリレート、アミルメタクリレート、n−ヘキシルメタクリレート、シクロヘキシルメタクリレート、2−エチルヘキシルメタクリレート、n−オクチルメタクリレート、ステアリルメタクリレート、ベンジルメタクリレート、フェニルメタクリレート、アリルメタクリレート、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、クレジルメタクリレート、ナフチルメタクリレート、2−メトキシエチルメタクリレート、3−メトキシブチルメタクリレート、ω−メトキシポリエチレングリコールメタクリレート(ポリオキシエチレンの付加モル数:n=2ないし100のもの)、2−アセトキシエチルメタクリレート、2−エトキシエチルメタクリレート、2−ブトキシエチルメタクリレート、2−(2−ブトキシエトキシ)エチルメタクリレート、グリシジルメタクリレート、3−トリメトキシシリルプロピルメタクリレート、アリルメタクリレート、2−イソシアナトエチルメタクリレートなど;
【0170】
(3c)不飽和多価カルボン酸のジエステル類
マレイン酸ジメチル、マレイン酸ジブチル、イタコン酸ジメチル、タコン酸ジブチル、クロトン酸ジブチル、クロトン酸ジヘキシル、フマル酸ジエチル、フマル酸ジメチルなど;
【0171】
(3d)α、β−不飽和カルボン酸のアミド類
N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミド、N−n−プロピルアクリルアミド、N−tertブチルアクリルアミド、N−tertオクチルメタクリルアミド、N−シクロヘキシルアクリルアミド、N−フェニルアクリルアミド、N−(2−アセトアセトキシエチル)アクリルアミド、N−ベンジルアクリルアミド、N−アクリロイルモルフォリン、ジアセトンアクリルアミド、N−メチルマレイミドなど;
【0172】
(4)不飽和ニトリル類
アクリロニトリル、メタクリロニトリルなど;
(5)スチレン及びその誘導体
スチレン、ビニルトルエン、エチルスチレン、p−tertブチルスチレン、p−ビニル安息香酸メチル、α−メチルスチレン、p−クロロメチルスチレン、ビニルナフタレン、p−メトキシスチレン、p−ヒドロキシメチルスチレン、p−アセトキシスチレンなど;
(6)ビニルエステル類
酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、安息香酸ビニル、サリチル酸ビニル、クロロ酢酸ビニル、メトキシ酢酸ビニル、フェニル酢酸ビニルなど;
【0173】
(7)ビニルエーテル類
メチルビニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、イソプロピルビニルエーテル、n−ブチルビニルエーテル、イソブチルビニルエーテル、tert−ブチルビニルエーテル、n−ペンチルビニルエーテル、n−ヘキシルビニルエーテル、n−オクチルビニルエーテル、n−ドデシルビニルエーテル、n−エイコシルビニルエーテル、2−エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル、フルオロブチルビニルエーテル、フルオロブトキシエチルビニルエーテルなど;及び
(8)その他の重合性単量体
N−ビニルピロリドン、メチルビニルケトン、フェニルビニルケトン、メトキシエチルビニルケトン、2−ビニルオキサゾリン、2−イソプロペニルオキサゾリンなど。
【0174】
前記フッ素系ポリマー中、フルオロ脂肪族基含有モノマーの量は、該ポリマーの構成モノマー総量の5質量%以上であるのが好ましく、10質量%以上であるのがより好ましく、30質量%以上であるのが更に好ましい。前記フッ素系ポリマーにおいて、前記式(IV)で表される繰り返し単位の量は、該フッ素ポリマーの構成モノマー総量の0.5質量%以上であるのが好ましく、1〜20質量%であるのがより好ましく、1〜10質量%であるのが更に好ましい。上記の質量百分率は使用するモノマーの分子量により好ましい範囲の数値が変動し易いため、ポリマーの単位質量当たりの官能基モル数で表す方が、式(IV)で表される繰り返し単位の含有量を正確に規定できる。該表記を用いた場合、前記フッ素系ポリマー中に含有される親水性基(式(IV)中のQ)の好ましい量は、0.1mmol/g〜10mmol/gであり、より好ましい量は0.2mmol/g〜8mmol/gである。
【0175】
本発明に用いる前記フッ素系ポリマーの質量平均分子量は1,000,000以下であるのが好ましく、500,000以下であるのがより好ましく、100,000以下であるのが更に好ましい。質量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)を用いて、ポリスチレン(PS)換算の値として測定可能である。
【0176】
前記フッ素系ポリマーの重合方法は、特に限定されるものではないが、例えば、ビニル基を利用したカチオン重合やラジカル重合、あるいは、アニオン重合等の重合方法を採ることができ、これらの中ではラジカル重合が汎用に利用できる点で特に好ましい。ラジカル重合の重合開始剤としては、ラジカル熱重合開始剤や、ラジカル光重合開始剤等の公知の化合物を使用することができるが、特に、ラジカル熱重合開始剤を使用することが好ましい。ここで、ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ジアシルパーオキサイド(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ケトンパーオキサイド(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ハイドロパーオキサイド(過酸化水素、tert−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド(ジ−tert−ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシエステル類(tert−ブチルパーオキシアセテート、tert−ブチルパーオキシピバレート等)、アゾ系化合物(アゾビスイソブチロニトリル、アゾビスイソバレロニトリル等)、過硫酸塩類(過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等)が挙げられる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。
【0177】
ラジカル重合方法は、特に制限されるものでなく、乳化重合法、懸濁重合法、塊状重合法、溶液重合法等を採ることが可能である。典型的なラジカル重合方法である溶液重合について更に具体的に説明する。他の重合方法についても概要は同等であり、その詳細は例えば「高分子科学実験法」高分子学会編(東京化学同人、1981年)等に記載されている。
【0178】
溶液重合を行うためには有機溶媒を使用する。これらの有機溶媒は本発明の目的、効果を損なわない範囲で任意に選択可能である。これらの有機溶媒は通常、大気圧下での沸点が50〜200℃の範囲内の値を有する有機化合物であり、各構成成分を均一に溶解させる有機化合物が好ましい。好ましい有機溶媒の例を示すと、イソプロパノール、ブタノール等のアルコール類;ジブチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、酢酸アミル、γ−ブチロラクトン等のエステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;が挙げられる。なお、これらの有機溶媒は、1種単独又は2種以上を組み合わせて用いることが可能である。更に、モノマーや生成するポリマーの溶解性の観点から上記有機溶媒に水を併用した水混合有機溶媒も適用可能である。
【0179】
また、溶液重合条件も特に制限されるものではないが、例えば、50〜200℃の温度範囲内で、10分〜30時間加熱することが好ましい。更に、発生したラジカルが失活しないように、溶液重合中はもちろんのこと、溶液重合開始前にも、不活性ガスパージを行うことが好ましい。不活性ガスとしては通常窒素ガスが好適に用いられる。
【0180】
前記フッ素系ポリマーを好ましい分子量範囲で得るためには、連鎖移動剤を用いたラジカル重合法が特に有効である。連鎖移動剤としてはメルカプタン類(例えば、オクチルメルカプタン、デシルメルカプタン、ドデシルメルカプタン、tert−ドデシルメルカプタン、オクタデシルメルカプタン、チオフェノール、p−ノニルチオフェノール等)、ポリハロゲン化アルキル(例えば、四塩化炭素、クロロホルム、1,1,1−トリクロロエタン、1,1,1−トリブロモオクタンなど)、低活性モノマー類(α−メチルスチレン、α−メチルスチレンダイマー等)のいずれも用いることができるが、好ましくは炭素数4〜16のメルカプタン類である。これらの連鎖移動剤の使用量は、連鎖移動剤の活性やモノマーの組み合わせ、重合条件などにより著しく影響され精密な制御が必要であるが、通常は使用するモノマーの全モル数に対して0.01モル%〜50モル%程度であり、好ましくは0.05モル%〜30モル%、特に好ましくは0.08モル%〜25モル%である。これらの連鎖移動剤は、重合過程において重合度を制御するべき対象のモノマーと同時に系内に存在させればよく、その添加方法については特に問わない。モノマーに溶解して添加してもよいし、モノマーと別途に添加することも可能である。
【0181】
なお、本発明のフッ素系ポリマーは、ディスコティック液晶化合物の配向状態を固定化するために置換基として重合性基を有するものも好ましい。
【0182】
フッ素系ポリマーとして本発明に好ましく用いられるフルオロ脂肪族基含有共重合体の具体例として、特開2006−113500公報の段落[0110]〜[0114]に記載の化合物等が挙げられるが、本発明はそれら具体例によってなんら制限されるものではない。
【0183】
本発明に用いられるフッ素系ポリマーは、公知慣用の方法で製造することができる。例えば先にあげたフルオロ脂肪族基を有するモノマー、水素結合性基を有するモノマー等を含む有機溶媒中に、汎用のラジカル重合開始剤を添加し、重合させることにより製造できる。また、場合によりその他の付加重合性不飽和化合物を、更に添加して上記と同じ方法にて製造することができる。各モノマーの重合性に応じ、反応容器にモノマーと開始剤を滴下しながら重合する滴下重合法なども、均一な組成のポリマーを得るために有効である。
【0184】
組成物中における前記フッ素系ポリマーの含有量の好ましい範囲は、その用途によって異なるが、位相差層の形成に用いる場合は、組成物(塗布液である場合は溶媒を除いた組成物)中、0.005〜8質量%であるのが好ましく、0.01〜5質量%であるのがより好ましく、0.05〜3質量%であるのが更に好ましい。前記フッ素系ポリマーの添加量が0.005質量%未満では効果が不十分であり、また8質量%より多くなると、塗膜の乾燥が十分に行われなくなったり、光学フイルムとしての性能(例えばレターデーションの均一性等)に悪影響を及ぼす。
【0185】
下記式(III)で表される含フッ素化合物:
次に、空気界面側垂直配向剤として使用可能な、下記式(III)で表される含フッ素化合物について説明する。
(III) (R0m−L0−(W)n
式中、R0はアルキル基、末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基を表し、mは1以上の整数を表す。複数個のR0は同一でも異なっていてもよいが、少なくとも一つは末端にCF3基又はCF2H基を有するアルキル基を表す。L0は(m+n)価の連結基を表し、Wはカルボキシル基(−COOH)若しくはその塩、スルホ基(−SO3H)若しくはその塩、又はホスホノキシ{−OP(=O)(OH)2}若しくはその塩を表し、nは1以上の整数を表す。
【0186】
式(III)中、R0は含フッ素化合物の疎水性基として機能する。R0で表されるアルキル基は置換若しくは無置換のアルキル基であり、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルキル基であり、更に好ましくは4〜16のアルキル基であり、特に好ましくは6〜16のアルキル基である。該置換基としては後述の置換基群Dとして例示した置換基のいずれかを適用できる。R0で表される末端にCF3基を有するアルキル基は、好ましくは炭素数1〜20であり、更に好ましくは4〜16であり、特に好ましくは4〜8である。前記末端にCF3基を有するアルキル基は、アルキル基に含まれる水素原子の一部又は全部がフッ素原子で置換されたアルキル基である。アルキル基中の水素原子の50%以上がフッ素原子で置換されているのが好ましく、60%以上が置換されているのがより好ましく、70%以上を置換されているのが特に好ましい。残りの水素原子は、更に後述の置換基群Dとして例示された置換基によって置換されていてもよい。R0で表される末端にCF2H基を有するアルキル基は、好ましくは炭素数1〜20であり、更に好ましくは4〜16であり、特に好ましくは4〜8である。前記末端にCF2H基を有するアルキル基は、アルキル基に含まれる水素原子の一部又は全部がフッ素原子で置換されたアルキル基である。アルキル基中の水素原子の50%以上がフッ素原子で置換されているのが好ましく、60%以上が置換されているのがより好ましく、70%以上を置換されているのが特に好ましい。残りの水素原子は、更に後述の置換基群Dとして例示された置換基によって置換されていてもよい。R0で表される末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基の例を以下に示す。
【0187】
R1:n−C817
R2:n−C613
R3:n−C49
R4:n−C817−(CH22
R5:n−C613−(CH22
R6:n−C49−(CH22
R7:H−(CF28
R8:H−(CF26
R9:H−(CF24
R10:H−(CF28−(CH2)−
R11:H−(CF26−(CH2)−
R12:H−(CF24−(CH2)−
【0188】
式(III)において、L0で表される(m+n)価の連結基は、アルキレン基、アルケニレン基、芳香族基、ヘテロ環基、−CO−、−NR−(Rは炭素原子数が1〜5のアルキル基又は水素原子)、−O−、−S−、−SO−、−SO2−からなる群より選ばれる基を少なくとも二つ組み合わせた連結基であることが好ましい。
【0189】
式(III)において、Wはカルボキシル基(−COOH)若しくはその塩、スルホ基(−SO3H)若しくはその塩、又はホスホノキシ基{−OP(=O)(OH)2}若しくはその塩を表す。Wの好ましい範囲は、式(IV)におけるQと同一である。
【0190】
前記式(III)で表される含フッ素化合物の中でも、下記式(III)−a又は式(III)−bで表される化合物が好ましい。
【0191】
【化38】

【0192】
式(III)−a中、R4及びR5は各々アルキル基、末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基を表すが、R4及びR5が同時にアルキル基であることはない。W1及びW2は各々水素原子、カルボキシル基(−COOH)若しくはその塩、スルホ基(−SO3H)若しくはその塩、ホスホノキシ{−OP(=O)(OH)2}若しくはその塩、又は置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基、アルコキシ基、又はアルキルアミノ基を表すが、W1及びW2が同時に水素原子であることはない。
【0193】
式(III)−b
(R6−L2−)m2(Ar1)−W3
式(III)−b中、R6はアルキル基、末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基を表し、m2は1以上の整数を表し、複数個のR6は同一でも異なっていてもよいが、少なくとも一つは末端にCF3基又はCF2H基を有するアルキル基を表す。L2は、アルキレン基、芳香族基、−CO−、−NR−(Rは炭素原子数が1〜5のアルキル基又は水素原子)、−O−、−S−、−SO−、−SO2−及びそれらの組み合わせからなる群より選ばれる二価の連結基を表し、複数個のL2は同一でも異なっていてもよい。Ar1は芳香族炭化水素環又は芳香族ヘテロ環を表し、W3はカルボキシル基(−COOH)若しくはその塩、スルホ基(−SO3H)若しくはその塩、ホスホノキシ基{−OP(=O)(OH)2}若しくはその塩、又は置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基、アルコキシ基、又はアルキルアミノ基を表す。
【0194】
まず、前記式(III)−aについて説明する。
4及びR5は前記式(III)におけるR0と同義であり,その好ましい範囲も同一である。W1及びW2で表されるカルボキシル基(−COOH)若しくはその塩、スルホ基(−SO3H)若しくはその塩、ホスホノキシ基{−OP(=O)(OH)2}若しくはその塩は前記式(III)におけるWと同義でありその好ましい範囲も同一である。W1及びW2で表される置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基は、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルキル基であり、更に好ましくは1〜8のアルキル基であり、特に好ましくは1〜3のアルキル基である。前記置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基は、少なくとも一つのカルボキシル基、スルホ基、又はホスホノキシ基を有していればよく、カルボキシル基、スルホ基、ホスホノキシ基としては、前記式(III)中のWが表すカルボキシル基、スルホ基、ホスホノキシ基と同義であり好ましい範囲も同一である。前記置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基は、これ以外の置換基によって置換されていてもよく、該置換基としては後述の置換基群Dとして例示した置換基のいずれかを適用できる。W1及びW2で表される置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルコキシ基は、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルコキシ基であり、更に好ましくは1〜8のアルコキシ基であり、特に好ましくは1〜4のアルコキシ基である。前記置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルコキシ基は、少なくとも一つのカルボキシル基、スルホ基、又はホスホノキシ基を有していればよく、カルボキシル基、スルホ基、ホスホノキシ基としては、前記式(III)中のWが表す親カルボキシル基、スルホ基、ホスホノキシ基と同義であり好ましい範囲も同一である。前記カルボキシル基、スルホ基、ホスホノキシ基を有するアルコキシ基は、これ以外の置換基によって置換されていてもよく、該置換基としては後述の置換基群Dとして例示した置換基のいずれかを適用できる。W1及びW2で表される置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキルアミノ基は、直鎖状であっても分岐鎖状であってもよく、好ましくは炭素数1〜20のアルキルアミノ基であり、更に好ましくは1〜8のアルキルアミノ基であり、特に好ましくは1〜4のアルキルアミノ基である。前記カルボキシル基、スルホ基、ホスホノキシ基を有するアルキルアミノ基は、少なくとも一つのカルボキシル基、スルホ基、又はホスホノキシ基を有していればよく、カルボキシル基、スルホ基、ホスホノキシ基としては、前記式(III)中のWが表すカルボキシル基、スルホ基、ホスホノキシ基と同義であり好ましい範囲も同一である。前記カルボキシル基、スルホ基、ホスホノキシ基を有するアルキルアミノ基は、これ以外の置換基によって置換されていてもよく、該置換基としては後述の置換基群Dとして例示した置換基のいずれかを適用できる。
【0195】
1及びW2は、特に好ましくはそれぞれ水素原子又は(CH2nSO3M(nは0又は1を表す。)である。Mはカチオンを表すが、分子内で荷電が0になる場合はMはなくてもよい。Mで表されるカチオンとしては、例えばプロトニウムイオン、アルカリ金属イオン(リチウムイオン、ナトリウムイオン、カリウムイオンなど)、アルカリ土類金属イオン(バリウムイオン、カルシウムイオンなど)、アンモニウムイオンなどが好ましく適用される。このうち、特に好ましくはプロトニウムイオン、リチウムイオン、ナトリウムイオン、カリウムイオン、アンモニウムイオンである。
【0196】
次に、前記式(III)−bについて説明する。
6は前記式(III)におけるR0と同義であり,その好ましい範囲も同一である。L2は、好ましくは炭素数1〜12のアルキレン基、炭素数6〜12の芳香族基、−CO−、−NR−、−O−、−S−、−SO−、−SO2−及びそれらの組み合わせからなる総炭素数0〜40の連結基を表し、特に好ましくは炭素数1〜8のアルキレン基、フェニル基、−CO−、−NR−、−O−、−S−、−SO2−及びそれらの組み合わせからなる総炭素数0〜20の連結基を表す。Ar1は、好ましくは炭素数6〜12の芳香族炭化水素環を表し、特に好ましくはベンゼン環又はナフタレン環を表す。W3で表されるカルボキシル基(−COOH)若しくはその塩、スルホ基(−SO3H)若しくはその塩、ホスホノキシ基{−OP(=O)(OH)2}若しくはその塩、又は置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基、アルコキシ基、又はアルキルアミノ基は、前記式(III)−aにおけるW1及びW2で表されるカルボキシル基(−COOH)若しくはその塩、スルホ基(−SO3H)若しくはその塩、ホスホノキシ{−OP(=O)(OH)2}若しくはその塩、又は置換基としてカルボキシル基、スルホ基、ホスホノキシ基を有するアルキル基、アルコキシ基、又はアルキルアミノ基と同義でありその好ましい範囲も同一である。
【0197】
3は、好ましくはカルボキシル基(−COOH)若しくはその塩、スルホ基(−SO3H)若しくはその塩、又は置換基としてカルボキシル基(−COOH)若しくはその塩又はスルホ基(−SO3H)若しくはその塩を有するアルキルアミノ基であり、特に好ましくはSO3M、又はCO2Mである。Mはカチオンを表すが、分子内で荷電が0になる場合はMはなくてもよい。Mで表されるカチオンとしては、例えばプロトニウムイオン、アルカリ金属イオン(リチウムイオン、ナトリウムイオン、カリウムイオンなど)、アルカリ土類金属イオン(バリウムイオン、カルシウムイオンなど)、アンモニウムイオンなどが好ましく適用される。このうち、特に好ましくはプロトニウムイオン、リチウムイオン、ナトリウムイオン、カリウムイオン、アンモニウムイオンである。
【0198】
本明細書において、置換基群Dには、アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8のアルケニル基であり、例えば、ビニル基、アリル基、2−ブテニル基、3−ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8のアルキニル基であり、例えば、プロパルギル基、3−ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12のアリール基であり、例えば、フェニル基、p−メチルフェニル基、ナフチル基などが挙げられる)、置換若しくは無置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基などが挙げられる)、
【0199】
アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8のアルコキシ基であり、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12のアリールオキシ基であり、例えば、フェニルオキシ基、2−ナフチルオキシ基などが挙げられる)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のアシル基であり、例えば、アセチル基、ベンゾイル基、ホルミル基、ピバロイル基などが挙げられる)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12のアルコキシカルボニル基であり、例えば、メトキシカルボニル基、エトキシカルボニル基などが挙げられる)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10のアリールオキシカルボニル基であり、例えば、フェニルオキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10のアシルオキシ基であり、例えば、アセトキシ基、ベンゾイルオキシ基などが挙げられる)、
【0200】
アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10のアシルアミノ基であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12のアルコキシカルボニルアミノ基であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12のアリールオキシカルボニルアミノ基であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルホニルアミノ基であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12のスルファモイル基であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のカルバモイル基であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる)、
【0201】
アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のアルキルチオ基であり、例えば、メチルチオ基、エチルチオ基などが挙げられる)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12のアリールチオ基であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルホニル基であり、例えば、メシル基、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルフィニル基であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のウレイド基であり、例えば、無置換のウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のリン酸アミド基であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)が含まれる。これらの置換基は更にこれらの置換基によって置換されていてもよい。また、置換基が二つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
【0202】
なお、本発明の含フッ素化合物は、ディスコティック液晶化合物の配向状態を固定化するために置換基として重合性基を有するものも好ましい。
【0203】
本発明に使用可能な式(III)にて表される含フッ素化合物の具体例として、特開2006−113500公報の段落[0136]〜[0140]に記載の化合物等が挙げられるが、それらに限定されるものではない。
【0204】
組成物中における前記含フッ素化合物の含有量は、組成物(塗布液である場合は溶媒を除いた組成物)中、0.005〜8質量%であるのが好ましく、0.01〜5質量%であるのがより好ましく、0.05〜3質量%であるのが更に好ましい。
【0205】
[重合性開始剤]
傾斜配向させた液晶性化合物は、配向状態を維持して固定する。固定化は、液晶性化合物に導入した重合性基(P)の重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。光重合開始剤の例には、α−カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジン及びフェナジン化合物(特開昭60−105667号公報、米国特許4239850号明細書記載)及びオキサジアゾール化合物(米国特許4212970号明細書記載)が含まれる。
【0206】
光重合開始剤の使用量は、塗布液の固形分の0.01〜20質量%であることが好ましく、0.5〜5質量%であることが更に好ましい。ディスコティック液晶性分子の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2〜50J/cm2であることが好ましく、100〜800mJ/cm2であることが更に好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。位相差層の厚さは、0.1〜10μmであることが好ましく、0.5〜5μmであることが更に好ましく、1〜5μmであることが最も好ましい。
【0207】
[位相差層の他の添加剤]
上記の液晶性化合物と共に、可塑剤、界面活性剤、重合性モノマー等を併用して、塗工膜の均一性、膜の強度、液晶性化合物の配向性等を向上させることができる。これらの素材は液晶性化合物と相溶性を有し、配向を阻害しないことが好ましい。
【0208】
重合性モノマーとしては、ラジカル重合性若しくはカチオン重合性の化合物が挙げられる。好ましくは、多官能性ラジカル重合性モノマーであり、上記の重合性基含有の液晶化合物と共重合性のものが好ましい。例えば、特開2002−296423号公報明細書中の段落番号[0018]〜[0020]記載のものが挙げられる。上記化合物の添加量は、ディスコティック液晶性分子に対して一般に1〜50質量%の範囲にあり、5〜30質量%の範囲にあることが好ましい。
【0209】
界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。具体的には、例えば特開2001−330725号公報明細書中の段落番号[0028]〜[0056]記載の化合物、特願2003−295212号明細書中の段落番号[0069]〜[0126]記載の化合物が挙げられる。
【0210】
液晶性化合物とともに使用するポリマーは、塗布液を増粘できることが好ましい。ポリマーの例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、特開2000−155216号公報明細書中の段落番号[0178]記載のものが挙げられる。液晶性化合物の配向を阻害しないように、上記ポリマーの添加量は、液晶性分子に対して0.1〜10質量%の範囲にあることが好ましく、0.1〜8質量%の範囲にあることがより好ましい。
液晶性化合物のディスコティックネマティック液晶相−固相転移温度は、70〜300℃が好ましく、70〜170℃が更に好ましい。
【0211】
[塗布溶剤]
塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライド及びケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
【0212】
[塗布方法]
塗布液の塗布は、公知の方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。中でも、前記位相差層を形成する際は、ワイヤーバーコーティング法を利用して塗布するのが好ましく、ワイヤーバーの回転数は下記式を満たすことが好ましい。
0.6<(W×(R+2r)×π)/V<1.4
[W:ワイヤーバーの回転数(rpm)、R:バーの芯の直径(m)、r:ワイヤーの直径(m)、V:支持体の搬送速度(m/min)]
(W×(R+2r)×π)/Vの範囲は、0.7〜1.3であることがより好ましく、0.8〜1.2であることが更に好ましい。
【0213】
前記位相差層の形成にはダイコーティング法が好ましく用いられ、特に、スライドコーター又はスロットダイコーターを利用した塗布方法が好ましい。
【0214】
[傾斜配向を固定した位相差層の形成方法]
平均傾斜角10°未満(例えば1〜3°)の傾斜配向を固定した位相差層は、例えば、以下の方法により安定的に形成することができる。
まず、ディスコティック液晶化合物と、所望により上記添加剤とを含む塗布液を調製し、該塗布液を、支持体又はその上に形成された配向膜の表面に塗布して、塗布層を得る。次に、所望により加熱して、該塗布層から溶媒を除去し、ディスコティック液晶を垂直配向させるとともに塗布面に対して水平〜10゜の方向から温風を当て、液晶分子を傾斜配向させる。その状態を維持しつつ(例えば、上記処理を行いつつつ)、紫外線等の光供与及び/又は熱供与により、重合反応等の硬化反応を進行させ、傾斜配向を固定し、位相差層を得る。
なお、添加剤の添加量や種類によっては、一旦垂直配向状態を経ることなく、傾斜配向状態を安定的に形成できる場合もあるので、上記方法に限定されものではない。
【0215】
2.第1及び第2偏光膜
本発明に利用される偏光膜については特に制限はない。偏光膜としては、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜のいずれを用いてもよい。ヨウ素系偏光膜及び染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造する。偏光膜の吸収軸は、フィルムの延伸方向に相当する。従って、縦方向(搬送方向)に延伸された偏光膜は長手方向に対して平行に吸収軸を有し、横方向(搬送方向と垂直方向)に延伸された偏光膜は長手方向に対して垂直に吸収軸を有する。
【0216】
偏光膜は一般に保護膜を有する。本発明において、上記光学補償フィルムは、第1偏光膜の保護フィルムとして機能させることができ、第1位相差領域側を第1偏光膜側にして配置するのが好ましい。第1偏光膜の上記光学補償フィルムを接着させる表面の他方の表面にも保護フィルムを配置することが好ましくい。偏光膜外側に配置される保護フィルムについては特に制限はなく、セルロースアシレートフィルム、環状オレフィン系ポリマーフィルム、ポリビニルアルコールフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム、ノルボルネン系フィルム、アクリル系フィルム、PET系フィルム等を用いることができる。中でも、セルロースアシレートフィルムを用いることが好ましい。
【0217】
偏光膜は一般に保護膜を有する。本発明において、上記光学補償フィルムは、第1偏光膜の保護フィルムとして機能させることができ、第1位相差領域を第1偏光膜に接触して配置する。第1偏光膜の上記光学補償フィルムを接着させる表面の他方の表面にも保護フィルムを配置することが好ましい。保護フィルムについては特に制限はなく、セルロースアシレートフィルム、環状オレフィン系ポリマーフィルム、ポリビニルアルコールフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム、ノルボルネン系フィルム、アクリル系フィルム、PET系フィルム等を用いることができる。中でも、光学的等方性が高いセルロースアシレートフィルム等を用いることが好ましい。
【0218】
第2偏光膜の双方の表面にも保護フィルムを積層するのが好ましい。特に液晶セル側に配置される保護フィルムについては、視野角コントラスト改善の観点から、低Re且つ低Rthが求められる。具体的には、Re(550)の絶対値|Re(550)|が10nm以下であり、且つRth(550)の絶対値|Rth(550)|が30nm以下である。理想的には、|Re(550)|及び|Rth(550)|ともに0nmである。また、斜め方向に生じるカラーシフトの軽減の観点では、当該保護フィルムのReは波長分散性が小さいのが好ましく、具体的には、|Re(400)−Re(700)|が10nm以下であり、及び|Rth(400)−Rth(700)|が35nm以下であり、理想的には、|Re(400)−Re(700)|及び|Rth(400)−Rth(700)|ともに0nmである。
【0219】
低Re及び低Rthを達成するためには、フィルムの厚みを薄くするのが好ましいが、一方で、厚みが薄すぎると、保護フィルムとしての機能が不十分になり、偏光膜の耐久性が低下し、ひいては液晶表示装置の耐久性が低下する。これらの観点から、第2偏光膜の保護フィルムであって、液晶セル側に配置される保護フィルムの厚みは、10〜90μmであるのが好ましく、30〜80μmであるのがより好ましい。
【0220】
上記厚みで、且つ前記光学特性を達成可能なフィルムであって、第2偏光膜の保護フィルムとして好適に用いられるフィルムの例には、セルロースアシレート系フィルム、環状オレフィン系ポリマーフィルム、又はアクリル系ポリマーフィルムが含まれる。アクリル系ポリマーフィルムの中でも、ラクトン環単位、無水マレイン酸単位、及びグルタル酸無水物単位から選ばれる少なくとも1種の単位を含むアクリル系ポリマーを含有するアクリル系ポリマーフィルムは、光学的に等方性の高い性質を示すので好ましい。前記アクリル系ポリマーフィルムの詳細については特開2008−9378号公報に詳細な記載があり、参照することができる。またそれぞれの例については、特開2010−33041号公報に記載の第1の透明フィルムとして利用可能なセルロースアシレート系フィルム、環状オレフィン系ポリマーフィルム、及びアクリル系ポリマーフィルムの例と同様である。
【0221】
偏光板の好ましい製造方法は、2枚の保護フィルムと偏光膜とが、それぞれ長尺の状態で連続的に積層される工程を含む。該長尺の偏光板は用いられる画像表示装置の画面の大きさに合わせて裁断される。なお、第1偏光膜については、一方の表面には、前記光学補償フィルムを貼合する。この様にして作製された偏光板は、光学補償フィルムを液晶セル側にして配置される。なお、光学補償フィルムを構成している第1及び第2位相差領域のいずれを偏光膜側にして配置してもよいが、偏光膜との接着性等の観点では、ポリマーフィルムを配置するのが好ましく、第1位相差領域を偏光膜に貼合する態様では、ディスコティック液晶化合物を利用して形成される位相差層の上に、ポリマーフィルムを配置し、ポリマーフィルムを偏光膜に貼合するのが好ましい。当該ポリマーフィルムは、低Re且つ低Rthであるのが好ましく、利用可能なポリマーフィルムの例は、第2偏光膜の保護フィルム(易層セル側保護フィルム)として好適に用いられるポリマーフィルムの例と同様である。
【0222】
3.液晶セル
本発明の液晶表示装置は、IPS及びFFS型の液晶セルを有する。これらのモードについては、種々の文献に記載があり、いずれの構成も本発明に採用することができる。表示装置のいずれにおいても得られる。IPS型液晶表示装置は、例えば特開2003−15160号、特開2003−75850号、特開2003−295171号、特開2004−12730号、特開2004−12731号、特開2005−106967号、特開2005−134914号、特開2005−241923号、特開2005−284304号、特開2006−189758号、特開2006−194918号、特開2006−220680号、特開2007−140353号、特開2007−178904号、特開2007−293290号、特開2007−328350号、特開2008−3251号、特開2008−39806号、特開2008−40291号、特開2008−65196号、特開2008−76849号、特開2008−96815号等の各公報に記載のものも使用できる。
【0223】
FFS型(以下、FFSモードともいう)液晶セルは、カウンター電極と画素電極を有する。これらの電極はITO等の透明物質で形成され、及び上・下部基板等の間の間隔より狭い間隔で、電極上部に配置されている液晶分子等が全て駆動することができる程度の幅で形成されている。この構成により、FFSモードでは、IPSモードより向上した開口率を得ることができ、さらに、電極部分が光透過性であるので、IPSモードより向上した透過率を得ることができる。FFSモード液晶セルについては、例えば特開2001−100183号、特開2002−14374、特開2002−182230、特開2003−131248、特開2003−233083号等の各公報の記載を参照することができる。
【実施例】
【0224】
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
【0225】
1.ポリマーフィルムの準備
(1)ポリマーフィルム1の準備
市販されているトリアセチルセルロースフィルム「フジタックTD80UL」(富士フイルム社製)を準備して、ポリマーフィルム1として用いた。
【0226】
(2)ポリマーフィルム4の準備
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
(セルロースアセテート溶液組成)
酢化度60.7〜61.1%のセルロースアセテート 100質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
メチレンクロライド(第1溶媒) 336質量部
メタノール(第2溶媒) 29質量部
1−ブタノール(第3溶媒) 11質量部
【0227】
別のミキシングタンクに、下記のレターデーション上昇剤(A)16質量部、メチレンクロライド92質量部及びメタノール8質量部を投入し、加熱しながら攪拌して、レターデーション上昇剤溶液を調製した。セルロースアセテート溶液474質量部にレターデーション上昇剤溶液25質量部を混合し、充分に攪拌してドープを調製した。レターデーション上昇剤の添加量は、セルロースアセテート100質量部に対して、6.0質量部であった。
【0228】
【化39】

【0229】
得られたドープを、バンド延伸機を用いて流延した。バンド上での膜面温度が40℃となってから、70℃の温風で1分乾燥し、バンドからフィルムを140℃の乾燥風で10分乾燥し、残留溶剤量が0.3質量%のセルロースアセテートフィルムを作製した。得られた長尺状のセルロースアセテートフィルムの幅は1490mmであり、厚さは60μmであった。これをポリマーフィルム4として用いた。
【0230】
(3)ポリマーフィルム6の準備
市販されているトリアセチルセルロースフィルム「Z−TAC」(富士フイルム社製)を準備して、ポリマーフィルム6として用いた。
【0231】
上記ポリマーフィルム1、4及び6の特性を以下の表に示す。
【0232】
【表1】

【0233】
【表2】

【0234】
2.光学補償フィルムの製造
(1)支持体の準備
ポリマーフィルム1又は4を支持体としてそれぞれ用いた。
(アルカリ鹸化処理)
ポリマーフィルムを、温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、フィルムの片面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/m2で塗布し、110℃に加熱した(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。続いて、同じくバーコーターを用いて、純水を3ml/m2塗布した。次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したセルロースアシレートフィルムを作製した。
【0235】
(アルカリ鹸化処理)
ポリマーフィルムを、温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、フィルムの片面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/m2で塗布し、110℃に加熱した(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。続いて、同じくバーコーターを用いて、純水を3ml/m2塗布した。次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したセルロースアシレートフィルムを作製した。
アルカリ溶液組成:
水酸化カリウム 4.7質量部
水 15.8質量部
イソプロパノール 63.7質量部
界面活性剤 SF−1:C1429O(CH2CH2O)20H 1.0質量部
プロピレングリコール 14.8質量部
【0236】
(配向膜の形成)
上記のように鹸化処理した長尺状のセルロースアセテートフィルムに、下記の組成の配向膜塗布液を#14のワイヤーバーで連続的に塗布した。60℃の温風で60秒、更に100℃の温風で120秒乾燥した。
配向膜塗布液の組成:
下記の変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド 0.5質量部
光重合開始剤(イルガキュアー2959、チバ・ジャパン製) 0.3質量部
【0237】
【化40】

【0238】
(ディスコティック液晶性化合物を含む位相差層の形成)
上記作製した配向膜に連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向に対して、ラビングローラーの回転軸は直交とした。
【0239】
下記の組成のディスコティック液晶化合物を含む塗布液Aを上記作製した配向膜上に#2.7のワイヤーバーで連続的に塗布した。フィルムの搬送速度(V)は36m/minとした。塗布液の溶媒の乾燥及びディスコティック液晶化合物の配向熟成のために115℃の温風で90秒間加熱し、また塗布面に対して水平〜10゜の方向から温風を当てた。続いて、80℃にてUV照射を行い、液晶化合物の配向を固定化し位相差層1を形成し、光学補償フィルムを得た。
位相差層1塗布液の組成
下記のディスコティック液晶化合物 100質量部
光重合開始剤(イルガキュアー907、チバ・ジャパン社製) 3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製) 1質量部
下記のピリジニウム塩 1質量部
下記のフッ素系ポリマー(FP1) 0.4質量部
メチルエチルケトン 252質量部
【0240】
【化41】

【0241】
【化42】

【0242】
【化43】

【0243】
遅相軸の方向はラビングローラーの回転軸と直交していた。すなわち、支持体の長手方向に対して、遅相軸は平行の方向であった。別途、セルロースアセテートフィルムを支持体に用いる代わりに、ガラスを基板として用いてディスコティック液晶化合物を含む層を形成して、Re(0°)、Re(40°)及びRe(−40°)をKOBRA21 ADHを用いて測定したところ、それぞれ、140.3nm、126.9nm及び126.7nmであった。(Re(°)はサンプル面の法線方向を0°とした入射角度を示す。)これらの結果から、ディスコティック液晶性分子の円盤面のフィルム面に対する平均傾斜角は88°であり、位相差層中において、ディスコティック液晶が平均傾斜角2°の傾斜配向に固定されていることを確認した。なお、形成された位相差層の波長分散性はRe(450)/Re(550)が1.10で且つRe(650)/Re(550)が0.96であった。
【0244】
なお、上記位相差層1の形成において、塗布面に対して水平〜10゜の方向から温風を当てなかった以外は、同様にして参考例用の位相差層を形成した。この位相差層では、ディスコティック液晶性分子の円盤面のフィルム面に対する平均傾斜角は90°であり、位相差層中において、ディスコティック液晶が垂直配向状態に固定されていることを確認した。
【0245】
(ディスコティック液晶性化合物を含む位相差層2(比較例用位相差層)の形成)
ポリマーフィルムの上に位相差層1と同様の配向膜を形成した。
下記の組成のディスコティック液晶化合物を含む塗布液を上記作製した配向膜上に#4.0のワイヤーバーで連続的に塗布した。フィルムの搬送速度(V)は20m/minとした。塗布液の溶媒の乾燥及びディスコティック液晶化合物の配向熟成のために115℃の温風で90秒間加熱し、続いて、UV照射により液晶化合物の配向を固定化し位相差層2を形成し、光学補償フィルムを得た。
位相差層2塗布液の組成:
下記のディスコティック液晶性化合物 91質量部
エチレンオキサイド変性トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製) 9質量部
光重合開始剤(イルガキュアー907、チバガイギー社製) 3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製) 1質量部
下記のピリジニウム塩 0.5質量部
上記のフッ素系ポリマー(FP2) 0.4質量部
メチルエチルケトン 195質量部
【0246】
【化44】

【0247】
【化45】

【0248】
遅相軸の方向はラビングローラーの回転軸と直交していた。すなわち、支持体の長手方向に対して、遅相軸は平行方向であった。実施例1と同様にして、Re(0°)、Re(40°)及びRe(−40°)をKOBRA21 ADHを用いて測定したところ、それぞれ、139.7nm、125.3nm及び125.4nmであった。これらの結果から、ディスコティック液晶性分子の円盤面のフィルム面に対する平均傾斜角は90°であり、位相差層中において、ディスコティック液晶が垂直配向状態に固定されていることを確認した。なお、形成された位相差層の波長分散性はRe(450)/Re(550)が1.16で且つRe(650)/Re(550)が0.93であった。
【0249】
この様にして、ポリマーフィルム1又は4と、位相差層1又は2とを組み合わせて、実施例、参考例、及び比較例の光学補償フィルムをそれぞれ製造した。
【0250】
3.偏光板の作製
TD80UL(富士フイルム製)の支持体表面をアルカリ鹸化処理した。1.5規定の水酸化ナトリウム水溶液に55℃で2分間浸漬し、室温の水洗浴槽中で洗浄し、30℃で0.1規定の硫酸を用いて中和した。再度、室温の水洗浴槽中で洗浄し、更に100℃の温風で乾燥した。 続いて、厚さ80μmのロール状ポリビニルアルコールフィルムをヨウ素水溶液中で連続して5倍に延伸し、乾燥して厚さ20μmの偏光膜を得た。
他方の表面に、上記で準備したいずれかの光学補償フィルム、又はいずれかのポリマーフィルムを貼合して、偏光膜を挟みこみ、TD80ULと光学補償フィルム又はポリマーフィルムが偏光膜の保護フィルムとなっている偏光板を作製した。。貼合には、ポリビニルアルコール系接着剤水溶液を利用した。また、セルロースアシレート系フィルムを貼合する際は、アルカリ液による鹸化処理を実施してから貼合した。また、貼合は、貼合する光学補償フィルム又はポリマーフィルムの遅相軸と、偏光膜の吸収軸とを平行又は直交にして積層して行った。なお、偏光膜の表面にのみTD80ULを貼合し、他方の表面にはなんらフィルムを貼合しなかった偏光板についても同様に作製した。
【0251】
4.液晶表示装置の作製と評価
(1)IPS型液晶表示装置の作製
東芝製(37Z3500)の液晶TVから両面の偏光板を剥し、IPS型液晶セルとして利用した。Δn・d=311nmで、プレチルトは2.0度であった。
【0252】
図1と同一の構成の実施例、参考例及び比較例のIPSモード液晶表示装置をそれぞれ作製した。具体的には、図1中の偏光板PL1及びPL2として、上記で作製した偏光板のいずれかをそれぞれ配置した。なお、実施例の偏光板は傾斜配向を固定してなる位相差層を有する光学補償フィルムを有するが、液晶セルと貼合する際は、該位相差層を、ディスコティック液晶化合物の分子ダイレクターと、黒状態における液晶層のダイレクターとの角度が減少する方向にして、貼合した。以下のFFS型液晶表示装置で同様である
実施例及び比較例のそれぞれに使用した各部材の特性等について、以下の表にまとめる。
【0253】
(2)FFS型液晶表示装置の作製
SAMSUNG社製GALAXY TABの携帯端末器から両面の偏光板を剥し、FFS型液晶セルとして利用した。Δn・d=327nmで、プレチルトは1.8°であった。IPS型液晶セルに代えて、FFS型液晶セルを用いた以外は、上記と同様にして、図3と同一の構成の実施例、参考例及び比較例のFFS型液晶表示装置を作製した。
【0254】
(3)液晶表示装置の評価
・カラーシフトの評価
作製した各液晶表示装置を黒表示させて、表示面の法線方向から極角60°方向における色味を、色彩輝度計((株)トプコン製BM−5)を用いて測定し、黒色味変化量ΔEを算出した。なお、黒色味変化量ΔEは、Luv表色系での色差であり、法線方向からの極角60°方向で方位角方向を0〜360°、15°刻みで変化させたときにそれぞれ算出される色差の平均値と定義した。実用上、ΔEは、0.3以下であることが求められる。
【0255】
・視野角コントラストの評価
作製した各液晶表示装置を黒表示させて、表示面の法線方向から極角60°方向における白表示時及び黒表示時の輝度比(コントラスト)を、色彩輝度計((株)トプコン製BM−5)を用いてそれぞれ測定し、極角60度方向で方位角方向を0〜360°、15°刻みで変化させた平均値を算出し、視野角コントラストを算出した。結果を下記表に示す。
【0256】
・階調反転の評価
作製した各液晶表示装置を、黒表示を0階調、白表示を255階調として255分割した時の中間調表示(15階調)および黒表示(0階調)を表示させ、Ezcontrast(ELDIM製)を用いて輝度を測定した。このときに黒表示の輝度が中間調表示の輝度より高くなる極角方向の角度を反転角度と定義し、算出した。
【0257】
なお、以下の表中、
吸収軸及び遅相軸について、「⇔」は表示面左右方向に平行であり、「◎」は表示面上下方向に平行であることを意味し、「⇔」と「◎」は互いに直交していることを意味し;
Re450/550はRe(450)/Re(550)を意味し、Re650/550はRe(650)/Re(550)を意味し;
|Rth|は第1位相差領域と第2位相差領域を合わせた光学補償フィルムのRthの絶対値を示し;
DLC位相差層はディスコティック液晶化合物を含む位相差層を意味する。
【0258】
【表3】

【0259】
【表4】

【0260】
上記表に示す結果から、所定の光学特性を満足するポリマーフィルムを含む第2位相差領域と、ディスコティック液晶を傾斜配向状態に固定してなり、Reが所定の波長分散性を示す位相差層を含む第1位相差領域とを、互いの遅相軸を平行にして積層した光学補償フィルムを利用した、実施例のIPS又はFFS型液晶表示装置は、位相差層の波長分散性が本発明の範囲外である比較例のIPS又はFFS型液晶表示装置と比較して、斜め方向のカラーシフトが軽減されていることが理解できる。
また、ディスコティック液晶化合物の傾斜配向状態を固定した位相差層を含む第1位相差領域を利用する実施例のほうが、ディスコティック液晶化合物の垂直配向状態を固定した位相差層を含む第1位相差領域を利用する参考例と比較して、階調反転が顕著に抑制されることが理解できる。
【符号の説明】
【0261】
10 液晶層
12、14 基板
16 第1偏光膜
18 第2偏光膜
20 第1位相差領域
22 第2位相差領域
24 保護フィルム
26 バックライト

【特許請求の範囲】
【請求項1】
第1偏光膜と、
第1位相差領域及び該第1位相差領域に接する第2位相差領域からなる光学補償フィルムと、
第1基板と、
ネマチック液晶材料からなる液晶層と、
第2基板と、
をこの順序で含み、黒表示時に該ネマチック液晶材料の液晶分子が前記一対の基板の表面に対して平行に配向する液晶表示装置であって、
第1位相差領域と第2位相差領域の遅相軸とが互いに平行であり、
第2位相差領域の波長550nmの面内レターデーションRe(550)が20nm以下、第2位相差領域の波長550nmの厚み方向のレターデーションRth(550)が20nm〜120nmであり、
第1位相差領域が、平均傾斜角θ(θ>0)で傾斜配向したディスコティック液晶化合物を含有する位相差層を含むとともに、波長450nm、550nm、650nmにおけるRe、Re(450)、Re(550)、及びRe(650)が、Re(450)/Re(550)が1以上1.13以下で、Re(650)/Re(550)が0.94以上1以下を満足するIPS又はFFS液晶表示装置:但し、面内レターデーションRe及び厚み方向レターデーションは、それぞれ面内の屈折率nxとny(nx≧ny)、厚さ方向の屈折率nz、及びフィルムの厚さdを用いて、Re=(nx−ny)×d及びRth={(nx+ny)/2−nz}×dで定義される。
【請求項2】
前記平均傾斜角θが0〜10°である請求項1に記載のIPS又はFFS液晶表示装置。
【請求項3】
記第1位相差領域中、前記ディスコティック液晶化合物が、その分子ダイレクターと、黒状態における前記液晶層のダイレクターとの角度が減少する方向に傾斜配向している請求項1又は2に記載のIPS又はFFS液晶表示装置。
【請求項4】
第1偏光膜、第1位相差領域、及び第2位相差領域の順で配置されている請求項1〜3のいずれか1項に記載のIPS又はFFS型液晶表示装置。
【請求項5】
第1偏光膜、第2位相差領域、及び第1位相差領域の順で配置されている請求項1〜3のいずれか1項に記載のIPS又はFFS型液晶表示装置。
【請求項6】
前記第1位相差領域のRe(550)が、50nm〜200nmである請求項1〜5のいずれか1項に記載のIPS又はFFS型液晶表示装置。
【請求項7】
前記光学補償フィルム全体のRth(550)の絶対値|Rth(550)|が、40nm以下である請求項1〜6のいずれか1項に記載のIPS又はFFS型液晶表示装置。
【請求項8】
前記第2位相差領域が複数の層を含み、該複数の層のうち第1位相差領域に接する層が配向膜であり、且つ前記第1位相差領域が、ディスコティック液晶化合物及び配向制御剤を少なくとも含有する組成物からなり、前記配向制御剤が、空気界面側でのディスコティック液晶化合物のダイレクターの傾斜角度を減じる作用を有する請求項1〜7のいずれか1項に記載のIPS又はFFS型液晶表示装置。
【請求項9】
前記第1位相差領域が、前記位相差層とともに、ポリマーフィルムを有し、該ポリマーフィルムが前記第1偏光膜に接している請求項4〜8のいずれか1項に記載のIPS又はFFS型液晶表示装置。
【請求項10】
前記第2基板のより外側に、第2偏光膜を有する請求項1〜9のいずれか1項に記載のIPS又はFFS型液晶表示装置。
【請求項11】
前記第2偏光膜と前記第2基板との間に、ポリマーフィルムを有する請求項10に記載のIPS又はFFS型液晶表示装置。
【請求項12】
前記ポリマーフィルムが、波長550nmの面内レターデーションRe(550)の絶対値|Re(550)|が10nm以下であり、且つ同波長の厚み方向のレターデーションRth(550)の絶対値|Rth(550)|が30nm以下である請求項9又は11に記載のIPS又はFFS型液晶表示装置。
【請求項13】
前記ポリマーフィルムが、|Re(400)−Re(700)|が10nm以下であり、及び|Rth(400)−Rth(700)|が35nm以下である請求項9、11又は12に記載のIPS又はFFS型液晶表示装置。
【請求項14】
前記ポリマーフィルムが、厚みが10〜90μmである請求項9、及び11〜13のいずれか1項に記載のIPS又はFFS型液晶表示装置。
【請求項15】
前記ポリマーフィルムが、セルロースアシレート系フィルム、環状オレフィン系ポリマーフィルム、又はアクリル系ポリマーフィルムを有する請求項9、及び11〜14のいずれか1項に記載のIPS又はFFS型液晶表示装置。
【請求項16】
前記アクリル系ポリマーフィルムが、ラクトン環単位、無水マレイン酸単位、及びグルタル酸無水物単位から選ばれる少なくとも1種の単位を含むアクリル系ポリマーを含有するアクリル系ポリマーフィルムである請求項15に記載の液晶表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2013−19943(P2013−19943A)
【公開日】平成25年1月31日(2013.1.31)
【国際特許分類】
【出願番号】特願2011−150889(P2011−150889)
【出願日】平成23年7月7日(2011.7.7)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】