説明

ルナ イノベーションズ インコーポレイテッドにより出願された特許

1 - 5 / 5


マルチコアファイバを使用して形状センシングを行うための正確な測定方法および装置が開示される。マルチコアファイバの中のコアのそれぞれに対して、マルチコアファイバの上のある点までの光学長の変化を検出する。検出した光学長の変化に基づいて、マルチコアファイバの上のその点における、位置および/またはポインティング方向を求める。測定の精度は、マルチコアファイバの上のその点までのマルチコアファイバ光学長の0.5%よりもよい。好適な実施例では、測定するステップは、検出した光学長の変化に基づいて、少なくともマルチコアファイバの一部分の形状を測定するステップを含む。
(もっと読む)


【課題】干渉法を用いて被測定光デバイス(DUT)を測定する。DUTは光ファイバ、光部品、或いは光システムを1つ以上含むものである。
【解決手段】DUTに対する第1の干渉パターンのデータがDUTへの第1の経路に対して得られる。DUTに対する第2の干渉パターンのデータがDUTへの第2のやや長い経路に対して得られる。この長いほうの長さのゆえに、第2の干渉パターンのデータは第1の干渉パターンのデータから時間的に遅れる。次に、DUT干渉パターンデータの時間変化する成分は第1および第2の干渉パターンデータから特定される。特定された時間変化成分は振動などによって生じた時間変化する位相を補償するために、第1または第2の干渉パターンデータを修正する目的で用いられる。そこで、DUTの1つ以上の光学的特性が修正された干渉パターンデータに基づいて決定される。 (もっと読む)


光イメージング装置は、光周波数領域測定法(OFDM)に基づいて、DUTの内部またはDUT上の複数の位置における散乱データを時間の関数として収集する。光源は検査対象デバイス(DUT)の中に光を投入し、DUTはDUTに沿った1つ以上の位置で光を散乱する。光検出器は、DUTに沿った複数の位置のそれぞれで散乱された光の一部を検出する。データはOFDMデータ処理を使用して決定される。これらのデータは、DUTに沿った複数の位置のそれぞれにおいて収集された時間の関数として表された光量に対応する。データは、DUTに沿った複数の位置のそれぞれに対して記憶される。記憶された時間領域データに基づいて、DUTに沿った複数の位置のそれぞれにおいて散乱された光量を示すユーザ情報が提供される。OFDM処理によって、精細な時間分解能(例えば、0.1ピコ秒)が得られ、それによって、小さな光遅延距離(例えば、30ミクロン)を分解することができる。また、精細な時間分解能と同時に、検出するべき少量の散乱(例えば、10−12)の正確な検出が可能になる。
(もっと読む)


流体から気泡を除去する容器が提供される。容器は、流体を受け取るための流体入口部と、容器から流体中の気泡を除去するための気泡出口部とを含む。1つ又はそれ以上の超音波変換器は、受け取られた流体を通る1つ又はそれ以上の超音波ビームを伝播して、流体中の気泡を気泡出口部の方向に移動する。流体出口部は、1つ又はそれ以上の超音波ビームが当てられた流体を排出する。導管構造は、1つ又はそれ以上の超音波ビームを容器の第1方向を通って気泡出口部に向かって伝播する。界面は、第1方向とほぼ反対方向への1つ又はそれ以上の超音波ビームの反射を防止する。
(もっと読む)


干渉法を用いて被測定光デバイス(DUT)を測定する。DUTは光ファイバ、光部品、或いは光システムを1つ以上含むものである。DUTに対する第1の干渉パターンのデータがDUTへの第1の経路に対して得られる。DUTに対する第2の干渉パターンのデータがDUTへの第2のやや長い経路に対して得られる。この長いほうの長さのゆえに、第2の干渉パターンのデータは第1の干渉パターンのデータから時間的に遅れる。次に、DUT干渉パターンデータの時間変化する成分は第1および第2の干渉パターンデータから特定される。特定された時間変化成分は振動などによって生じた時間変化する位相を補償するために、第1または第2の干渉パターンデータを修正する目的で用いられる。そこで、DUTの1つ以上の光学的特性が修正された干渉パターンデータに基づいて決定される。
(もっと読む)


1 - 5 / 5