説明

流体から気泡を音響学的に増強して除去する方法及び装置

流体から気泡を除去する容器が提供される。容器は、流体を受け取るための流体入口部と、容器から流体中の気泡を除去するための気泡出口部とを含む。1つ又はそれ以上の超音波変換器は、受け取られた流体を通る1つ又はそれ以上の超音波ビームを伝播して、流体中の気泡を気泡出口部の方向に移動する。流体出口部は、1つ又はそれ以上の超音波ビームが当てられた流体を排出する。導管構造は、1つ又はそれ以上の超音波ビームを容器の第1方向を通って気泡出口部に向かって伝播する。界面は、第1方向とほぼ反対方向への1つ又はそれ以上の超音波ビームの反射を防止する。

【発明の詳細な説明】
【技術分野】
【0001】
本技術は、流体からガスの気泡の除去に関連する。1つの限定されない例示の応用は、人工心肺または透析機などの体外の血液回路中で循環される血液からのガス状塞栓の除去である。
【背景技術】
【0002】
関連出願
本出願は、それらの全ての開示が参照により本明細書中に合体される2008年9月11日および2009年6月4日にそれぞれ出願された米国仮特許出願第61/096,080号と第61/184,190号の優先権を主張する。
【0003】
背景技術
塞栓(embolus)は、血流を通って移動し、血管中でつかえて、血流をブロックする構造である。塞栓の例は、分離した血餅と、細菌塊と、異物と、空気の気泡である。外科的手術、特に心臓手術では、脳に送られる血液中に存在する塞栓数の増加、すなわち、脳に送られて充填された塞栓と神経認識欠乏との間に相関がある。その結果として、動脈ラインフィルタが体外血液(CPB:extracorporeal blood)回路で使用されて体外血液回路中で循環する血液から塞栓をろ過するかもしれない。しかしながら、動脈ラインフィルタは、十分大きい細孔、例えば、28〜40×10-6m(28〜40μm)を含んでおり、小さい塞栓は通過することができ、大きな空気と脂肪塞栓もまたそれらが多く存在するときはいつでも通過してフィルタの下流の循環に入る。さらに、動脈ラインフィルタを通過する微小気泡は、結合して大きな気泡になり、患者に害を引き起こす可能性がある。この問題は、低容量のバイパス回路で特に厳しい。バイパス回路の利点(例えば、低容量(low-prime volume)は、高いヘマトクリット値、全身性炎症の低減、血小板活性化の低減、患者へより良い酸素の配送をもたらす。)にもかかわらず、低容量バイパス回路は、従来のバイパス回路と同様にシステムから静脈の空気を排出しない。
【0004】
そこで、血液を患者に戻す前にバイパス回路からガス状塞栓を除去するための良い方法が必要である。発明者は、血液からガス状塞栓を除去するための様々な方法について検討した。1つの方法は、体外血液回路中の気泡除去容器中の流体の量を、例えば、気泡除去容器の断面積を増加させることによって増加させることである。この増加した断面積は、気泡を容易に捕集して除去する体外血液の気泡除去容器中の血流流量を効果的に低減する。また、広い断面積は、気泡の浮力が血液から空気の気泡を分離するのに使用できるように、入口から出口までの血圧低下を生み出す。同様に、体外血液の気泡除去コンポーネントは、高くして作られて、気泡が流速に打ち勝って容器中でガス排出口まで浮かび上がるように多くの時間を与えるかもしれない。しかしながら、バイパス回路の間に使用されるかもしれない容器の大きさには限界がある。大きい容器は、容量溶液と輸血血液の使用の増加とともにより多くの血液の希釈を必要とするからである。バイパス回路の大きさを低減しながら微小気泡を除去し、それにより心肺バイパス手術の間に輸血された血液への依存を低減することは好ましいだろう。
【0005】
血液から空気を除去する別の方法は、血液を撹拌する流れ中で空気の気泡が遠心分離機のような渦巻の中心に引っ張られるように移動させる方法である。あるいはまた、体外血液の気泡除去コンポーネント内の圧力は、ガスの気泡の生成をしないように制御されるかもしれない。両方の技術は、大きい気泡を除去するのに効果的であるが微小気泡を除去しない。浮力が小さいため血液の流れから除去することがより困難であるからである。
【0006】
超音波は、音響学的放射力をもつので、気泡を活発に除去するために使用することができる。超音波は、音波の反射または吸収に基づいて、空気の気泡などの粒子に伝播する運動量を移送する。
【0007】
大きな気泡と微小な気泡の両方を除去できる技術が必要である。米国特許第12/129,985号の技術は、それを実行するために3つのチャンバ、流体入口チャンバ、流体出口チャンバ、および超音波スタンドオフ(standndoff)領域、を備える容器を含んでいる。流体入口チャンバと流体出口チャンバの間の障壁部は、そのビーム幅が2つのチャンバの間の開口に適合する超音波ビームを通過させずに、流体が2つのチャンバの間を通過するのを防いでいる。その設計はうまく機能して、2リットル/分の速度で流れる流体中の微小気泡と大きい空気気泡の両方を除去する。しかしながら、血液からの気泡などの高流速で除去する応用では、2つのチャンバの間の開口は、血流速度を遅くするために、より大きくなければならない。そうしないと、超音波ビームは、血液流体の流量に対して気泡を押しだす十分な力を供給するように非常に高い出力密度を持たなければならない。そのような高電力密度は、血液中の細胞を破損する場合がある、そして、これらのパワーレベルで作動する変換器は、故障しやすい。代替手段は、流速が特定の体積流量速度に対して低いように流体入口チャンバと流体出口チャンバの間の開口を広くすることである。しかしながら、この開口は、かなり大きい必要があり、それにより超音波ビームがかなり大きい直径を必要とし、超音波ビームが開口内で高電力密度を必要とすることを意味する。例えば、直径約3インチの開口は、開口中で約10W/cm2の超音波ビーム出力密度を必要とするだろう。この直径のビームを発生するのに必要となる大きい面積の変換器と電力は、製造するのが難しく、かつ大きな表面領域にわたって発生する多くの振動モードによって故障しがちである。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】米国特許出願第12/129,985号明細書
【発明の概要】
【課題を解決するための手段】
【0009】
発明の概要
本明細書で記載された超音波による気泡除去技術は、流体から非常に小さい微小気泡を含む気泡を除去する。超音波による気泡除去に加えて、追加の気泡除去機構は、気泡除去の信頼性を高めるために使用される。これらの追加の気泡除去機構もまた、超音波出力レベルが、体外血液のガス状塞栓除去のような扱いに注意を要する応用において、確立された安全指針以下のレベルに確実に保持することができる。
【0010】
第1の限定されない例示の実施例は、流体から気泡を除去するための容器を提供する。容器は、流体を受け取る流体入口部と容器から流体中の気泡を除去する気泡出口部とを含む。超音波変換器は、容器中に取り付けられ、かつ、受け取った流体に超音波ビームを伝幡させて流体中の気泡を気泡出口部に向かって移動させる。流体出口部は、超音波ビームが当てられた流体を出力する。気泡出口部の近くに取り付けられた超音波反射体は、流体出口部から離れる方向に超音波ビームを反射して、容器中の内面から流体出口部の方向に向けられる超音波ビームの反射を低減するか、または防ぐ。好ましくは、反射体は、流体出口部から離れる方向に超音波ビームを反射するが気泡出口部の方向に向かう音響学的放射力(acoustic radiation force)の量を増加させるように取り付けられる。
【0011】
容器は、流体入口部と流体出口部とを分離する第1障壁部を備える障壁部を含むかもしれない。第1障壁部の開口は、流体入口部から受け取られた流体に超音波ビームを放射するのを可能にし、かつ流体入口部から受け取られた流体が流体出口部に達するのを可能する。限定されない好適な実施例では、開口は、超音波ビーム幅に少なくともほぼ一致するような大きさに作られていて、反射体は、開口から離れる方向に超音波ビームを反射するように配置されている。障壁部は、開口を生成するために第1障壁部に対して十分な角度の第2障壁部を含み、第2障壁部は、流体出口部を超えて延びている。限定されない好適な実施例では、第1障壁部は、容器の側壁にほぼ垂直であり、かつ、第1障壁部と第2障壁部は、ほぼ垂直である。開口は円形状であり、第2障壁部は、円筒形状であるかもしれない。代替の例示の構成では、第2障壁部は、同心状の円筒形状表面を含む。
【0012】
容器は、好ましくは、超音波変換器を流体入口部および流体出口部から分離する音響学的に透明な物質を含む。冷却流体の入口部は、超音波変換器によってもたらされる熱を容器から除去する冷却流体を受け取り、冷却流体の出口部は、冷却流体を容器から除去する。あるいはまた、流体は、冷却流体を用いてまたは用いずに、放熱フィンまたは同様の熱除去構造を使用して冷却されるかもしれない。音響学的に透明な物質は、冷却流体が受け取った流体と接触するのを防ぐ。1つの例示の構成では、音響学的に透明な物質は、超音波ビームのプロフィールが、障壁部中の開口の寸法に近似するように、超音波ビームを調整するような形状に作られている。音響学的に透明な物質は、音響学的に透明な物質と超音波変換器との間の容器中に超音波スタンドオフ領域を画定する。第1の実施形態の限定されない例示の追加の態様において、超音波スタンドオフ領域の長さは、超音波が最大の振幅にある、超音波ビームの近いフィールド/遠いフィールドの遷移と適合する。
【0013】
容器の異なる限定されない構成が記載される。例えば、超音波ビームと、障壁部の開口と音響反射体とは、同じ軸に沿ってほぼ並べられるかもしれない。気泡出口部は、同じ軸に沿ってほぼ並べられるかもしれないし、または、同じ軸からずらされるか、同じ軸と一直線上に並べられないかもしれない。超音波変換器は、開口を通った超音波ビームのエネルギーを焦点に合わせるように形成されているかもしれない。容器が円筒状形状であるなら、流体入口部と流体出口部は、好ましくは、容器中に受け取った流体の渦流を生成するために、容器の円筒状表面にほぼ接するように配置されていて、この容器は、開口に沿って容器の中央部に気泡を押し出して、小さい気泡を大きい気泡に合体する。気泡出口部は、好ましくは、容器を作動させるために取り付けられるとき、容器の頂点又は頂点近くに配向される。
【0014】
第1の実施形態の限定されない例示の追加の態様において、容器は、第1障壁部にほぼ平行な方向でありかつ開口を遮蔽する方向に配置された多孔性メッシュを含む。多孔性メッシュは、多孔性メッシュの細孔径より大きい気泡を機械的に捕集し、超音波ビームは、気泡を気泡出口部の方向に押し出す。あるいはまた、多孔性メッシュは、流体入口部と開口との間で、かつ開口と流体出口部との間の第1障壁部に実質的な角度を有する方向に配置されるかもしれない。角度付けられたメッシュは、気泡を捕集するための大表面積を提供し、流れを妨害する粒子によりメッシュが閉そくする可能性を低減する。
【0015】
第1の実施形態の1つの例示の有利な応用は、血液からガス状塞栓を除去するシステムである。本システムは、患者から血液を受け取る血液回路を含む。血液回路に接続されるポンプは、血液を血液回路にポンプで汲み上げる。血液回路に接続された容器は、血液からガス状塞栓を除去する。容器は、血液を受け取るための血液入口部と、容器から血液中のガス状塞栓を除去するための塞栓出口部とを含む。容器中に取り付けられた超音波変換器は、受け取った流体に超音波ビームを伝幡させて流体中のガス状塞栓をガス状塞栓出口部に向かって移動させる。容器の血液出口部は、超音波ビームが当てられた血液を出力する。ガス状塞栓出口部の近くに取り付けられた超音波反射体は、血液出口部から離れる方向に超音波ビームを反射して、血液出口部の方向に向かう容器中の内面からの超音波ビームの反射を低減するか、または防ぐ。反射体は、ガス状塞栓出口部から離れる方向に超音波ビームを反射して、ガス状塞栓出口部の上方向に向かう音響学的放射力の量を増加させるように取り付けられる。本システムは、超音波変換器とポンプを制御するコントローラを含む。
【0016】
血液回路は、好ましくは、センサーを含む。容器に入ってくる血液中のガス状塞栓を検出し、超音波変換器の作動を制御するコントローラが使用するセンサ情報をコントローラに提供する。容器に存在する血液中のガス状塞栓を検出する別のセンサーは、ガス状塞栓がまだ血液中に残っているときに検出するために使用されるかもしれない。
【0017】
容器は、血液回路中の種々の位置に提供されるかもしれない。例えば、容器は、血液回路のコンポーネントである、静脈リザーバ、動脈ラインフィルタ、気泡トラップのうちの1つ又はそれ以上の中に提供されるかもしれない。
【0018】
第1実施形態の液体を脱気泡する方法もまた記載される。液体は、流体入口部を通って容器に導入され、容器を通って流れ、好ましくは、らせん経路で、第1出口部の方向に向かって流れる。容器中の超音波変換器は、超音波ビームを容器の長手軸方向に沿ってらせん経路の方向でかつ第2出口部の方向に伝幡する。超音波ビームは、容器内で血液出口部から離れる方向に反射し、容器中の内面から第1出口部の方向に向かう超音波ビームの反射を抑えるか、または防ぐ。超音波ビームは、また、第2出口部から離れる方向に向かって反射され、第2出口部の上方向に向かう音響学的放射力の量を増加させる。超音波ビームが当てられた液体流れは、第1出口部を通って取り出され、空気の気泡を飛沫同伴した液体流れは、第2出口を通って取り出される。
【0019】
また、第2の限定されない例示の実施形態は、流体から気泡を除去する容器を提供する。容器は、流体を受け取るための流体入口部と、容器から流体中の空気を除去するための空気出口部とを含む。1つまたはそれ以上の超音波変換器は、受け取った流体に1つまたはそれ以上超音波ビームを第1方向に伝幡させて空気出口部の方向に流体中の気泡を移動させる。流体出口部は、超音波ビームが当てられた流体を出力する。導管構造は、超音波ビームを第1方向に向ける。導管構造の断面は、好ましくは、1つまたはそれ以上の超音波ビームの断面とほぼ一致する。界面は、第1方向から反対の方向への1つまたはそれ以上の超音波ビームの反射を防ぐ。
【0020】
第2の実施形態の第1の例示の実施例では、複数の超音波ビームは、好ましくは、対応する導管数が超音波ビーム数と一致する複数の導管を通って伝播される。例えば、12の超音波ビームがあれば、12の導管があり、各導管は、第1方向に超音波ビームを向けるような管であるかもしれない。
【0021】
限定されない第2の例示の実施形態では、音響反射体は、排除され、容器の頂部は、音響学的インピーダンスがエポキシ樹脂やプラスチックなどの気泡流体の音響学的インピーダンスにかなり一致する物質で作られている。また、その物質は、超音波が容器中で反射して戻る前に、超音波波の音響学的エネルギーを吸収するためにその中に埋め込まれているタングステンパワーなどの音響学的吸着装置を含むかもしれない。また、その物質は、超音波ビームエネルギーが界面を通る多重回の通過で消散するように、接続管からほぼ離れる方向に反射されたエネルギーを向けるように角度付けられているかもしれない。
【0022】
別の限定されない第2の実施形態の例示の実施形態では、容器は、完全に気泡流体で満たされておらず、その代わりに、リザーバなどに重要な流体/空気界面がある。この場合、音響学的放射力は、流体/空気の界面で小さい弓形(arc)をもたらす「音響学的な流れ(acoustic streaming)」として知られている現象を生成する。このアーク状の音響学的な流れは、超音波エネルギーがほとんど容器中に反射されて戻らないように、流体/空気の界面の幾何学形状を変更し、音波の入力エネルギーの多くを消散する。
【図面の簡単な説明】
【0023】
【図1a】限定されない例示の体外血液(CPB)回路の図であり、ガス状塞栓が除去される図である。
【図1b】限定されない別の例示の体外血液(CPB)回路の図であり、ガス状塞栓が除去される図である。
【図1c】限定されない別の例示の体外血液(CPB)回路の図であり、ガス状塞栓が除去される図である。
【図2】第1の限定されない例示の実施形態に基づく超音波で補助された脱気泡装置の前方斜視図である。
【図3】図2の超音波で補助された脱気泡装置の断面図である。
【図4】図2の超音波で補助された脱気泡装置の三次元的な斜視断面図である。
【図5】図2の超音波で補助された脱気泡装置の平面図である。
【図6】超音波ビームの反射を示す図2の超音波で補助された脱気泡装置の部分断面図である。
【図7】図2の超音波で補助された脱気泡装置の断面積であり、超音波ビームを形成するために湾曲した超音波変換器を有する限定されない例示の実施形態を示す図である。
【図8】図2の脱気泡装置の代替の例示の実施形態を示す断面図であり、容器中の流体領域から超音波スタンドオフ領域を分離する異なる構成の音響学的窓を有する限定されない例示の実施形態を示す図である。
【図9】図2の脱気泡装置の断面図であり、同心円の構成部を有する流体入口部と流体出口部の間に障壁構造を有する限定されない例示の実施形態を示す図である。
【図10】図2の脱気泡装置の部分断面図であり、気泡出口部が中心部から外れている代替の例示の実施形態を示す図である。
【図11】図2で示される脱気泡装置に流体を送出するための代替の例示の実施形態の側面図である。
【図12a】、
【図12b】図2の脱気泡装置の代替の例示の実施形態の断面図であり、気泡をろ過するために1つまたはそれ以上の多孔性メッシュを使う図である。
【図13】第2の限定されない例示の実施形態の第1実施例に基づく超音波で補助された脱気泡装置の側部断面図である。
【図14】図13に示す超音波で補助された脱気泡装置の側面図である。
【図15】図13に示す超音波で補助された脱気泡装置の平面図である。
【図16】図13に示す超音波によって補助された脱気泡つ置の底面図である。
【図17】図13に示す超音波で補助された脱気泡装置の側部断面図に対して代表する超音波ビームの軌跡を示す図である。
【図18】図13に示す超音波で補助された脱気泡装置の側部断面図に対して超音波ビームのプロフィールを示す図である。
【図19】、
【図20】図13の超音波で補助された脱気泡装置で脱気した前後の血液中の気泡の軌跡の試験結果を示すスクリーンショット図である。
【図21】流体流れの逆方向に向けられた超音波フィールドを有する脱気泡モデルの図である。
【図22】流体流れの方向に対して垂直方向に向けられた超音波フィールドを有する脱気泡モデルの図である。
【図23a】、
【図23b】超音波で補助された脱気泡装置で使用するための例示のセグメント化された大面積の変換器の前面図と背面図である。
【図24】大面積の超音波変換器を使用する第2の限定されない例示の実施形態の第2の実施例に基づく開いている構成の超音波で補助された脱気泡装置の側部断面図である。
【図25】第3の限定されない例示の実施形態に基づく閉じている構成の超音波で補助された脱気泡装置の側部断面である。
【図26a】、
【図26b】標準の動脈フィルターと比較された図25で示す閉じた構成の超音波で補助された脱気泡装置の性能を示す図である。
【図27】標準の動脈フィルターと比較された図24で示す開いた構成の超音波で補助された脱気泡装置の性能を示す棒グラフである。
【図28a】大面積の超音波変換器を駆動するための限定されない例示のオシレータ/増幅器の概略図である。
【図28b】大面積の超音波変換器を駆動するための限定されない別の例示のオシレータ/増幅器の概略図である。
【発明を実施するための形態】
【0024】
以下の説明は、限定されない説明のために、特定の実施例、手順、技術などの特定の詳細を説明する。しかし、当業者は、これらの特定の詳細から離れて他の実施例を行ってもよいことを理解するであろう。ある場合に、周知の方法、回路、およびデバイスの詳細な説明は、不要な詳細で説明がわからなくならないように省略される。また、いくつかの図中に個別のブロックが示される。当業者は、コントローラの個別のブロックの機能が、特定用途向け集積回路(ASIC)、および/または、1つまたはそれ以上のデジタル信号処理装置(DSP)を使用して、適切にプログラムされたデジタルマイクロプロセッサか、または、汎用コンピュータと結合する個々のハードウェア回路を使用して実施されるかもしれないことを理解するだろう。
【0025】
背景の説明として、本出願で説明された技術に対する1つの特に有利な応用は、体外血液(CPB)回路である。しかしながら、当業者は、体外血液回路が限定されない例示の応用であり、この技術は、液体から気泡を除去する流体に適用されるかもしれないことを理解するでだろう。他の例示の応用は、写真乳剤、または、実質的に無気泡の流体を必要とする工業用コンポーネントから気泡を除去することを含む。空気の気泡は、一般的な例であるが、用語「気泡」は、液体中に溶解されるか、または別の方法で液体中に含まれるガスも含んでいる。
【0026】
図1(a)は、ガス状塞栓が除去される体外血液(CPB)回路の限定されない例である。患者1は、体外血液(CPB)回路と接続されて示されている。患者からの血液は、血液中の気泡の存在を検出して信号をコントローラ9に提供する気泡検出器2aに提供される。適切な例示の気泡検出器は、ルナ・イノベーション・インクから提供されるEDAC(登録商標)などの超音波微細塞栓検出装置である。続いて血液は、脱気泡装置に対応する超音波で補助された気泡除去容器または「トラップ」3aに送られる。脱気泡装置3aは、血液から空気の気泡と他のガス状塞栓を除去し、除去したものを空気パージラインを通って静脈リザーバ2に排出する。
【0027】
脱気泡装置3aからの血液は、第2気泡検出器2bでモニターされ、血液中に気泡が残っているかどうかを決定するかもしれない。気泡が検出されると、第2気泡検出器2bは、気泡が血液中に残っていることをコントローラ9に通知し、矯正措置が取られて、追加の気泡が脱気泡装置を出ないように防ぐ。血液は、体外血液(CPB)回路を通って血液が移動するのを維持する回路ポンプ5によって供給される。回路ポンプ5からの出力流体は、流量遮断弁10aを通って静脈リザーバ2に戻るように提供されるかもしれない。この流量遮断弁は、過剰な血液を除去することによって、体外血液(CPB)回路中の血流流量の適切な容積を維持するのに有用である。また、血液は、静脈性リザーバから第2流量遮断弁10bを通って体外血液(CPB)回路と脱気泡装置3aに戻されるかもしれない。流量遮断弁は、コントローラ9によって制御されるか、または手動で制御されるかもしれない。
【0028】
流量遮断弁10aが閉じると、体外血液回路中の血液は、酸素を血液中に注入する酸素供給器7に流れる。酸素が富化された血液は、次に、取り除くガス状及び固体状塞栓から患者1に対する追加の保護を提供するオプションの動脈ラインフィルタ8に供給される。脱気泡装置3の限定されない例示の詳細は、以下で図を参照して説明される。
【0029】
コントローラ9は、オプションの気泡検出器2aと2bから情報を受け取り、超音波で補助する気泡トラップ3aを制御し、さらに遮断弁を制御するかもしれない。コントローラ9は、脱気泡装置3の超音波変換器を適切なパワーレベルと周波数で作動させる。気泡検出器2a、2bによって気泡が全く検出されない場合、コントローラ9は、オプションに脱気泡装置3を起動させないかもしれない。あるいはまた、血液が体外血液(CPB)回路を通って流れている限り、脱気泡装置3を作動させることが好ましいかもしれない。
【0030】
図1(b)は、ガス状塞栓が除去される別の限定されない例示の体外血液(CPB)回路である。図1(b)は、超音波で補助される気泡トラップが、静脈性リザーバ1と結合して1つのコンポーネント3bとなっている点を除いて、図1(a)と同様である。図1(a)の構成は、主回路ループから静脈リザーバを排除している。両方の構成は、供給源のより近い気泡を排除するので好ましく、その構成は、血液中の血小板の活性化による炎症の減少による臨床上の利益をもたらすかもしれない。図1(b)の構成は、図1(a)に示される構成より体外血液(CPB)回路の現在のプラクティスとより一致しており、従って、好ましいかもしれない。そのようなコンポーネント3bのより詳細な限定されない例は、図11に示される。
【0031】
図1(c)は、ガス状塞栓が除去される別の限定されない例示の体外血液(CPB)回路である。ここで、脱気泡装置3は、静脈側よりむしろ体外血液(CPB)回路の動脈部に配置される。患者1からの血液は、静脈リザーバ4で受け取られ、そこから回路ポンプ5によって酸素供給器7に送られる。次に、酸素供給器7で酸素富化された血液は、気泡検出器2aに提供され、次に、血液が患者に戻される前に、組み合わされた超音波で補助された気泡トラップ/動脈ラインフィルタ3cと気泡検出装置2bとして実施される脱気泡装置に提供される。これは、脱気泡装置が患者に血液に戻す前に直ちにガスを除去するので、したがって、ポンプの下流で起こるかもしれない小さい検知されない漏れまたは他の事故から守るので、好ましい構成であるかもしれない。
【0032】
図2は、第1の限定されない例示の実施形態の超音波で補助された脱気泡装置の前方斜視図である。脱気泡装置3は、ほぼ円筒状形状容器であり、脱気泡する血液などの流体を受け取る流体入口部11と、脱気泡した流体を出力する流体出口部16と、流体から除去された気泡を容器から排出する気泡出口部12とを含む。容器中で受け取った流体に超音波ビームを伝幡させて気泡を気泡出口部12の方向に向かって移動させる超音波変換器(図2に図示せず)は、以下で更に例示されて説明されるように、流体及び/又は変換器自体に損傷を与え得る熱を発生するかもしれない。従って、容器の他の端部は、容器と容器中(または、近傍)に取り付けられた超音波変換器を冷却するために容器の一部に冷却流体を循環させるための冷却流体入口部18と冷却流体出口部19を含むかもしれない。
【0033】
図3は、図2の超音波で補助された脱気泡装置の断面図である。脱気泡装置の容器は、説明の容易さのために3つの領域、すなわち、流体入口部領域、流体出口部領域、および超音波スタンドオフ(超音波変換器を離して保持する)領域に分割されている。流体は、流体入口部11に入る。流体入口部11は、好ましくは、概略的に図示されるように、容器内で血液の渦流を助長するように、容器のほぼ円筒形状の接線方向に配向する。容器は、ほぼ円筒状として示されているが、容器は他の形状で構成されるかもしれない。しかしながら、円筒形状の容器は、空気の気泡のような低密度粒子を容器の中央に押し進めて十分な浮力を有する大きい気泡に合体させ、図示されるように気泡出口部12を通って気泡が除去される流体の入口チャンバーの頂部まで上昇する流体の渦流の流れを助長するので好ましい。流体入口チャンバーは、図3に示されているように、テーパ状になっていて気泡を気泡出口部12の方向に向けるかもしれない。
【0034】
超音波変換器20は、容器の他の端部に取り付けられて、超音波ビーム21を発生し、超音波ビーム21は、流体入口領域の方向に容器の長手方向軸に沿う方向に移動する。超音波変換器20は、好ましくは、容器中に取り付けられるが、所望であれば、容器の外側に取り付けられるかもしれない。適切な超音波変換器の限定されない例は、ジルコン酸チタン酸鉛(PZT)結晶か、または印加電圧に対応して振動する別の圧電体である。超音波変換器20は、例えば、コントローラ9によって適切なパワー(仕事率)と周波数で作動される。血液から空気の気泡を除去するための限定されない例示のパワーレベルと周波数の範囲は、パワー(仕事率)が1〜190W/cm2で、周波数が100kHz〜10MHzの範囲である。もちろん、これらの範囲は、例示であり、他の周波数とパワーが使用されるかもしれない。また、この範囲は、用途、流体の流速、流体の粘性、および除去する気泡のサイズに依存する。超音波ビーム21は、超音波ビームの反射または吸収により空気の気泡に伝播されるモーメントを運ぶ。超音波ビーム21は、気泡を流体入口領域の先端部に向かって移動させ、気泡出口部12で気泡を取り出す。
【0035】
流体入口領域は、流体出口領域から14で一般的に示される障壁構造によって分離される。障壁構造は、第1障壁部分14aと第2障壁部分14bを含む。障壁構造14は、ポリカーボネートなどの生物学的に適合しているプラスチックで作られているが、他の材料が使用されるかもしれない。障壁部14の目的は、気泡が流体とともに流体出口部16まで移動することを阻止し、同時に、受け取った流体が流体出口部16に到達する通路を提供することである。障壁部の第1障壁部分14aは、少なくとも超音波ビームエネルギーのかなりの部分が流体入口領域に達するように、超音波ビーム21とほぼ一直線上に並べられた表面中に開口15を有するほぼ水平面である。好ましい限定されない例示の実施形態の開口15は、円形であり、第2障壁部14bは第1障壁部分14aに対してほぼ直角の円筒である。第2障壁部分14bは、気泡出口部12に向かって上向きに気泡を押し出すために利用可能なパワー(仕事率)の量を最大にする超音波ビーム中に気泡があるように、気泡を閉じ込める。好ましくは、開口15の寸法は、流体が流体入口領域から流体出口領域まで通過する開口15をほぼ均質な音響学的圧力が横切るように、超音波ビーム21の断面積にほぼ適合している。音響学的圧力が開口を均一に横切らない場合、気泡は、音響学的圧力が最小である開口領域を通過することができるかもしれない。
【0036】
第2障壁部の第1及び第2障壁部分14a、14bは、垂直なものとして示されているが、そのようにある必要はなく、超音波ビームエネルギーのかなりの量が流体入口領域に伝播されるが、同時に空気の気泡が障壁部の開口を通って流体出口領域に通過することを困難にする位置に配向されるかもしれない。同様に、障壁部と開口の形状は、示されているようなものである必要はなく、その代わりに、超音波ビームエネルギーのかなりの量を流体入口領域に伝播するが、同時に空気の気泡が障壁部の開口を通って流体出口領域に通過するのを難しくすることができるような適切な形状であってもよい。
【0037】
また、流体入口領域は、音響学的反射エレメント13を含む。音響学的反射エレメント13は、以下で詳細に説明されるように、流体出口領域から離れる方向に超音波ビーム21を向け直す。好ましくは、音響学的反射エレメント13は、その方向に血液中の気泡を動かすために、気泡除去部12に向かって上方に導かれる音響学的放射力の量を最大にするような方法で超音波ビーム21を向ける。
【0038】
音響学的窓17は、音響学的に透明な物質で作られた本質的に流体障壁部であり、流体から超音波変換器20を分離する。音響学的に透明な物質の限定されない例は、ポリスチレンかまたはマイラ(登録商標:ポリエステルフィルム)を含む。図3に示すように、超音波変換器20と音響学的窓17の間の容器領域は、超音波スタンドオフ領域を画定する。必ずしも必要でないが、音響学的窓17は、超音波ビーム21のプロフィールが実質的に障壁部14中の開口15の寸法と適合するように超音波ビーム21の焦点を合わせるかまたは焦点を合わせないような形状に形成されている。音響学的窓17の例示の焦点をあわせる特性は、以下に詳細に説明される。
【0039】
超音波スタンドオフ領域の1つまたはそれ以上の寸法は、流体入口領域に伝幡される音響学的エネルギーの量を増加するか、または最大にするような大きさ/形状に作られているかもしれない。1つの限定されない例は、音響学的な視準器として作動する側壁を角度づけることか、または、超音波変換器20と音響学的に透明な媒質17との間の距離を音響学的窓17の位置が、音波が最大となる超音波ビーム21の近いフィールド/遠いフィールドの遷移と一致するように調整することである。高周波数の超音波変換器では、例えば、1MHz以上では、この距離は、1cmのビーム幅に対して例えば、1mのオーダーでありかなり大きいかもしれない。この距離は、超音波ビーム21に減弱効果をもたらすかもしれない。この場合、流体障壁部が完全に近いフィールド内にあるように変換器と音響学的に透明な媒質との間の距離を短くすることは、よい性能をもたらすかもしれない。
【0040】
流体流れに対して微小気泡を上向きに動かすように十分な音響学的放射力を生成するために、かなりの熱を発生する高出力で超音波変換器を駆動することは好ましいかもしれない。このような場合に、超音波変換器20を冷却することは、好ましいだろう。超音波スタンドオフ領域は、冷却媒入口部18を通って冷却流体を受け取る。冷却流体は、超音波スタンドオフ領域を循環し、冷却媒出口19を通って除去される。水は限定されない例示の冷却媒体である。あるいはまた、外部に適用される冷却媒体をスタンドオフ領域の壁を冷却するために使用するかもしれない。超音波スタンドオフ冷却流体は、高流速で上向きに気泡を押し出すために必要とされる高パワーで作動するときに、超音波変換器20を過熱から保護する。例えば、体外血液(CPB)回路では、冷却水は、超音波変換器20で発生する熱により血液が損傷するのを防ぐ。
【0041】
図4は図2の超音波で補助された脱気泡装置の三次元的な斜視断面図である。この斜視断面図は、音響学的反射体(エレメント)13が取付部材13aと13bを使用して容器中にどのように取り付けられているを示す。また、斜視断面図は、円筒状の開口15を形成する第1及び第2部分14a、4bを有する障壁部を示している。円筒状の開口15は、流体が流体入口領域から流体出口領域に達するのを可能にする。
【0042】
図5は、図2の脱気泡装置の平面図であり、好ましく不可欠でないが、流体の渦流を容易にする容器本体に対する流体入口部11と流体出口部の接線方向の配置を強調している。
【0043】
図6は、図2の脱気泡装置の部分的な断面図であり、音響学的反射体13が流体入口領域と流体出口領域の間の開口15から離れる方向に超音波ビームを向け直すかを示す図である。音響学的反射体13は、この限定されない例で超音波ビームが第1障壁部分14aで反射されるように角度づけられている。第1障壁部分14aは、超音波ビームを容器の側壁の方向に反射し、次に、流体入口領域の先端まで反射し、その結果、空気の気泡を気泡出口部12に向かう方向と同じ上向き方向に押しだす。
【0044】
それぞれの反射の後に、超音波ビームの音響学的エネルギーのいくらかは反射物質中に伝幡され、超音波ビームエネルギーは消散する。多重反射の後に、いくらかの音響学的エネルギーは開口15を通って下向きに導かれるかもしれないが、そのポイントで、この多重反射された超音波ビームは、開口15を通ってやって来る入力の超音波ビームエネルギーよりも実質的に少ないだろう。図示されるような好ましい限定されない実施例では、音響学的反射体13は、流体入口部11に向かう方向に角度づけられていて、反射した音響学的エネルギーは、気泡が装置に入るときに直ぐに気泡をヒットて、音響学的放射力が気泡出口部の方句に上向きに気泡を押し出すために多くの時間を持つようにする。
【0045】
図7は、図2の超音波で補助された脱気泡装置の断面であり、超音波ビームを形成するために湾曲した超音波変換器を有する限定されない例示の実施例を示している。超音波変換器20aは、開口15に向かう方向に超音波ビーム21の焦点を合わせるように湾曲している。その結果、超音波ビームは、流体出口領域に入るとき、よりしっかりと平行に(コリメート)される。さらに、この例示の実施例では、音響学的窓17aは、超音波ビームを焦点に集めないような形状に作られている。超音波ビームを焦点に集めないようなビーム直径は、流体入口と流体出口領域の間の開口15の幅Wの一致を増加させる。
【0046】
図8は、図2の脱気泡装置の代替の例示の限定されない実施例を示す断面図であり、容器中の流体領域から超音波スタンドオフ領域を分離する異なる形状の障壁部を有する図である。変換器20は、焦点に集中されず、音響学的窓17bは、超音波ビーム21を焦点に合わせるように形成される。この例では、超音波ビーム21は、開口15より広いことが注目される。音響学的窓17bの形状は、その形状が実質的に開口15の寸法に適合するように音響学的ビーム21の焦点を合わせる。
【0047】
図9は、流体入口部と流体出口部との間の障壁構造が同心円形状を有する限定されない例示の実施形態を示す図2の脱気泡装置の断面図である。図9は、超音波ビームは、開口15より広いという点において図8と同様である。しかしながら、図9で参照番号22で示される障壁部14の第2部分は、同心円状の円筒を含む。音響学的窓17bは、ビームが同心円状の障壁部22の外側の同心円状の円筒の幅に一致するようにビームの焦点を合わせるように形成される。このように、開口15を通る気泡は、流体出口部16を通過するために超音波ビーム21内に収容される超音波の進行波に垂直方向に移動しなければならない。その結果、気泡を押し上げるためにより少ない超音波力が必要とされ、流体出口領域に入るのに十分なエネルギーを有する気泡を障壁部22の2つの同心円状の円筒の間で捕集することができる。
【0048】
図10は、図2の脱気泡装置の部分断面図であり、代替の例示の実施例を示す図であり、気泡出口部12が異なる位置にある図である。特に、気泡出口部12は、気泡出口部12が音響学的反射体13の直接上方にないように脱気泡容器の中央の長手方向軸から外れている。その結果として、取り付け部材が2つまたはそれ以上のポストの代わりに単一の筒状壁から組み立てられる場合、取り付け部材13a、13bは、空気が気泡出口部に到着するのを阻止しない。
【0049】
図11は、図2に示された脱気泡装置に流体を送出するための代替の例示の実施形態の側面図である。容器またはバッグは、脱気泡される流体を受け取って貯蔵するためのリザーバ25として使用される。脱気泡される流体は、入口部26からを受け取られ、体外血液(CPB)回路中の圧力勾配は、流体入口部11に流体を引き入れる。この構成は、図1(b)で示される体外血液(CPB)回路中の脱気泡装置を実施するための例示である。
【0050】
上記の説明で明白なように、超音波で補助された脱気泡装置3は、気泡除去プロセスの効率と信頼性を高めて、流体から気泡除去を容易にする多くの特徴を含む。他の使用されるかもしれない別の気泡除去の特徴は、気泡を機械的に捕集する1つまたはそれ以上の多孔質メッシュか、または、容器中で気泡の移動に対する障壁部を形成することである。図12aは、多孔性メッシュ28が開口15の上方に配置されている限定されない例示の実施形態を示している。多孔性メッシュ28は、流体入口領域から流体出口領域まで気泡をろ過して押し出すのを助ける。さらに、超音波ビームからの超音波の音響学的放射力は、多孔性メッシュから多孔性メッシュ中に捕集された気泡を押し出して気泡出口部12の方向に向かって上がって戻ることができる。言い換えれば、超音波は、多孔性メッシュ中に捕集された気泡を「取り除く(clear)」ことができる。
【0051】
図12bに示された別の代替の例示の多孔性メッシュの実施形態は、2つの円錐状メッシュ構造29、30を含む。第1円錐状メッシュ29構造は、流体入口領域中に取り付けられ、第2円錐状メッシュ構造30は、流体出口領域中に取り付けられる。円錐状メッシュ29、30は、第1障壁部分14aに対してかなりの角度で配向されている。水平面から離れる方向のこのかなりの角度は、円錐状メッシュの表面積を増加させて、多孔性メッシュを閉そくして停止させずに捕集することができる気泡数を増加させる。
【0052】
高流速での応用、例えば、血流から気泡の除去では、流体入口チャンバーと流体出口チャンバとの間の開口は、速度を減速させるために大きいことが好ましいことが背景技術から思い出される。しかしながら、このより大きい開口は、開口中にかなり大きい直径と高いパワー密度(仕事率)を有する超音波ビームを必要とする。この直径とパワーのビームを発生することができる大面積の変換器は、以下の第2実施形態の第2実施例で説明されるが、大面積の変換器は、製造することは難しいかもしれないし、また、大表面積にわたって発生された多重の振動モードによって失敗する傾向があるかもしれない。
【0053】
第2の例示の実施形態の第1実施例は、小さい超音波変換器の配列(array)を使用する超音波で補助された脱気泡装置を含み、配列中の各超音波変換器は、超音波によって補助された脱気泡容器の流体出口チャンバを流体入口チャンバーに接続する導管(流路)の配列の1つを通って超音波を伝幡する。流路は、流体入口チャンバーと流体出口チャンバとの間に開口の配列を生成することによって実施されるかもしれない。流体入口チャンバーは、変換器の配列を収容できるくらい大きいかもしれない。しかしながら、血液のろ過のような応用では、使用目的によっては、この余分なチャンバサイズは、余分な流体体積が、バイパス手術の間、輸血された血液のより大きい使用と血液のより大きい希釈をもたらすので好ましくないかもしれない。そのような応用において、流体入口部が移動する超音波が流体入口部に向かって気泡を押し戻す外側のリング部を経由して小さい流体出口部に接続されている別の例示の実施例は、より適切であるかもしれない。
【0054】
図13と14は、第2の限定されない例示の実施形態の第1実施例の超音波で補助された脱気泡装置の側部断面と側面図である。入口部11を有する円筒状の流体入口部は、流体が流体入口チャンバー46の外側周囲に渦巻流体の流れを引き起こすように流体入口チャンバー46の接線方向の頂部に入るように図示されて配置されている。渦巻流体の流れの間、微小気泡は、大きい気泡に合体し、十分な浮力を持つ気泡は、装置の先端部に上昇して、空気パージライン12を通って装置を出る。ガス透過性膜(図13に示さない)は、空気が流体を除去しないで流出できるように空気パージラインに配置されるかもしれない。あるいは、空気パージライン12は、バイパス回路から完全に除去されていない気泡が患者に決して届かないように、患者のさらなる上流に流体と空気の混合物を戻すかもしれない。
【0055】
流体入口チャンバー46の底部の外側境界は、導管の円形配列に、この例では、流体入口チャンバー46から流体出口チャンバ48まで流体を伝幡する接続管44に接続する。血液で混合した小さい気泡は、流体入口チャンバー46から接続管44を通って下向き方向に出る。また、各接続管44は、上向き方向に移動する超音波ビームを流体入口チャンバー46の方向に導く導管である。流体入口チャンバー46の先端部は、超音波ビームが接続管44の下方に反射して戻る代わりに流体入口チャンバ46の中心方向に向け直されるように、好ましくは、角度づけられている。超音波ビームを流体入口チャンバ46の中心の方向に導くことによって、上方向に向けられた超音波ビームの強度を消散することができる音響学的反射が排除されるか、または少なくともかなり抑えられる。また、流体入口チャンバー46を角度づける設計は、装置の中心にソリッドコアを形成して装置の流体体積を最小にする。そうすると、バイパス手術の間、患者の外部の血液の全容積を減少させる。さらに、この流路の先端部は、反射が流体を脱気泡するために使用された音響学的放射力を消散しないように、これらの接続管から離れる方向に接続管の上方に伝播する超音波を反射するように角度づけられているかもしれない。
【0056】
1つの例示として、接続管44に接続している流体入口チャンバー46と流体出口チャンバ48は、ポリカーボネートかまたはアクリルなどの生物学的に適合するプラスチックで作られているかもしれない。
【0057】
流体出口チャンバ48を流体入口チャンバー46に接続する接続管44は、それぞれが管の底部またはその近くの管の側部に、流体が流体出口チャンバ48に入るのを許容する穴を有する。各管の底部の壁は、音波が管に入るのを可能する音響学的に透明な物質で作られている。各接続管44の下方には、接続管44に一致する超音波変換器20からの超音波ビームが接続管44の寸法に少なくともほぼ一致するように焦点を合わせられるような流体出口チャンバ48を取り囲む超音波スタンドオフ領域40がある。1つの例では、超音波スタンドオフ領域40は、接続管44の下方に配置された円筒の内側に流体で充填された管を有する円筒である。それぞれの超音波スタンドオフ領域の底部で、管は電気信号を超音波または超音波ビームに変換する超音波変換器20である。この超音波かまたは超音波ビームは、超音波スタンドオフデバイス(領域)40内の各管から接続管44を通って伝播する。超音波ビーム/超音波は、流体中の気泡に対して流体入口チャンバー46まで気泡を押し戻して空気パージライン12に押し出す上向きの音響学的放射力を伝達する。脱気泡された流体は、管の底部で各接続管44の開口を通って出る。ここで、各接続管の流体は、流体出口チャンバ48(この例示ではロート状)を通って集まり、最終的に16で装置を出る。
【0058】
各接続管44は、超音波スタンドオフ領域からポリスチレン、マイラ、ポリエチレンまたは別の適切な音響学的損失が少ない物質で作られた音響学的に透明な窓/障壁部17を使用して分離されるかもしれない。流体入口チャンバー、接続管、および流体出口チャンバは、ポリカーボネートかまたはアクリルなどの生物学的に適合するプラスチックで作られているかもしれない。
【0059】
これらの超音波スタンドオフ管(領域)は、超音波スタンドオフ流体を血液から分離する音響学的窓/障壁部17によって接続管から分離される。超音波スタンドオフ領域40は、好ましくは、アルミかまたは銅などの熱を伝導する金属で作られる。また、超音波スタンドオフ領域40は、好ましくは、電気エネルギーを機械的エネルギーへ変換する間に変換器20の配列で発生する熱に対するヒートシンクを提供する。超音波スタンドオフ管は、冷却流体で満たされ、超音波変換器が過熱して故障するのを防ぐように冷却され、また脱気泡された流体(例えば、血液)が熱くなり過ぎるのを防ぐかもしれない。この熱は、超音波スタンドオフ領域から周囲空気に消散することができるか、または、流体を超音波スタンドオフ領域を通って循環させることによって超音波スタンドオフ領域から活発に除去することができる。そのような熱の消散は、過剰な熱から血液を保護する。例えば、放射フィンは、装置から熱の除去を容易にするために超音波スタンドオフチャンバ(領域)40の壁中に作られるかもしれないし、または、超音波スタンドオフ流体は、チャンバから冷却リザーバまで循環されるかもしれない。他の冷却技術が使用されるかもしれない。
【0060】
図15は頂部からの平面図であり、図16は、図13で示された超音波で補助された脱気泡装置の底部からの平面図である。図15は、接続管44を有する流体入口チャンバー46と、流体入口ライン11と、空気パージライン12を示す。図16は、超音波スタンドオフチャンバ40の底部の流体出口48と、超音波スタンドオフチャンバ40と、超音波変換器20を示す。
【0061】
接続管44に、移動する超音波または超音波ビームを介して高周波の音波が当てられる。図17は、図13で示される超音波で補助された脱気泡装置の側部断面図をたどる代表的な超音波ビームを示す図であり、図18は、超音波ビームのプロフィールを示す図である。図17でビーム軌跡は、脱気泡容器3を通る超音波ビームの伝播方向を示すが、図18の超音波ビームのプロフィールは、超音波ビームが容器3を通過するとき、超音波ビームの寸法を示している。超音波ビーム軌跡では、超音波が、流体入口チャンバー46の角度づけられた壁に入射するまで、超音波スタンドオフチャンバ40と、音響学的窓/障壁部17と、接続管44を通過する直線経路に従う。これらの壁の角度は、超音波が流体入口チャンバーの壁に対して複数回だけ反射させる。1つの限定されない例として、角度は、超音波に対して45°以下であるかもしれない。各反射のときに、超音波エネルギーのいくらかは反射され、いくらかは壁によって吸収され、超音波ビームエネルギーは、流体入口チャンバーの中心に超音波エネルギーが達する時までにかなり減少する。したがって、超音波ビームエネルギーはほとんど流体流れの方向に戻って反射されないで、流体流れの方向と反対側に接続管を通って高エネルギーの進行波を維持する。
【0062】
図18のビームプロフィールは、近いフィールド、すなわち、変換器面から焦点までの超音波ビーム領域で、超音波波/ビームは、変換器20の寸法にかなり一致し、次の式、
N=a2/λ
の集束ゾーン52中の焦点Nまで徐々に狭まることを示している。ここで、Nは、超音波変換器から焦点までの近いフィールドの長さであり、aは、超音波変換器の半径であり、λは、超音波の波長である。焦点では、超音波は、遠いフィールド56、すなわち、超音波ビームが分岐し始める焦点を超えた超音波ビーム領域に入る。分岐角は、円形ビームに対して次の式
sinθ=1.22λ/d
で与えられる。ここで、θは分岐角であり、λは超音波の波長であり、dは超音波変換器の直径である。上の式からNとθが与えられ、超音波スタンドオフ装置40の長さLを決定することができる。超音波ビームの幅は、超音波ビームが対応する接続管44に入るとき、好ましくは、ほぼ接続管44の幅(式でwで示される)に適合し、以下の式、
L=N+(w−s)/2tanθ
で与えられる。ここで、sは焦点Nでのビーム幅である。
【0063】
試験目的に対して、限定されない単一チャンネルの脱気泡装置が作られ、最大2リットル/分の流速でテストされた。流体入口チャンバーと出口チャンバとの間で直径1インチの開口を通る均一な超音波ビームを生成する1.5インチ直径の超音波変換器が設計され使用された。試験の間、EDAC(登録商標)超音波微細塞栓検出装置は、微小気泡が試験装置に入る前と試験装置を出た後に存在するか否かを決定するために使用された。そのような試験の1つからの結果を図19と20に示す。
【0064】
図19では、気泡の軌跡は、微細気泡フィルタ(通路1)に入る前に血液中で検出されたが、脱気泡装置(通路2)を出た後で気泡の軌跡から除去されている。図20では、流速が2〜4リットル/分に増加されると、脱気泡装置は、もはや血液(通路2)から気泡を除去しない。単一管テスト装置と対照的に、多数管の脱気泡装置は、容器3内で血液の容積量を実質的に増加させずに、高流速で作動を可能にするように設計されるかもしれない。1つの限定されない高流速の例は、7リットル/分である。
【0065】
上記説明された複数の変換器のアプローチとは対照的に、脱気泡装置を通る高速の流体流速を達成する第2の例示の実施形態の代替の大面積の超音波変換器を使う実施例が以下に説明される。発明者によって実行されたテストに基づいて、所与の高い体積流量に対して速度が低い流体入口チャンバと流体出口チャンバの間の開口の1つの例は、直径が約3インチである。この大きい開口に対する超音波ビームは、10W/cm2のオーダーで開口中にパワー密度を必要とするかもしれない。
【0066】
この概算は、空気の気泡の超音波放射力の実験計測と以下の理論的解析に基づいている。超音波放射力は、音波の入口側と伝播された側のエネルギー密度差によって生成され、超音波放射力は、反射された音波に対して最大化される。第1オーダーに対して、超音波放射力は、球体の塞栓に対して以下の式、
us=2Iπr2/c (1)
で与えられる。ここで、Iは超音波の強度であり、rは塞栓の半径であり、cは伝播媒体の音速である。
【0067】
流れている粘性流体中で、超音波放射力は、以下の運動方程式
ρVx”=(2Iπr2/c)−6πrμ(x’−vf) (2)
を生成するために粘性抵抗力に対してバランスされている。ここで、ρは塞栓密度であり、Vは体積であり、μは流体媒体の粘性であり、vfは、流体媒体の速度である。この式(2)は、以下の二次オーダーの非均質の微分方程式
x”+(9μx’/2ρr2)=(2πr2/c)ー6πrμvf (3)
を形成するために再構成することができる。
【0068】
この方程式に対する解は、
x(t)=τvterm(e-t/τ−1)+(vterm+vf)t(4)
で与えられる。ここで、vtermは、超音波放射力に曝されている粘性流体中の塞栓の終端速度であり、τは、塞栓が終端速度に達するために必要な時定数である。終端速度と時定数は、
term=Ir/μc (5)
τ=2ρr2/9μ (6)
によって与えられる。
【0069】
5〜500μmの大きさの範囲の微細なガス状塞栓に対して、時定数τは2ナノ秒〜20マイクロ秒である。同じ大きさの脂質の微細な塞栓に対して時定数は2マイクロ秒〜20ミリ秒である。これらの小さい値が与えられると、ガス状塞栓が即座に終端速度に達すると仮定することができ、その場合、式(4)は、
x(t)=(vterm+vf)t(7)
になる。
【0070】
式(7)は、超音波放射力に曝される塞栓の終端速度が流体流れの速度より大きいなら、塞栓が超音波フィールド中に捕集(トラップ)されることを確証する。捕集が図21のように、超音波フィールドが流体流れの方向に対して上方向に向かう状態で構成される場合、10W/cm2の音響学的フィールドにおける10μmの気泡の終端速度は10cm/sである。7リットル/分の最大流速で、これは9cmの脱気泡装置の容器の断面積を必要とするだろう。2MHzの例示の駆動周波数で、10W/cm2の超音波フィールドの機械的指数(mechanical index)は、0.25であり、1.9のFDA最大で約8倍小さい。
【0071】
代替の構成では、超音波フィールドは、図22に示されるように、流体流れの方向に垂直方向に向けられるかもしれない。この場合、塞栓は、塞栓が超音波フィールド(dx)の幅を通る前に、流れる流体の外側のy方向(dy)に押し出されなければならない。3/8インチ直径の標準管で、7lpmの最大流速で、超音波フィールドの直径は、上記説明された上向きの方向の超音波フィールドに対して必要とされる超音波フィールドの直径と同様に、気泡を流れの外に押し出すために8cmが必要である。この構成は、Katzの国際特許出願第2004/004571号と、Palanchon(「血液透析に適用される音響学的気泡捕集器」、Ultrasound in Medicine and Biology 34:4(April 2008),p.681-684、および「血液透析のための超音波に基づく空気の気泡の捕獲システム」Ultrasound in Medicine and Biology 32:5(May 2006),p.159)の仕事で別々に開示された。しかしながら、両方のグループは、気泡トラップ寸法が7lpmの作動で必要とされる8cmの管よりもかなり小さい100ミリリットル/分の範囲のかなり低い流速でのみ気泡の捕集をテストした。
【0072】
図22の構成に対する図21の上流の構成は好ましいものである。なぜならより広い超音波ビームを作ることによってこの設計を高流速に適用することが容易であり、かつ、空気パージラインを脱気泡装置と統合することが容易であるからである。そのような空気パージラインがなければ、気泡は、超音波フィールドを混乱させ、かつ空気除去効率を減少し得る。
【0073】
上記の分析は、大面積の超音波変換器が脱気泡装置の寸法に一致する超音波ビームを生成するために使用されるべきであることを示す。しかしながら、この直径とパワーの超音波変換器は、製造するのが難しく、大きい表面にわたって発生される多くの振動モードにより故障する傾向がある。このことは、小さい超音波変換器の配列を使用する上記説明した実施例がいくつかの応用において魅力的であるかもしれない理由である。他方では、複数の超音波変換器の使用は、多くの実用問題を引き起こす。第1に、各超音波変換器は、ほぼ同じ音響学的な出力パワーを生成するはずである。パワーが1つの超音波変換器中で高過ぎるなら、その結果は血液を損傷するだろうが、パワーが1つの超音波変換器中で低過ぎるなら微小気泡が捕集できないないだろう。超音波変換器の出力パワーは、圧電体結晶の製造における変動と超音波変換器が気泡トラップで取り付けられる方法による機械的な差異により非常に変動する場合がある。第2に、小さい超音波変換器は、大きい超音波変換器よりかなり小さい遠いフィールド遷移(far-field transition)を有する。遠いフィールド遷移で、超音波ビームは小さい面積に狭まり、点線源からのように回折し始める。その結果として、ビーム強度は、広い面積にわたって一定でなく、複雑なビーム形成が脱気泡装置の導管の直径に対してビーム強度をほぼ一致させるために必要である。
【0074】
これらの困難さがあると、1つまたはそれ以上の大面積の超音波変換器は、いくつかの応用において好ましいかもしれない。大面積の超音波変換器の故障を防止するために、タイル張りの配列で多くのエレメントからなるものが好ましい。図23(a)、23(b)は、超音波で補助された脱気泡装置で使用するのための限定されない例示の区分された、またはタイル張りされた大面積の変換器60の前面と裏面を示している。図23(a)に示す前面は、各同心円リング62、62’、62”で異なるサイズであるがほぼ同じ面積の13個の超音波変換器エレメント62を含む。この設計では、全前面は、正極に接続するためにメタライズされるかもしれない。この層は、正極が超音波変換器の裏面に接続することができるように、超音波変換器のエッジの周りに巻きつける。図23(b)に示される超音波変換器の裏面上に、正極は、メタライズされていない同心円リング63によって分離される。負極64は裏面の中央に堆積される。それぞれのタイルエレメントは、一つの電気信号によって同じ位相で駆動される。
【0075】
大面積の変換器で、患者の体外の血液量を最小にするように脱気泡装置がバイパス回路に加える流体の体積を減少するために脱気泡装置の大きさを低減することは好ましい。これを行う1つの例示の方法は、その内容が本明細書中に引用により合体される「流体からの音響学的に高められた気泡の除去」と題する共に譲渡された出願番号第12/129,985号で説明されるように、入口ポート頂部に出口ポートを底部にして流体入口チャンバーと流体出口チャンバを組み合わせて単一チャンバーにすることである。
【0076】
理論上の見地から、トラップの高さは、気泡除去効率に対して有意な効果を持っていない。これは、式(6)の時定数τはマイクロ秒のオーダーであるので、気泡はほとんど即座に捕集され、より長いカラムは捕集効率を改善しないからである。しかしながら、実用的な見地から、脱気泡装置は、チャンバから捕集された気泡をパージするために十分なバッファー体積を提供するために十分に高いことが必要である。気泡がすぐにパージされないなら、気泡は、伝幡する超音波ビームを混乱させて、前進する音響学的ビーム強度を低減し得る。したがって、主要体積を減少させるためのトラップの高さの制限と、捕集効率を改善するために高さを高くすることは、実用的なトレードオフがある。このトレードオフに対するの1つの解答例は、気泡トラップを静脈リザーバと統合することである。このことは、リザーバが体外血液回路で血液を貯蔵するように既に設計されているので、捕集に対するかなりの主要体積を追加しない。
【0077】
静脈リザーバに一体化された脱気泡装置3の限定されない例は、図24に示される。この実施は、リザーバが空気に対して開いている「開いた構成」であり、大きな流体(例えば、血液)と空気との界面を形成する。これと対照的に、閉じているリザーバは、血液と空気の界面が無い折りたたみ式バッグを使う。この閉じた構成の限定されない例示の実施は、以下で図25に関連して説明される。図24で、流体入口部11は、開いたシェルリザーバ25に接線方向に入り、次に、脱気泡のために流体を保持する開いたシェルリザーバ25中に垂直方向に延びる。開いたシェルリザーバ25の底部で、開いたシェルリザーバ25の寸法は、ほぼ大面積の超音波変換器60からの超音波ビームの直径に一致する。ここで、流体は、流体出口ライン16を通って出る。圧力開放弁50は、開いたシェルリザーバ25を大気圧に保持するために開いたシェルリザーバ25の先端に配置される。所望なら、気泡除去を補助するために圧力開放弁50に対してわずかな真空が適用されるかもしれない。
【0078】
ポリスチレン、ポリエチレンまたは別の音響学的に透明な物質で作られるかもしれない音響学的窓17が提供される。音響学的窓17の反対側のスタンドオフ領域40では、開いたシェルリザーバ25中の流体(例えば、血液)の加熱を好ましくは少なくとも減少するために、脱空気された冷却流体(例えば、水)を超音波変換器60と音響学的窓17の間で循環する。冷却流体を循環させるための冷却流体(例えば、水)の接続ライン18、19が示される。
【0079】
流体出口に向かって反射されて戻る音響学的エネルギーの量は、図24の一体化された設計を使用すると空気と流体との界面から音響学的波が反射するのでさらに最小にすることができる。この例示の流体が血液であると仮定して、図24は、超音波変換器が起動していないとき、空気と血液の界面が比較的平らであり、超音波変換器が起動しているとき、空気と血液との界面が比較的湾曲したまたは弓形であることを示している。伝幡する音波(音響学的波)の力は「音響学的流れ」として知られている効果を生み出す。この効果は、空気と血液との界面に目で見える弓形を生み出す。音響学的流れは、前進する音波のエネルギーを消散して、捕集(トラップ)における気泡への音響学的放射力を減少させる反射した音波を最小にする。しかしながら、この空気と流体との界面は、血小板活性化と全身性炎症に関連する懸念によりバイパス回路では好ましくないかもしれない。
【0080】
あるいはまた、スタンドアロンユニットとして図25に示されている一体化された静脈リザーバなしで脱気泡装置3を製造することは、好ましいかもしれない。この閉じた構成は、開いているリザーバ内での大きな空気界面を排除する。両方のリザーバの設計は、バイパス回路中で図1(b)に示された「超音波によって補助された気泡トラップ/静脈リザーバ」の位置に配置することができる。
【0081】
開いたシェルリザーバ構成は依然として広く使用されているが、開いたシェルリザーバ構成における空気界面は、バイパス手術の間、血小板活性化と全身性炎症に貢献するかもしれないという懸念がある。図25のスタンドアロンの閉じた構成は、その懸念を排除するが、依然としてパージされた空気気泡を除去するために脱気泡装置の先端におけるパージライン12を必要とする。このパージラインは、図1(c)に示されているようにトラップがバイパス回路の動脈側に配置される場合、患者から図1(b)の気泡検出器2aまで、または、静脈リザーバ4まで連続するラインまで送って戻されるかもしれない。
【0082】
パージライン12は、脱気泡装置の先端で、前進して伝幡する音波の強度を低減することによって反射した音波を最小にするように設計されている図3(例えば、反射体13)で示された限定されない例と同様に、反射エレメントの先端と一体化されるかもしれない。図25で示された平らなトラップ68は、脱気泡装置がプラスチックで作られている限り音響学的に良く作動する。プラスチックが音響学的に減衰するか、またはプラスチックに加えられたタングステン粉末などの減衰物質を有する限りプラスチックは音響学的に流体とよく適合するからである。
【0083】
動脈ラインフィルタに対して開いている構成と閉じている構成の脱気泡装置の例示のテスト版の空気の処理を比較するテストデータが、図26(a)、26(b)、図27に示されている。図26(a)、26(b)のグラフは、単一の1.5インチの変換器を使っていて、したがって1.5〜2リットル/分の流速まで有効であるテストにおける閉じている構成の脱気泡装置(図24)に関するものである。図27のバーチャートは、6リットル/分を超える流速で動脈フィルターよりよく作動するトラップを可能する3インチ直径の超音波変換器を使用する一体化された開いた構成の試験装置に関係する。
【0084】
脱気泡装置に関する懸念は、音波で発生した熱により血液が損傷する超音波エネルギーの可能性である。音のエネルギーは、血液によって直接吸収されて、熱にほとんど変換されないが、多量の熱は、電気駆動信号を機械的な波に転換する間に変換器で発生される。この熱は、変換器の表面に近い小さな面積内に集中するので、この熱が血液に達する前に除去されないなら、その熱は、結晶の周囲の温度を溶血を引き起こすことができるくらいに上昇させることができる。上記に説明されたように、1つの解決策は、変換器面と気泡トラップとの間で冷却流体(例えば、水)のスタンドオフを使うことである。スタンドオフ流体がトラップの外側で大きい水浴を循環するなら、テストは、循環流体を冷却させずに循環水が30℃を決して超えていないことを示した。
【0085】
スタンドオフ冷却流体に関して、気泡が脱気泡装置に音波の伝幡を妨げるので、空気の気泡が水のスタンドオフと気泡トラップの間の音響学的窓に集まるのを防ぐように注意しなければならない。水のスタンドオフ中の気泡の量は、脱気泡装置における使用の前にスタンドオフ流体を脱気し、音響学的窓に付着する気泡を防ぐ界面活性剤を加えることにより最小にすることができる。可能な脱気方法は、スタンドオフ中に流体を循環するベンチュリポンプの使用とスタンドオフ流体への硫化ナトリウムの添加を含んでいる。ベンチュリポンプは、溶液から空気気泡を引張りだす負力を供給するし、硫化ナトリウムは、強く酸素と結合し、空気気泡が溶液と結合するのを防ぐ。
【0086】
図24、図25で示される脱気泡装置で使用される超音波変換器(他の例示の実施形態示される装置と同様)は、例えば、メガヘルツ周波数範囲で作動する標準のすぐ入手できるRF増幅器を使用して駆動されるかもしれない。しかしながら、標準のRF増幅器は、低い入力インピーダンスを有する大面積の超音波変換器に対して問題がある50オームの出力インピーダンスを有する。例えば、上に述べられた試験構造で使用される1.5インチ直径の超音波変換器は、約7オームのインピーダンスを有する。より大きな面積の変換器は、より少ないインピーダンスを有するだろう。
【0087】
インピーダンスの不一致が大きい場合、RF増幅器からの入力エネルギーの大部分は、増幅器に反射されて戻るだろう。そのような反射を防ぐために、インピーダンスが一致するネットワークまたは伝播ラインネットワークが使用されるかもしれない。
【0088】
代替手段は、インピーダンスが、大面積の変換器のインピーダンスに一致するRF増幅器を設計することである。そのような手法の1つはルイス他の「軍事用、医学用および研究用の携帯可能な治療用および高強度超音波システムの開発」Rev Sci Instr.79;114302(2008)によって既に開示されている。この設計では、オシレータからのTTL信号がPINドライバーへの入力として使用され、次に、PINドライバーは、MOSFET増幅器の配列を駆動する。増幅器の配列は、低いインピーダンスの変換器を作動させるために必要とされる高電流を達成するために使用される。
【0089】
ここで説明された代替の手法は、オシレータ動因信号を増幅回路に結合する。このオシレータ/増幅器は、プッシュプル型パワー出力ステージと接続された調整可能な連続波(CW)オシレータを含む。この手法は、ルイスの設計に類似のオシレータとMOSFET(酸化金属半導体電界効果トランジスター)配列を使用するが、さらに詳細に以下で説明されるデバイスは、高出力オーディオ増幅器の出力ステージに類似している。
【0090】
図28(a)は、大面積の超音波変換器を駆動するための例示の比較的高い周波数と高電流オシレータ/増幅器の限定されない概略図である。比較的高い周波数の作動範囲は、好ましくは、大面積の変換器の周波数範囲に対応している。限定されない例示の周波数範囲は、約100KHz〜10MHzである。入力ステージ70は、オシレータ72を含む。自動利得制御式(AGC)増幅器ステージ80は、入力ステージ70から信号を受信して、それを増幅する、例えば、例示の利得は5である。増幅された信号は,高周波,高電流のモノリシックバッファー90でバッファリングされ、プッシュプル型構成104bの出力FET104A、104Bの3組の102A〜102Cを含むパワーステージ100を駆動する。並列に構成される3組のFET(電界効果形トランジスタ)と結合された高周波数、高電流バッファーは1MHzを超える周波数で高出力で大面積の超音波変換器60を作動させるために必要な高いスイッチング速度と電流容量を達成するために駆動回路を可能にする。大面積の変換器60の低インピーダンス整合を合わせることは、増幅器が高電流レベルで変換器60を駆動させることができなければならないことを意味する。オームの法則は、一定電圧に対して、低インピーダンスは高電流をもたらすことを示めす。通常の大面積の超音波変換器は、数オーム、例えば、2〜4オームのオーダーのインピーダンスを有するかもしれない。
【0091】
出力FETは、デバイスが完全な伝導性で、低ゲート容量で、高電流仕様のとき、好ましくは、ソースレジスタンスに対して低いドレインを有する。3組の出力FET102A〜102Cは、増幅器の出力インピーダンスを下げるとともに負荷に対して利用できる出力電流を増加させるために並列に接続される。低出力インピーダンスは、3組の出力FET102A〜102Cと反応変換器負荷との間で、時定数を非常に短く保持することによって数MHzまでの作動を可能する。
【0092】
出力ステージ100は、伝送ライン変成器110と低いインピーダンスケーブル出力が次に続く。限定されない例示のテスト装置の伝送ライン変成器110は、増幅器の大きさとコストと冷却要件を低減しながら出力デバイスの適度の数で変換器の負荷を駆動するように増幅器を可能する4:2インピーダンス整合設計である。図28(a)の低インピーダンス増幅回路は、増幅器の観点から変換器のインピーダンスを本質的に2倍にすることによってこのことを実行する。このことは、電流の量を半分にし、増幅器は、例えば、2.2MHzで供給しなければならないし、かつ限定されない例で、ファクター4でFET中の電力散逸を落とす。増幅器の大きさを低減するために、伝送ライン変成器110は、変換器と並べて配置することができる、このことは、増幅器と変換器の間のケーブル接続を簡素化するだろう。
【0093】
大面積の超音波変換器を作動するために使用される増幅器回路の作動を改善する追加の限定されない設計の特徴がある。1つは、変換器に対して最大エネルギーの移動をもたらす、リンギング(鳴り響く音)無しに方形波出力波形の生成である。別のものは、高い立ち上がり速度とリンギングを抑えるためにデバイス容量の有利な点を得ることを可能にする最小量のフィードバックである。さらに、大面積の超音波変換器の駆動信号の周波数と振幅は、好ましくは、オシレータ/増幅器が調整されて個々の変換器が駆動するように調整される。このことは、脱気泡装置の変換器または複数の変換器の音響学的出力が一致することを可能する。オシレータ/増幅器とその対応する変換器の間のインピーダンスを整合することは、低インピーダンスの出力ケーブルアセンブリ組立品を駆動する伝送ライン変成器110によって処理されるかもしれない。
【0094】
また、図28(a)、28(b)は、好ましいかもしれない自動利得制御(AGC)システムを示す。図28(a)では、電流検出器122は、音響学的出力が一貫して安全レベルで維持できるように自動利得制御増幅器ステージ80の入力を制御するためにローパスフィルタ124を介してフィードバックを有する変換器中で消散するパワーをモニターするためにレジスターラダーを介して変成器出力を受け取るかもしれない。電流センサ122は、変換器が加熱するとき変化する変換器60に供給される電流の量をモニターする。上昇温度は変換器インピーダンスを減少させる。自動利得制御ステージ80へのフィードバックは、変換器60に対する増幅器の駆動レベルを制御し、最終的に、変換器60の音響学的出力を制御する。また、自動利得制御フィードバックと増幅器ステージ80は、変換器60が超音波を送る媒質の音響学的インピーダンスを考慮に入れる。
【0095】
図28(b)に示す別の限定されない例では、変換器60の音響学的出力は、脱気泡装置128内に取り付けられた第2超音波変換器を使用する脱気泡装置内で直接測定される。プラスチックは、セラミック変換器と水の間で良好な音響学的カップリングを提供するので、フッ化ビニリデン樹脂(PVDF)または他のポリマー変換器は、駆動変換器60の前面、または、音響学的窓17の上に適用することができる第2変換器128の例である。この第2の音響学的トランスジューサ128は、増幅器126で増幅された超音波出力を電圧信号に変換し、検出器122で検出され、ローパスフィルタ124でフィルタされ、自動利得制御ステージ80の制御を提供するために使用される。
【0096】
図28(a)と図28(b)の両方の例は、増加する電流が故障している変換器に供給され、増幅回路、変換器、または両方を破壊する電気的な加熱を引き起こす「開いたループ」のフィードバック状況を防ぐ好ましい制御機能を提供する。
【0097】
一般に、第2実施形態の大面積の変換器の実施は、チャンバ数を減少させ、それにより、脱気泡装置の主要体積を低減する。このことは、脱気泡装置が、血液希釈の少ないバイパス回路で使用することができることを意味する。
【0098】
例示の実施形態のすべてに関して、流体を脱気泡するための機械的な特徴(例えば、渦流、多孔性メッシュフィルタなど)と関連する超音波放射力を使用することによって、上記に記載された技術は、超音波または機械的な特徴だけを使用するデバイスよりもとり効果的に流体から気泡を除去する。さらに、この技術は、現在の体外血液(CPB)コンポーネントと一体化されるかもしれないし、バイパス回路に流体体積を追加しない。実際、流体から気泡をより効率的に除去することにより、体外血液(CPB)回路コンポーネントの流体体積を減少することは可能であり、このことは、ヘマトクリット(血液検体中の血球成分割合)と全身性炎症のリスクの低減を維持するために体外血液(CPB)手術の間に輸血された血液のより少ない使用をもたらす。また、超音波放射力の使用は、体外血液(CPB)回路中に機械的フィルターの総量の低減をもたらすかもしれない。このことは、赤血球がこれらのフィルタ内でメッシュファイバにぶつかるときに引き起こされる赤血球の損傷を低減する有益な効果を持つかもしれない。
【0099】
様々な例示の実施形態が示され詳細に説明されたが、特許請求の範囲は、特定の実施形態や実施例に制限されない。上記の説明は、特定のエレメント、工程、範囲、または機能が特許請求の範囲に含まなければならないような本質的なものであることを意味するように読むべきでない。単一のエレメントについて言うことは、そのように明らかに述べられていない場合には「1つで1つだけ」を意味しないで、むしろ「1つまたはそれ以上」を意味する。特許化される要旨の範囲は、特許請求の範囲だけで画定される。法的保護の程度は、許可された特許請求の範囲で述べられた言葉とその同等物によって画定される。
当業者に知られている上記説明された例示の実施形態のエレメントに対して構造的及び機能的な同等物の全ては、明白に本明細書中に引用により合体され、本特許請求の範囲に含まれることを意図する。また、装置及び方法が、本特許請求の範囲に含まれる本発明によって解決されることが求められている各課題および全ての課題に取り組むことは必要ない。用語「のための手段」または「のための工程」が使用されていない場合、特許請求の範囲は、合衆国法典第35巻第112条のパラグラフ6を呼び出すことを意図しない。また、本開示の特徴、コンポーネント、または工程は、その特徴、コンポーネント、または工程が特許請求の範囲で明らかに引用されているか否かにかかわらず公衆に捧げられることを意図しない。

【特許請求の範囲】
【請求項1】
流体から気泡を除去する容器であって、
前記流体を受け取る流体入口部と、
前記容器から前記流体中の空気を除去する空気出口部と、
1つまたはそれ以上の超音波ビームを前記受け取った流体を通って第1方向に伝幡させて前記流体中の気泡を前記空気出口部に向かって移動させるように構成されている1つまたはそれ以上の超音波変換器と、
前記1つまたはそれ以上の超音波ビームが当てられた前記流体を出力する流体出口部と、
前記1つまたはそれ以上の超音波ビームを、前記容器を通って第1方向を通って前記空気出口部に伝播させる導管構造と、
前記第1方向と略反対の方向へ前記1つまたはそれ以上の超音波ビームが反射するのを防ぐ界面と、
を有することを特徴とする容器。
【請求項2】
前記界面は、前記容器中で前記流体出口部の方向に反射されて戻る音響学的エネルギーを低減する、空気と流体との界面であることを特徴とする請求項1に記載の容器。
【請求項3】
前記1つまたはそれ以上の超音波変換器が作動しているとき、前記空気と流体との界面は湾曲しているまたは弓形状であることを特徴とする請求項2に記載の容器。
【請求項4】
前記伝幡される超音波ビームの力は、前記超音波ビームのエネルギーを前記第1方向へ消散させる音響学的流れ効果を生成し、かつ、前記反対の方向へ反射されて戻る反射された超音波ビームを最小にし、前記反対の方向へ反射されて戻る反射された超音波ビームは、前記第1方向中の気泡に対する放射力を減少させることを特徴とする請求項3に記載の容器。
【請求項5】
前記界面は、前記流体出口部から離れる方向に前記1つまたはそれ以上の超音波ビームを反射して、前記容器の内面から出発して前記流体出口部の方向に向けられる前記超音波ビームの反射を低減するかまたは防止するように前記容器中に取り付けられた超音波反射体を含むことを特徴とする請求項1に記載の容器。
【請求項6】
前記容器の内部部分の形状は、前記界面を提供することを特徴とする請求項1に記載の容器。
【請求項7】
前記内部部分は、前記流体入口部に接続された流体入口チャンバーを含むことを特徴とする請求項6に記載の容器。
【請求項8】
前記導管構造の各導管の断面は、前記伝播される超音波ビームの断面と略一致することを特徴とする請求項1に記載の容器。
【請求項9】
前記1つまたはそれ以上の超音波変換器を前記流体入口部および前記流体出口部から分離する音響学的に透明な物質を更に有することを特徴とする請求項1に記載の容器。
【請求項10】
前記音響学的に透明な物質は、前記超音波ビームのプロフィールが障壁部の開口の寸法と近似するように前記超音波ビームを合致させる形状に作られていることを特徴とする請求項9に記載の容器。
【請求項11】
前記超音波変換器によってもたらされる熱を容器から除去する手段を更に有することを特徴とする請求項1に記載の容器。
【請求項12】
前記1つまたはそれ以上の超音波変換器は、複数の超音波変換器を含み、前記導管構造は、前記超音波ビームを前記複数の超音波変換器から前記容器を通って前記第1方向に伝播させるための複数の接続管を含むことを特徴とする請求項1に記載の容器。
【請求項13】
前記複数の変換器と前記接続管との間に超音波スタンドオフ領域を更に有し、前記超音波スタンドオフ領域の長さは、各超音波ビームが対応する接続管に入射するとき、各超音波ビームの幅が前記接続管の幅と略一致することを特徴とする請求項12に記載の容器。
【請求項14】
前記1つまたはそれ以上の超音波変換器は、タイル張りされた変換器の配列からなる超音波変換器を含み、前記超音波変換器は、タイル張りされていない変換器を落下させることができる振動を少なくとも低減することを特徴とする請求項1に記載の容器。
【請求項15】
前記1つまたはそれ以上の超音波変換器は、その周波数応答とインピーダンスが前記大面積の超音波変換器の周波数応答とインピーダンスとほぼ一致する増幅器によって駆動される大面積の超音波変換器を含むことことを特徴とする請求項1に記載の容器。
【請求項16】
前記大面積の超音波変換器の前記周波数の範囲が1MHz以上であることを特徴とする請求項15に記載の容器。
【請求項17】
前記大面積の超音波変換器の前記インピーダンスが数オームのオーダーであることを特徴とする請求項16に記載の容器。
【請求項18】
前記増幅器は、前記変換器のインピーダンスが加熱または他の外部の影響により変化する場合に、前記変換器への出力パワーを調整する自動ゲイン制御部を含むことを特徴とする請求項15に記載の容器。
【請求項19】
血液からガス状塞栓を除去するシステムであって、
患者から血液を受け取る血液回路と、
前記血液回路を通って前記血液をポンプで送出するために前記血液回路に接続されているポンプと、
血液からガス状塞栓を除去するために前記血液回路に接続されている容器と、
を有し、
前記容器は、
前記血液を受け取る血液入口部と、
前記容器から前記血液中のガス状塞栓を除去するガス状塞栓出口部と、
前記容器中に取り付けられかつ、1つまたはそれ以上の超音波ビームを前記受け取った血液を通って伝幡させて前記血液中のガス状塞栓を前記ガス状塞栓出口の方向に移動させるように構成されている1つまたはそれ以上の超音波変換器と、
前記1つまたはそれ以上の超音波ビームが当てられた前記血液を出力する血液出口部と、
前記1つまたはそれ以上の超音波ビームを、前記容器を通って第1方向を通って前記空気出口部に伝播させる導管構造と、
前記第1方向と略反対方向へ前記1つまたはそれ以上の超音波ビームが反射するのを防ぐ界面と、
を有することを特徴とするシステム。
【請求項20】
前記界面は、前記容器中で前記血液出口部の方向に反射される音響学的エネルギーを低減する空気と血液との界面であることを特徴とする請求項19に記載のシステム。
【請求項21】
前記伝幡される超音波ビームの力は、前記超音波ビームのエネルギーを前記第1方向へ消散させる音響学的流れ効果を生成し、かつ、前記反対の方向へ反射されて戻る反射された超音波ビームを最小にし、前記反対の方向へ反射されて戻る反射された超音波ビームは、前記第1方向中のガス状塞栓に対する放射力を減少させることを特徴とする請求項20に記載のシステム。
【請求項22】
前記界面は、
前記血液出口部から離れる方向に前記1つまたはそれ以上の超音波ビームを反射して、前記容器の内面から出発して前記血液出口部の方向に向けられる前記1つまたはそれ以上の超音波ビームの反射を低減するかまたは防止するように前記ガス状塞栓出口部の近くに取り付けられた超音波反射体と、
前記1つまたはそれ以上の超音波変換器と前記ポンプを制御するコントローラと、
を含むことを特徴とする請求項19に記載のシステム。
【請求項23】
前記容器の内部部分の形状は、前記界面を提供することを特徴とする請求項19に記載のシステム。
【請求項24】
前記内部部分は、前記血液入口部に接続された血液入口チャンバーを含むことを特徴とする請求項23に記載のシステム。
【請求項25】
前記導管構造の各導管の断面は、前記伝播される超音波ビームの断面と略一致することを特徴とする請求項19に記載のシステム。
【請求項26】
前記1つまたはそれ以上の超音波変換器を前記血液入口部および前記血液出口部から分離する音響学的に透明な物質を更に有することを特徴とする請求項19に記載のシステム。
【請求項27】
前記音響学的に透明な物質は、前記超音波ビームのプロフィールが障壁部の開口の寸法と近似するように前記超音波ビームを合致させる形状に作られていることを特徴とする請求項26に記載のシステム。
【請求項28】
前記1つまたはそれ以上の超音波変換器は、複数の超音波変換器を含み、前記導管構造は、前記超音波ビームを前記複数の超音波変換器から前記容器を通って前記第1方向に伝播させるための複数の接続管を含むことを特徴とする請求項19に記載のシステム。
【請求項29】
前記複数の変換器と前記接続管との間に超音波スタンドオフ領域を更に有し、前記超音波スタンドオフ領域の長さは、各超音波ビームが対応する接続管に入射するとき、各超音波ビームの幅が前記接続管の幅と略一致することを特徴とする請求項27に記載のシステム。
【請求項30】
前記1つまたはそれ以上の超音波変換器は、タイル張りされた変換器の配列からなる超音波変換器を含み、前記超音波変換器は、タイル張りされていない変換器を落下させることができる振動を少なくとも低減することを特徴とする請求項19に記載のシステム。
【請求項31】
前記1つまたはそれ以上の超音波変換器は、その周波数応答とインピーダンスが前記大面積の超音波変換器の周波数応答とインピーダンスとほぼ一致する増幅器によって駆動される大面積の超音波変換器を含むことを特徴とする請求項19に記載のシステム。
【請求項32】
液体から気泡を除去する方法であって、
前記液体を流体入口部に通して容器に導入する工程と、
前記液体が前記容器を通って第1出口の方向に流れるようにさせる工程と、
1つまたはそれ以上の超音波変換器を作動させ、1つまたはそれ以上の超音波ビームを前記容器の導管構造から空気出口部の方向に伝幡させる工程と、
前記超音波ビームが当てられた液体の流れを前記第1出口から取り出す工程と、
空気の気泡が飛沫同伴されている液体流れを空気出口部を通して取り出すか、または、前記容器の流体と空気との界面で前記流体から空気の気泡を前記空気出口部に放出する工程と、
前記第1方向とほぼ反対の方向に1つまたはそれ以上の超音波ビームが反射するのを防ぐために界面を使用する工程と、
を有することを特徴とする方法。
【請求項33】
前記超音波ビームのプロフィールが障壁部の開口の寸法と近似するように前記超音波ビームの形状を形成する工程を更に有することを特徴とする請求項32に記載の方法。
【請求項34】
前記1つまたはそれ以上の超音波変換器のインピーダンスに一致する高電流で高周波数の駆動信号を発生するためにオシレータと増幅器と使用する工程を更に有することを特徴とする請求項32に記載の方法。
【請求項35】
前記界面は、前記容器中で前記流体出口部の方向に反射される音響学的エネルギーを低減する空気と流体との界面であることを特徴とする請求項32に記載の方法。
【請求項36】
前記伝幡される超音波ビームの力は、前記超音波ビームのエネルギーを前記第1方向へ消散させる音響学的な流れ効果を生成し、かつ、前記反対の方向へ反射されて戻る反射された超音波ビームを最小にし、前記反対の方向へ反射されて戻る反射された超音波ビームは、前記第1方向中のガス状塞栓に対する放射力を減少させることを特徴とする請求項32に記載の方法。
【請求項37】
前記流体出口部から離れる方向に前記1つまたはそれ以上の超音波ビームを反射して、前記容器の内面から出発して前記流体出口部の方向に向けられる前記超音波ビームの反射を低減するかまたは防止するするように、前記界面として前記容器中に取り付けられた超音波反射体を含むことを特徴とする請求項32に記載の方法。
【請求項38】
前記容器の内部部分の形状は、前記界面を提供することを特徴とする請求項32に記載の方法。

【図1a】
image rotate

【図1b】
image rotate

【図1c】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12a】
image rotate

【図12b】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23a】
image rotate

【図23b】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26a】
image rotate

【図26b】
image rotate

【図27】
image rotate

【図28a】
image rotate

【図28b】
image rotate


【公表番号】特表2012−501797(P2012−501797A)
【公表日】平成24年1月26日(2012.1.26)
【国際特許分類】
【出願番号】特願2011−526930(P2011−526930)
【出願日】平成21年9月8日(2009.9.8)
【国際出願番号】PCT/US2009/056154
【国際公開番号】WO2010/030589
【国際公開日】平成22年3月18日(2010.3.18)
【出願人】(507194497)ルナ イノベーションズ インコーポレイテッド (5)
【氏名又は名称原語表記】LUNA INNOVATIONS INC.
【Fターム(参考)】