説明

アクリロニトリルの精製方法

【課題】アクリロニトリルの製造プロセスにおいて、製品塔等の装置寿命の延長、製品品質の安定化及びアクリロニトリル製造プロセス負荷の軽減を達成することのできる、新規な方法を提供すること。
【解決手段】
アクリロニトリル及び酢酸を含む溶液を蒸留する工程を備えるアクリロニトリルの精製方法であって、
前記蒸留工程における蒸留装置の製品塔の塔底液が接触する部分の材質がカーボンスチールからなり、
前記塔底液中の酢酸濃度が1.5〜3.5質量%である、方法と、
アクリロニトリル及び酢酸を含む溶液を蒸留する工程を備えるアクリロニトリルの精製方法であって、
前記蒸留工程における蒸留装置の製品塔の塔底液が接触する部分の材質がステンレススチールからなり、
前記塔底液中の酢酸濃度が1.5〜7.0質量%である、方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、アクリロニトリル及び酢酸を含む溶液を蒸留することにより、アクリロニトリルを精製する方法に関する。
【背景技術】
【0002】
プロピレン及び/又はプロパン、アンモニア及び分子状酸素を触媒の存在下に反応させてアクリロニトリルを製造するプロセスにおいては、まず、生成したアクリロニトリル、アセトニトリル及び青酸を含む反応生成ガスを急冷塔で冷却するとともに、未反応のアンモニアを硫酸で中和除去する。その後、反応生成ガスは吸収塔に送られ、アクリロニトリル、アセトニトリル及び青酸を水に吸収させる。次いで、吸収塔で得られたアクリロニトリル等を含む水溶液を回収塔に導入し、該水溶液から、蒸留操作によってアセトニトリル及び大部分の水を含む留分と、アクリロニトリルや青酸の大部分を含む留分とに分離する。その後、アクリロニトリルや青酸の大部分を含む留分を脱青酸脱水塔に導入して、青酸及び水を分離した後、塔底液を製品塔に導入し、蒸留操作によりアクリロニトリルを精製し、製品規格に適合した製品を得る。
上述の方法においては、製品塔の上部より製品品位のアクリロニトリルを得、アクリロニトリル及び不純物を含む液を塔底より分離する。ここで、特許文献1には、アクリロニトリルの収量を上げる方法として、製品塔塔底液中のアクリロニトリルを回収するために、製品塔塔底液をさらに蒸留する方法や、製品塔塔底液を急冷塔にリサイクルする方法が開示されている。
【0003】
【特許文献1】特開昭52−65219号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
従来、製品であるアクリロニトリルの収量を増加させることについては、当然ながら多くの関心が寄せられ、検討されてきた。一方、収量の増加という直接的な効果を目的とした改良の他にも、関連装置の寿命の延長、製品品質の安定化及び工程負荷の軽減という間接的な改善によっても技術上及び経済上大きなメリットがあるが、これまで詳細な検討がなされていないのが現状である。
上記事情に鑑み、本発明が解決しようとする課題は、アクリロニトリルの製造プロセスにおいて、製品塔等の装置寿命の延長、製品品質の安定化及びアクリロニトリル製造プロセス負荷の軽減を達成することのできる、新規な方法を提供することである。
【課題を解決するための手段】
【0005】
本発明者は、プロピレン及び/又はプロパン、アンモニア及び分子状酸素を触媒の存在下に反応させてアクリロニトリルを製造するプロセスにおいて、アクリロニトリル及び酢酸を含む溶液を蒸留する工程における製品塔の塔底液中の酢酸濃度が、蒸留装置の寿命や製品収量に多大な影響を与え得ることを見出し、本発明を完成させた。
【0006】
即ち、本発明は以下のとおりである。
[1]
アクリロニトリル及び酢酸を含む溶液を蒸留する工程を備えるアクリロニトリルの精製方法であって、
前記蒸留工程における蒸留装置の製品塔の塔底液が接触する部分の材質がカーボンスチールからなり、
前記塔底液中の酢酸濃度が1.5〜3.5質量%である、方法。
[2]
アクリロニトリル及び酢酸を含む溶液を蒸留する工程を備えるアクリロニトリルの精製方法であって、
前記蒸留工程における蒸留装置の製品塔の塔底液が接触する部分の材質がステンレススチールからなり、
前記塔底液中の酢酸濃度が1.5〜7.0質量%である、方法。
【発明の効果】
【0007】
本発明によれば、アクリロニトリルの製造プロセスにおいて、製品塔(蒸留塔)の塔底液中の酢酸濃度を特定の範囲に制御することにより、製品塔、製品塔リボイラー及び製品塔の塔底配管等の蒸留装置の寿命の延長を達成し、また、アクリロニトリル収量の低減を防止することができる。
【発明を実施するための最良の形態】
【0008】
以下、本発明を実施するための最良の形態(以下、本実施の形態)について詳細に説明する。尚、本発明は、本実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
【0009】
本実施の形態の一態様は、アクリロニトリル及び酢酸を含む溶液を蒸留する工程を備えるアクリロニトリルの精製方法であって、前記蒸留工程における蒸留装置の製品塔の塔底液が接触する部分の材質がカーボンスチールからなり、前記塔底液中の酢酸濃度が1.5〜3.5質量%である、方法である。
また、本実施の形態の別の一態様は、アクリロニトリル及び酢酸を含む溶液を蒸留する工程を備えるアクリロニトリルの精製方法であって、前記蒸留工程における蒸留装置の製品塔の塔底液が接触する部分の材質がステンレススチールからなり、前記塔底液中の酢酸濃度が1.5〜7.0質量%である、方法、である。
【0010】
以下、必要に応じて図面を参照しつつ、本実施の形態について詳細に説明する。
図1は、アクリロニトリル製造プロセスの一例を概念的に示す概略図である。アクリロニトリル製造プロセスにおいては、まず、ガス状プロピレン及び/又はプロパンをライン2から、アンモニアをライン3から、分子状酸素(通常は空気を用いる)はライン4から、それぞれ流動層触媒を充填した流動層反応器1に供給し、アンモ酸化反応を行う。得られた反応生成ガスをライン5から抜き出し、急冷塔6に導入する。急冷塔6では反応生成ガスと水を向流接触させ、反応生成ガスを冷却し、高沸点物質及びガス中に微量に含まれている流動層触媒を除去する。また、未反応アンモニアを硫酸で中和除去する。これらの高沸点物質、触媒及び硫安は、急冷塔6の塔底のライン7よりプロセス系外に抜き出す。
【0011】
急冷塔6上部から取り出されるガスをライン8により吸収塔9に導入する。吸収塔9の塔頂に回収塔12から抜き出した水を吸収水としてライン14から供給し、反応生成ガス中のアクリロニトリル、アセトニトリル及び青酸を水に吸収させる。吸収されなかったプロピレン、プロパン、酸素、窒素、二酸化炭素、一酸化炭素等及び微量の有機物等は、吸収塔の塔頂のライン11より抜き出す。吸収塔9の塔底液はライン10より回収塔12に供給する。
【0012】
回収塔12の塔頂に抽出水をライン15から導入し、抽出蒸留によりアセトニトリルを抽出分離する。アセトニトリルはライン16よりプロセス系外に抜き出す。また、大部分の水はライン13よりプロセス系外に抜き出す。回収塔塔頂からライン17によりアクリロニトリル、青酸及び水を留出し、図示していない凝縮器で凝縮した後、図示していないデカンターで有機層と水層の二層に分離する。アクリロニトリル、青酸及び少量の水を含む有機層を脱青酸脱水塔18に供給する。水層は、(ライン10より)回収塔供給液又は(ライン15より)抽出水等として、前工程にリサイクルする。
【0013】
脱青酸脱水塔18の塔頂から粗青酸ガスをライン19より留出して凝縮器20に送り、冷却して分縮する。凝縮した青酸液を塔頂に還流し、凝縮しなかった不純物の少ない青酸ガスをライン21より系外に抜き出す。凝縮器20としては縦型が好ましく、上部管板に酢酸を散布して青酸の重合を抑制する。脱青酸脱水塔塔頂のライン19内でガスに酢酸を散布するのが好ましく、散布方法としては、ノズルで液を導入する方法を用いてもよいが、スプレー方式で小液滴として散布するのが好ましい。酢酸の散布量としては、製品としてライン26より取得されるアクリロニトリルとの重量比で0.0010〜0.0050であるのが好ましく、0.0015〜0.0040であるのがより好ましい。
【0014】
脱青酸脱水塔18の中段位から塔内液を抜き出し、図示していないデカンターで有機層と水層の二層に分離する。水層は図示していないラインにより、回収塔12等の前工程にリサイクルする。デカンター内の有機層は図示していないラインにより、前記塔内液を抜き出した段より下の段に戻す。この有機層は予熱して戻してもよい。脱青酸脱水塔18の塔底からライン23により粗アクリロニトリルを抜き出し、製品塔24に送る。
【0015】
製品塔24は、大気圧より低い圧力下で運転される棚段蒸留塔であり、その棚数は、好ましくは40段〜60段である。使用する棚の種類には、シーブトレイ、デュアルフロートレイ等が挙げられるが、これらに限定されない。図1で示されるプロセスにおいては、ライン26からアクリロニトリルを製品として取得する。製品の取得方法としては、塔頂からアクリロニトリルガスを抜き出し、還流凝縮器に送り冷却して全凝縮し、塔頂に還流する一方で、アクリロニトリルの製品をライン26から抜き出す。より製品純度を上げる効果的な方法として、塔頂部から1/10〜3/10の位置にあるライン26から液を抜き出す方法が採用される。この場合、塔頂のライン25から抜き出されるアクリロニトリルガスは、凝縮器29に送り冷却して全凝縮し、ライン30にて塔頂に還流する一方で、一部はライン28により前工程にリサイクルすることで、製品中の低沸不純物の低減が可能となる。
【0016】
製品としてのアクリロニトリル抜出量は、製品塔塔底の液レベルが一定となるように調整するのが好ましい。また、蒸留に必要な熱は、塔底に取り付けた図示していないリボイラーから間接的に供給し、還流比(塔上部から1/10〜3/10の位置で液を抜き出す場合は、当該流量Wに対する還流量Rの比R/W)が1.00〜1.50、好ましくは1.10〜1.40となるよう熱量を調整する。
【0017】
また、製品抜出より低い位置にハイドロキノン水溶液を添加すると、製品塔における重合を抑制できる傾向にあるため好ましい。
【0018】
図2は、製品塔の塔底付近の概略図である。製品塔24塔底のライン27からは、高沸点の不純物を抜き出す。不純物とは、酢酸、流動層反応器で生成した高沸点物質、プロセス中に生成した重合物及びプロセス各所で添加した重合防止剤等である。ライン19で添加した酢酸は、実質的に全てがライン27から抜き出される。ライン27を通過する塔底液にはアクリロニトリルも含まれているため、そのまま系外に排出することはせず、アクリロニトリルを回収するのが好ましい。ライン27を通過するアクリロニトリルを回収する方法として、製品塔の塔底液を別の蒸留塔でさらに蒸留し、その蒸留塔の塔頂から回収したアクリロニトリルを製品塔24に再循環する工程及び/又は製品塔の塔底液の少なくとも一部を急冷塔6にリサイクルする工程が採用できる。
【0019】
塔底液の一部は、ライン35を通過して製品塔リボイラー32に入り、製品塔リボイラー32で加熱された後、ライン36を通過して製品塔24の塔底部に戻る。図2に示す例では、製品塔リボイラー32はサーモサイフォン循環となっているが、ポンプを用いた強制循環でもよい。
【0020】
製品塔塔底液量は、塔底抜出ラインに取り付けた流量計で測定した値を参照し、調節弁で制御する。流量計及び調節弁としては、特に限定されず、ケミカルプラントで通常用いられる形式のものを用いることができる。
【0021】
製品塔の塔底液の流れは上述のとおりであるので、塔底液が接触する部分の具体例としては(a)製品塔24の塔底から数えて3段目までのトレイ、当該トレイより下部の製品塔24内面及び当該部位に付属する液面計、圧力計、温度計、ノズル、(b)製品塔リボイラー32のチューブ側、(c)製品塔塔底ポンプ31、及び(d)ライン27、35、36,37が挙げられる。
【0022】
塔底液が接触する部分の材質は、酸腐食に対する耐性の観点から、カーボンスチール及び/又はステンレススチールが採用される。ステンレススチールとしては、特に限定されないが、好ましくはSUS304、304L、316及び316Lから選ばれる。製品塔24、塔底ライン27及び製品塔リボイラー32の内壁は酢酸にさらされるため腐食のリスクが大きい。そのため、一般的に、低コストではあるものの酸への耐性が小さく、安全な運転に支障を来たしかねないカーボンスチールを避け、ステンレススチールが採用される。これに対し本発明者は、塔底液中の酢酸濃度を特定の範囲に制御することで、製品塔24等の材質にカーボンスチールを採用することを可能とした。
【0023】
製品塔24、製品塔塔底ライン27及び製品塔リボイラー32の材質の少なくとも一部にカーボンスチールを用いる場合には、製品塔の塔底液中の酢酸濃度を1.5〜3.5質量%、好ましくは1.7〜3.2質量%、さらに好ましくは1.9〜2.9質量%とする。塔底液中の酢酸濃度が3.5質量%を超えると、カーボンスチール部分に酸腐食による減肉を生じる。また、アクリロニトリル製品の酢酸濃度が増加し、製品純度が低下する。一方、塔底液中の酢酸濃度が1.5質量%未満であると、アクリロニトリルをロス少なく回収するには、回収する工程の負荷が大きくなる。すなわち、各装置の処理量が増加し、蒸気等の用役使用量が増加する上、場合によっては装置の適正条件を超え、処理能力の限度又は能力を超えた運転を余儀なくされ、アクリロニトリルの回収率(収量)の低減を招く。この対策としては、装置を大型化する必要があるが、新規な設備改造を必要とするため、好ましい方法とは言えない。
【0024】
塔底液が接触する部分の材質が全てステンレススチールである場合には、製品塔の塔底液中の酢酸濃度を1.5〜7.0質量%、好ましくは2.0〜6.5質量%、さらに好ましくは3.0〜6.0質量%とする。ステンレススチールは上述のカーボンスチールと比較して酸に耐性を示すものの、酢酸濃度が7.0質量%を超えると酸腐蝕による減肉を生じ易くなる。一方、塔底液中の酢酸濃度が1.5質量%未満であると、上記と同様に、アクリロニトリルをロス少なく回収するための工程負荷が大きくなる。
【0025】
製品塔の塔底液中の酢酸濃度は、好ましくはガスクロマトグラフィーにより分析する。分析に用いられる塔底液は、例えば、塔底ポンプの吐出ラインに小ノズルを設けておき、この小ノズルからサンプリングすることができる。サンプリング頻度は、1日当たり1〜5回が好ましいが、プロセスが安定し、運転条件の変更がない場合には、1回/日〜1回/週に削減することできる。
【0026】
製品塔24で取得されるアクリロニトリルの製品は、ライン26から抜き出される。抜き出し流量は、製品塔24の塔底における液レベルが一定となるように決定される。一方、ライン27及び28の抜き出し流量は、設定した流量値となるよう抜き出し弁を制御することにより、一定流量に保たれる。すなわち、例えば、ライン27の塔底抜き出し流量を増加させれば、ライン26の製品取得流量が減少する。
【0027】
製品塔の塔底液中の酢酸としては、反応器1で生成したものも存在するが、そのほとんどがライン19に添加された酢酸に由来する。ライン19に添加する酢酸量は、アクリロニトリルの生産量が同一であれば、基本的に増減させず一定であるので、塔底液中の酢酸濃度は、ライン27からの抜き出し流量によって決定される。例えば、ライン27からの抜き出し流量を増加させれば、酢酸濃度は減少する。また、この場合、ライン26からの製品取得流量は減少する。一方、ライン27からの抜き出し流量を減少させれば、酢酸濃度は増加する。また、この場合、ライン26からの製品取得流量は増加する。すなわち、酢酸濃度を下げる場合には、塔底抜き出し量を増加させ、逆に、酢酸濃度を上げる場合には、塔底抜き出し量を減少させることで、好ましい濃度範囲に調整することができる。好ましい濃度に調整されたかどうかの確認は、上述した通り、塔底液をサンプリングし、ガスクロマトグラフィー分析により行うことができる。サンプリングのタイミングとしては、塔底液の置換がなされた後が好ましく、具体的には、塔底流量を変化させた後、
経過時間=(製品塔塔底部の液容積,m)/(ライン27流量,m/h)×3
で計算される時間を経た後が好ましい。
【実施例】
【0028】
以下に実施例を示して、本実施の形態をより詳細に説明するが、本実施の形態は以下に記載の実施例によって限定されるものではない。なお、実施例のアクリロニトリル製造プロセスは、図1に示したものと同様である。
【0029】
酢酸等の有機物の分析は、以下の装置及び条件でガスクロマトグラフィーにより行った。
ガスクロマトグラフィーは、島津GC−17Aを用い、カラムは、TC−FFAP 60m×0.32膜厚0.25μmを用いた。検出器はFID、キャリヤーガスにはヘリウムを用いた。
カラム温度条件は、以下の通りであった。
初期温度: 50℃
昇温速度: 5℃/分
最終温度1:180℃ 15分HOLD
昇温速度: 10℃/分
最終温度2:230℃ 10分HOLD
最終温度3:50℃ 5分HOLD
【0030】
[実施例1]
プロピレン、アンモニア及び空気を内径8m、長さ20mの縦型円筒型の流動層反応器1に供給し、プロピレンのアンモ酸化反応を下記の通り行った。流動層反応器1は、その内部に原料ガス分散管や分散板、除熱管及びサイクロンを有していた。製品塔24は、シーブトレイ50段からなり、下部より数えて12段目に供給段を有し、42段目から液体のアクリロニトリルを製品として抜き出すライン26を有していた。製品塔24、製品塔塔底ライン27及びリボイラーの材質は、カーボンスチールであった。
流動層触媒は、粒径10〜100μm、平均粒径55μmであるモリブデン−ビスマス−鉄系担持触媒を用い、静止層高2.7mとなるよう充填した。空気分散板から空気を56000Nm/h供給し、原料ガス分散管からプロピレン6200Nm/h及びアンモニアを6600Nm/h供給した。反応温度は440℃となるよう除熱管で制御した。圧力は0.70kg/cmGであった。
反応生成ガスを急冷塔6に導入し、水と向流接触させ、未反応のアンモニアを硫酸で中和除去した。急冷塔6から流出したガスを吸収塔9に導入した。塔頂のライン14より吸収水を導入し、ガスと向流接触させ、ガス中のアクリロニトリル、アセトニトリル及び青酸を水中に吸収させた。吸収水量は、吸収塔塔頂から排出されるガス中のアクリロニトリル濃度が100volppmとなるように調整した。吸収されなかったガスは、吸収塔塔頂ライン11より取り出し、焼却した。
吸収塔塔底液を80℃に予熱し、回収塔12に供給した。回収塔12でアセトニトリル及び大部分の水を分離し、塔頂ライン17からアクリロニトリル、青酸及び水を留出させた。該留出蒸気を凝縮し、有機層と水層を形成させ、水層は回収塔12の供給ライン10にリサイクルし、有機層は脱青酸脱水塔18に供給した。
脱青酸脱水塔18の塔頂ライン19から粗青酸ガスを抜き出し、凝縮器20に送り冷却して分縮した。凝縮した青酸液を塔頂に還流し、凝縮しなかった不純物の少ない青酸ガスをライン21から系外に抜き出した。凝縮器20の上部管板に酢酸をスプレー方式で散布した。純酢酸の散布量は、ライン26から製品として取得されたアクリロニトリルとの重量比で0.0023であった。
脱青酸脱水塔18の中段位から塔内液を抜き出し、図示していない脱青酸脱水塔デカンターにて有機層と水層の二層に分離し、水層は、ライン22により抜き出し、回収塔の供給液にリサイクルした。有機層は再び塔に戻した。塔底ライン23から粗アクリロニトリルを抜き出し、製品塔24に送った。
留出蒸気は、ライン25より抜き出し、凝縮器29で全量凝縮させた。凝縮液の一部をライン30により塔に還流し、凝縮液の内の300kg/hを、ライン28より脱青酸脱水塔デカンターに戻した。還流比(=ライン30/ライン26)は、1.25であった。塔底液はライン27より抜き出し、全量急冷塔6にリサイクルした。製品塔の塔底液中の酢酸濃度は1.80質量%であった。
実施例1における製品塔の各流量と代表物質の組成を表1に示した。なお、表中のANはアクリロニトリルを示す。
【0031】
【表1】

【0032】
1年間の運転を行った結果、高純度のアクリロニトリル製品を安定的に取得できた。また、製品塔塔底の開放点検時に塔底の肉厚測定を行ったところ、減肉は認められず、表面状態に異常もなかった。
【0033】
[実施例2]
製品塔の塔底液中の酢酸濃度が3.0質量%となるよう塔底流量を変えたこと以外は、実施例1と同一の設備、方法でアクリロニトリルを製造した。塔底抜出流は、全量急冷塔6にリサイクルした。
実施例2における製品塔の各流量と代表物質の組成を表2に示した。
【0034】
【表2】

【0035】
1年間の運転を行った結果、高純度のアクリロニトリル製品を安定的に取得できた。また、製品塔塔底の開放点検時に塔底の肉厚測定を行ったところ、減肉は認められず、表面状態に異常もなかった。
【0036】
[実施例3]
プロパン、アンモニア及び空気を実施例1と同じ流動層反応器1に供給し、プロパンのアンモ酸化反応を下記の通り行った。製品塔24は、シーブトレイ50段からなり、下部より数えて12段目に供給段を有し、42段から液体のアクリロニトリルを製品として抜き出すライン26を有していた。製品塔24、製品塔塔底ライン27及び図示していないリボイラーの材質は、ステンレススチール(SUS304)であった。
流動層触媒は、粒径10〜100μm、平均粒径55μmであるモリブデン−バナジウム系担持触媒を用い、静止層高2.2mとなるよう充填した。空気分散板から空気を64500Nm/h供給し、原料ガス分散管からプロパン4300Nm/h及びアンモニアを4300Nm/h供給した。反応温度は440℃となるよう除熱管で制御した。圧力は0.75kg/cmGであった。
反応生成ガスを急冷塔6に導入し、水と向流接触させた。また、未反応のアンモニアを硫酸で中和除去した。
急冷塔6から取り出したガスを吸収塔9に導入した。塔頂ライン14より吸収水を導入し、ガスと向流接触させ、ガス中のアクリロニトリル、アセトニトリル及び青酸を水中に吸収させた。未吸収のガスは、吸収塔塔頂ライン11より取り出し、焼却した。吸収塔塔頂から取り出したガス中のアクリロニトリル濃度が100volppmとなるよう、吸収水量を調整した。
吸収塔塔底液を予熱し、回収塔12に供給した。回収塔でアセトニトリル及び大部分の水を分離し、塔頂ライン17からアクリロニトリル、青酸及び水を留出させた。該留出蒸気を凝縮し、有機層と水層を形成させ、水層は回収塔の供給ライン10にリサイクルし、有機層は脱青酸脱水塔18に供給した。
脱青酸脱水塔18の塔頂ライン19から粗青酸ガスを抜き出し、凝縮器20に送り冷却して分縮した。凝縮した青酸液を塔頂に還流し、凝縮しなかった不純物の少ない青酸ガスをライン21により系外に抜き出した。凝縮器20の上部管板に酢酸をスプレー方式で散布した。酢酸の散布量は、ライン26より製品として取得されたアクリロニトリルとの重量比で0.0033であった。
脱青酸脱水塔18の中段位から塔内液を抜き出し、図示していない脱青酸脱水塔デカンターにて有機層と水層の二層に分離し、水層は、回収塔の供給ライン10にリサイクルした。有機層は再び塔に戻した。塔底から粗アクリロニトリルを抜き出し、製品塔24に送った。
留出蒸気はライン25より抜き出し、凝縮器29で全量凝縮させた。留出凝縮液の内の250kg/hは、ライン28より脱青酸脱水塔デカンターに戻した。還流比(=ライン30/ライン26)は、1.28であった。塔底抜出流は、全量急冷塔6にリサイクルした。製品塔の塔底液中の酢酸濃度は2.00質量%であった。
実施例3における製品塔の各流量と代表物質の組成を表3に示した。
【0037】
【表3】

【0038】
1年間の運転を行なった結果、高純度のアクリロニトリル製品を安定的に取得できた。また、製品塔塔底の開放点検時に塔底の肉厚測定を行ったところ、減肉は認められず、表面状態に異常もなかった。
【0039】
[実施例4]
製品塔の塔底液中の酢酸濃度が6.0質量%となるように塔底流量を変えたこと以外は、実施例3と同一の設備、方法でアクリロニトリルを製造した。塔底抜出流は、全量急冷塔6にリサイクルした。
製品塔の各流量と代表物質の組成を表4に示した。
【0040】
【表4】

【0041】
1年間の運転を行った結果、高純度のアクリロニトリル製品を安定的に取得できた。また、製品塔塔底の開放点検時に塔底の肉厚測定を行ったところ減肉は認められず、表面状態に異常もなかった。
【0042】
[比較例1]
製品塔の塔底液中の酢酸濃度が1.0質量%となるように塔底流量を変えたこと以外は、実施例3と同一の設備、方法でアクリロニトリルを製造した。塔底抜出流は、全量急冷塔6にリサイクルした。
比較例1における製品塔の各流量と代表物質の組成を表5に示した。
【0043】
【表5】

【0044】
比較例1の運転においては、製品塔塔底から急冷塔へのリサイクル量が増えたため、アクリロニトリル製造プロセスの負荷が増し、プロセスで使用した蒸気の流量が実施例3と比べ8%増加した。また、各装置の処理能力を引き上げて運転を行ったため、一部装置では適正な運転条件から外れ、結果としてアクリロニトリルのロスが増え、製品として取得できたアクリロニトリル量が5290−5180=110kg/h減少した。アクリロニトリルの製品品質には問題はなかった。半年運転継続後、設備を停止し、製品塔塔底の開放点検時に塔底の肉厚測定を行ったところ減肉は認められず、表面状態に異常もなかった。
【0045】
[比較例2]
製品塔の塔底液中の酢酸濃度が7.5質量%となるように塔底流量を変えたこと以外は、実施例3と同一の設備、方法でアクリロニトリルを製造した。塔底抜出流は、全量急冷塔6にリサイクルした。
製品塔の各流量と代表物質の組成を表6に示した。
【0046】
【表6】

【0047】
比較例2の運転においては、製品として取得したアクリロニトリルの不純物濃度が増加し、最終ポリマー製品の質の低下を招いた。このため、製品塔のリボイラーに供給する蒸気流量を上げることによりリボイラー熱負荷を上げた。こうして、還流量を増加させることで製品純度の向上を図った。
還流量を増加させたときの、製品塔の各流量と代表物質の組成を表7に示した。
【0048】
【表7】

【0049】
表7の条件で6ヶ月間運転を継続した。その結果、製品品質は改善されたが、製品塔塔底の開放点検時に塔底の肉厚測定を行ったところ、全体的に0.06〜0.10mmの減肉が認められた。また、塔底の表面状態にざらつきがあり、酸腐食の兆候が見られた。
【産業上の利用可能性】
【0050】
本発明の方法は、プロピレン及び/又はプロパン、アンモニア及び分子状酸素を触媒の存在下に反応させるアクリロニトリルの製造プロセスにおける産業上利用可能性を有する。
【図面の簡単な説明】
【0051】
【図1】アクリロニトリル製造プロセスの一例を概念的に示す概略図である。
【図2】製品塔の塔底付近の概略図である。
【符号の説明】
【0052】
1 流動層反応器
2 プロピレン及び/又はプロパンの供給管
3 アンモニアの供給管
4 空気(酸素)の供給管
6 急冷塔
5、7、8 ライン
9 吸収塔
10、11 ライン
12 回収塔
13、14、15、16、17 ライン
18 脱青酸脱水塔
19 ライン
20 脱青酸脱水塔凝縮器
21、22、23 ライン
24 製品塔
25、26、27、28 ライン
29 製品塔凝縮器
30 ライン
31 製品塔塔底ポンプ
32 製品塔リボイラー
33 製品塔トレイ(1段目)
34 製品塔トレイ(2段目)
35、36、37 ライン

【特許請求の範囲】
【請求項1】
アクリロニトリル及び酢酸を含む溶液を蒸留する工程を備えるアクリロニトリルの精製方法であって、
前記蒸留工程における蒸留装置の製品塔の塔底液が接触する部分の材質がカーボンスチールからなり、
前記塔底液中の酢酸濃度が1.5〜3.5質量%である、方法。
【請求項2】
アクリロニトリル及び酢酸を含む溶液を蒸留する工程を備えるアクリロニトリルの精製方法であって、
前記蒸留工程における蒸留装置の製品塔の塔底液が接触する部分の材質がステンレススチールからなり、
前記塔底液中の酢酸濃度が1.5〜7.0質量%である、方法。

【図1】
image rotate

【図2】
image rotate