説明

アルコールの製造方法

【課題】炭素数4以下のアルコールを原料として、遷移金属を含む錯体と塩基の存在下、Guerbet反応を行うに際し、高収率且つ高選択率で二量化アルコールを製造する方法を提供する。
【解決手段】遷移金属を一種以上含む錯体および塩基の存在下で、炭素数4以下の原料アルコールを2量化するアルコールの製造方法であって、該錯体が、窒素を配位原子とするものであることを特徴とするアルコールの製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、遷移金属を一種以上含む錯体および塩基の存在下で、炭素数4以下の原料アルコールを2量化させアルコールを製造する方法に関するものである。
【背景技術】
【0002】
原料アルコールを二量化して、二量化アルコールを製造する方法として、Guerbet反応は重要な有機合成反応である。この反応機構は、以下の(化1)で示されるように、塩基性化合物、及び遷移金属とホスフィン化合物からなる錯体を用いて、原料アルコールから水素が引き抜かれる反応(水素移動反応)により、対応するアルデヒド中間体が生成する反応、そのアルデヒド中間体がアルドール縮合反応によって二量化したα,β−不飽和アルデヒド中間体となる反応、更にそのα,β−不飽和アルデヒド中間体が水素化反応(水素移動反応)で二量化アルコールとなる反応の3つの反応の組合せで進行すると考えられている(非特許文献1及び非特許文献2)。
【0003】
【化1】



【0004】
この反応機構を利用した二量化アルコールの製造方法として、原料アルコールの炭素数が6以上で、得られる二量化アルコールの炭素数が12以上である高級アルコールの製造に適用されており、それらの高級アルコールは、主に化粧品や乳化剤等の原料に用いられる。
しかしながら、原料アルコールが炭素数4以下の場合に適用された例はない。例えば、原料アルコールが炭素数2のエタノールであって、その二量化アルコールであるn−ブタノールの製造に適用された例はない。これは、得られるn−ブタノールの収率や選択性が低く、工業的に有利な反応ではないからであり、より少量の触媒で、高収率で選択性が高いn−ブタノールの製造方法が希求されていた。
【非特許文献1】J. Mol. Catal. A: Chem., 2004, 212, p65
【非特許文献2】J. Org. Chem., 2006, 71, p8306
【発明の開示】
【発明が解決しようとする課題】
【0005】
上記課題に鑑み、本発明は、炭素数4以下のアルコールを原料として、遷移金属を含む錯体と塩基の存在下、Guerbet反応を行うに際し、高収率且つ高選択率で二量化アルコールを製造する方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明者らは、上記課題を解決すべく鋭意検討した結果、遷移金属とアミン化合物由来の配位子からなる金属錯体を用いることにより上記課題を解決することができることを見出し、本発明を完成するに至った。即ち、本発明の要旨は下記[1]〜[7]に存する。
[1] 遷移金属を一種以上含む錯体および塩基の存在下で、炭素数4以下の原料アルコールを2量化するアルコールの製造方法であって、該錯体が、窒素を配位原子とするものであることを特徴とするアルコールの製造方法
[2] 前記錯体が、アミン化合物又はピリジン化合物由来の配位子を有することを特徴とする[1]に記載の製造方法。
[3] 前記ピリジン化合物が多座のピリジン化合物であることを特徴とする[2]に記載の製造方法。
[4] 多座のピリジン化合物が、2,2’-ビピリジルもしくはその誘導体であることを特徴とする[3]に記載の製造方法。
[5] 前記炭素数4以下の原料アルコールがエタノールであることを特徴とする[1]〜[4]のいずれかに記載の製造方法。
[6] 前記遷移金属が第8族〜第10族の遷移金属であることを特徴とする[1]〜[5]のいずれかに記載の製造方法。
[7] 第8族〜第10族の遷移金属が、ルテニウム、ロジウム、イリジウム、ニッケル、パラジウム、及び白金からなる群より選ばれることを特徴とする[6]に記載の製造方法。
【発明の効果】
【0007】
本発明によれば、塩基と遷移金属錯体の存在下、原料のエタノールを二量化させる反応において、高効率かつ高選択率で二量化アルコールのn−ブタノールを製造することができる。
【発明を実施するための最良の形態】
【0008】
以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はこれらの内容に限定されない。以下、その詳細について説明する。
本発明の例として、第8〜第10族遷移金属を一種類以上含む錯体と塩基を用いて、原料エタノールの二量化反応により、n−ブタノールを製造するに際し、アミン化合物及び/又はピリジン化合物由来の配位子からなる錯体を用いる態様について説明する。
【0009】
上記態様の本発明の製造方法によれば、第8〜第10族遷移金属を一種類以上含む錯体と塩基を用いて、原料エタノールの二量化反応により、n−ブタノールを製造する方法において、高い選択率でn−ブタノールを得ることができる。この理由は必ずしも明確ではないが、次のように推測される。即ち、上記の反応機構(化1)における反応の第一段階(脱水素反応)を、比較的高い反応温度下、脱水素反応に適した遷移金属を用いて効率よく行った点が触媒の高活性化に繋がっているものと考えられ、特に、多座のアミンやピリジン類を配位子として用いることで高温下においても触媒活性種の安定化に大きな寄与をもたらしていると推測される。
【0010】
本発明における遷移金属は、周期表の第8族〜第10族(IUPAC 無機化学命名法改訂版(1998)による)の遷移金属が好ましい。具体的には、鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、及び白金が挙げられ、反応活性が高いという理由から、好ましくは、ルテニウム、ロジウム、イリジウム、ニッケル、パラジウム、及び白金であり、更に好ましくはルテニウム、ロジウムであり、最も好ましくはルテニウムである。遷移金属は一種類で用いても、二種以上を併用してもよい。
【0011】
これらの金属を本発明の二量化反応の錯体として用いる際、通常、その金属を含む化合物を用いるが、具体的な金属化合物としては、鉄化合物、ルテニウム化合物、オスミウム化合物、コバルト化合物、ロジウム化合物、イリジウム化合物、ニッケル化合物、パラジウム化合物及び白金化合物の群から選ばれる1種以上の化合物が挙げられる。その中でも、反応活性が高いという理由から、ルテニウム化合物、ロジウム化合物、イリジウム化合物、ニッケル化合物、パラジウム化合物及び白金化合物が好ましく、更に好ましくはルテニウム化合物、ロジウム化合物であり、最も好ましくはルテニウム化合物である。
【0012】
これらの金属化合物の具体的な形態としては、ハロゲン化合物、硫酸塩、硝酸塩等の無機塩の他、酢酸塩、アセチルアセトナト化合物、アルケン配位化合物、アミン配位化合物、ピリジン配位化合物、一酸化炭素配位化合物、ホスフィン配位化合物、ホスファイト配位化合物等が挙げられる。
具体的に、鉄化合物としては、Fe(OAc)2、Fe(acac)3、FeCl2、FeCl3、Fe(NO3)3等が挙げられる。ルテニウム化合物としては、RuCl3、Ru3(CO)12、Ru(OAc)3、Ru(acac)3、[Ru(CO)2(OAc)]n、[RuCl2(cod)]n、[CpRuCl2]n、[Cp*RuCl]4、RuHCl(PPh3)3、RuH(CO)(PPh3)3、RuCl2(PPh3)3、RuH2(PPh3)4等が挙げられる。オスミウム化合物としては、OsCl3、OsH2Cl6、Os3(CO)12、Os(OAc)3等が挙げられる。コバルト化合物としては、Co(OAc)2、Co(acac)2、CoBr2、Co(NO3)2等が挙げられる。ロジウム化合物としては、RhCl3、Rh(OAc)3、[Rh(OAc)2]2、Rh(acac)(CO)2、[Rh(OAc)(cod)]2、[RhCl(cod)]2、RhCl(PPh3)3、[Cp*RhCl2]2、RhH(CO)(PPh3)3、Rh4(CO)12等が挙げられる。イリジウム化合物としては、IrCl3、Ir(OAc)3、Ir(acac)3、Ir(cod)(acac)、IrH(CO)(PPh3)3、[Cp*IrCl2]2、[IrCl(cod)]2、Ir4(CO)12等が挙げられる。ニッケル化合物としては、NiCl2、NiBr2、Ni(NO3)2、NiSO4、Ni(cod)2、Ni(acac)2、Ni(OAc)2・4H2O、NiCl2(Ph2PCH2CH2PPh2)、NiCl2(PPh3)3等が挙げられる。パラジウム化合物としては、Pd(0)、PdCl2、PdBr2、PdCl2(cod)、PdCl2(PPh3)2、Pd(PPh3)4、Pd2(dba)3、K2PdCl4、PdCl2(CH3CN)2、Pd(dba)2、Pd(NO3)2、Pd(OAc)2、PdSO4、Pd(acac)2等が挙げられる。 白金化合物としては、PtBr2、PtCl4、Pt(acac)2、PtH2(OH)6、PtH2Cl6、PtCl2(PPh3)2、PtCl2(cod)、PtCl2(CH3CN)2、PtCl2(PhCN)2、Pt(PPh3)4、K2PtCl4、Na2PtCl6、H2PtCl6等が挙げられる。(ここで、cod:1,5-シクロオクタジエン、dba:ジベンジリデンアセトン、Ph:フェニル基、acac:アセチルアセトナト基、Ac:アセチル基、Cp:シクロペンタジエニル基、Cp*:ペンタメチルシクロペンタジエニル基を表す。)
本発明においては、上述した金属化合物の形態には特に制限されず、単量体、二量体及び/又は多量体であっても構わない。また、これらの金属化合物の使用に際しては、ある一種類の特定の金属化合物を用いても、同一金属種であって複数の化合物を併用しても、また、異なる二種以上の金属種の化合物を共存させて用いても構わない。
【0013】
また、これらの金属化合物は、そのまま用いても、または担体に担持させた状態で用いてもよい。担体に担持させる場合には、例えば、ゼオライト、シリカ、アルミナ、シリカ−アルミナ、ジルコニア、マグネシア、チタニアのような金属酸化物の他、活性炭、グラファイト、カーボンナノチューブ等を用いることができる。担体への金属化合物の担持量としては、担体全体の重量に対する金属自体の重量として、0.01%〜60%、好ましくは0.1%〜30%、更に好ましくは1%〜20%の範囲である。この重量が大きいほど、触媒が高活性となり触媒使用量自体を低減できるという利点があり、低いほど触媒における金属含有量が低く触媒コストを低減できるという利点がある。
【0014】
これらの金属化合物の使用量については特に制限はないが、触媒活性と経済性の観点から、反応原料であるエタノールの量に対して1×10−6(1モルppm)〜1モル当量、好ましくは1×10−5(10モルppm)〜0.1モル当量の範囲、特に好ましくは1×10−4(100モルppm)〜0.01モル等量の範囲で使用される。この使用量が大きいほど、触媒活性は向上するが、触媒コストが高くなるおそれがある。他方、この使用量が小さいほど、触媒コストは安価となるが、触媒活性があがらないおそれがある。
【0015】
本発明では、金属錯体の配位子として、アミン化合物及び/またはピリジン化合物由来の配位子等の窒素を配位原子として、遷移金属に配位する配位子を用いることが特徴の一つである。
本発明の反応に用いることのできるアミンまたはピリジン化合物としては、単座のアミン、二座または多座(三座以上を言う。以下、同じ)のアミン、単座のピリジン、二座または多座のピリジンのいずれであってもよく、それぞれ置換基を有していてもよい。また、2つ以上の置換基を有する場合は、置換基同士が互いに結合を結んで環構造を形成していてもよい。
【0016】
アミン化合物又はピリジン化合物が有していてもよい置換基としては、本発明の効果を阻害しないものであればよく、特に限定されないが、例えば、アルキル基、アルコキシ基、アリール基、アリーロキシ基、アミノ基、シアノ基、エステル基、ヒドロキシ基及びハロゲン原子等を挙げることができる。また、アルキル基には分岐したアルキル基やシクロアルキル基も包含され、アリール基には炭素の他に窒素、酸素、硫黄等の他の元素を含んで環を形成した複素環式のアリール基も包含される。置換基は通常、分子量が200程度以下のものを用いる。
【0017】
具体的なアミン化合物として、n-プロピルアミン、n-オクチルアミン、イソプロピルアミン、4-クロロブチルアミン、アニリン、4-メトキシアニリン等の単座の第一級アミン、ジ-n-ブチルアミン、ジ-n-オクチルアミン、ジ-sec-ブチルアミン、ジフェニルアミン、メチルフェニルアミン、モルホリン等の単座の第二級アミン、トリエチルアミン、トリ-n-ブチルアミン、トリ-n-ヘキシルアミン、トリフェニルアミン、エチルフェニル-n-プロピルアミン、トリス(3-メトキシプロピル)アミン等の単座の第三級アミン、1,4-ジアミノブタン、1,6-ジアミノヘキサン、2,2’-ジアミノ-1,1’-ビナフチル、1,2-ビス(ジアミノメチル)ベンゼン等の二座の第一級アミン、N,N’-ジメチルエチレンジアミン、N,N’-ジメチル-1,3-プロパンジアミン、N,N’-ジメチル-1,2-ジアミノベンゼン、ピペラジン等の二座の第二級アミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、N,N,N’,N’-テトラメチル-1,4-ブタンジアミン、1,4-ジメチルピペラジン、2,2’-ビス(ジメチルアミノ)ビフェニル、N,N,N’,N’-テトラメチル-1,2-フェニレンジアミン等の二座の第三級アミン、1,4,7-トリアザシクロノナン、1,4,8,11-テトラメチル-1,4,8,11-テトラアザシクロテトラデカン、1,1,4,7,7-ペンタメチル-1,4,7-トリアザヘプタン等の多座のアミン化合物が挙げられる。
【0018】
また、具体的なピリジン化合物として、ピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、2,3-ジメチルピリジン、2,4-ジメチルピリジン、2,5-ジメチルピリジン、2,6-ジメチルピリジン、4-メトキシピリジン、4-t-ブチルピリジン、2-クロロピリジン、キノリン、2-メチルキノリン、イソキノリン、1-メチルイソキノリン、5-アザフェナントレン等の単座のピリジン、2,2’-ビピリジル、2,2’-ビキノリル、1,8-ジアザビフェニレン、1,10-フェナントロリン、ビス(2-ピリジル)メタン、1,2-ビス(2-ピリジル)-1,2-エタンジオン、1,2-ビス(2-ピリジル)エタン、1,2-ビス(2-キノリル)エタン等の二座のピリジン、2,2':6',2''-ターピリジル、4,4',4''-トリ-t-ブチル-2,2':6',2''-ターピリジル、2,6-ビス(ジ(2-ピリジル)メチル)ピリジン、2,6-ビス(8-キノリル)ピリジン等の多座のピリジンが挙げられる。また、本発明のおけるピリジン化合物には、キノリンやイソキノリンのようなピリジン環に更に芳香環が縮環したような多環式のピリジン誘導体も包含される。
【0019】
これらのアミン化合物またはピリジン化合物の中では、二座または多座の第三級アミンもしくは二座または多座のピリジンが好ましく、特に2,2’-ビピリジルもしくはその誘導体が好ましい。好ましい理由としては、二座または多座のアミンやピリジン類の方が、金属に対して強く配位でき、本発明の反応のように反応温度が高い反応条件下でも活性種が保持されやすいからである。それらの具体例としては、2,2’-ビピリジル、2,2’-ビキノリル、1,10-フェナントロリン、4,4’-ジメチル-2,2’-ビピリジル、4,4’-ジクロロ-2,2’-ビピリジル、2,9-ジメチル-1,10-フェナントロリン、2,2’-ビキノリン-4,4’-ジカルボン酸ジエチルエステル、5-ニトロ-1,10-フェナントロリン等を挙げることができる。
【0020】
アミンまたはピリジン化合物の種類や金属に対する使用量に関しては、触媒の反応性や反応生成物(中間体)に悪影響を及ぼさなければ、特に限定されないが、上記金属化合物に対する配位子のモル比として、通常0.1〜10000であり、好ましくは0.5〜500、特に好ましくは1.0〜100の範囲である。この数値が大きいほど、反応中に配位子がいくらか分解しても反応への影響はほとんど気にする必要はないが、配位子使用量が多い分、経済的には不利となる。逆に、この数値が小さいほど、経済的には有利だが、配位子の分解に伴う触媒のメタル化等が起こりやすいので注意する必要がある。
【0021】
また、これら化合物は、予め錯化させて反応系へ供給してもよいし、そのまま供給してもよい。更に、1種類のアミン化合物及び/またはピリジン化合物を使用して反応を行っても、2種類以上のアミン化合物またはピリジン化合物を同時に用いて反応を行ってもよい。
本発明において、使用できる塩基としては、無機系の塩基、有機系の塩基、ルイス塩基等の塩基を挙げることができる。具体的には、無機系の塩基としては、LiOH、NaOH、KOH、CsOH等のアルカリ金属の水酸化物、Li2CO3、Na2CO3、K2CO3、Cs2CO3等のアルカリ金属の炭酸塩、LiHCO3、NaHCO3、KHCO3、CsHCO3等のアルカリ金属の炭酸水素塩、Mg(OH)2、Ca(OH)2、Ba(OH)2等のアルカリ土類金属の水酸化物、MgCO3、CaCO3、BaCO3等のアルカリ土類金属の炭酸塩等が挙げられる。また、有機系の塩基としては、メトキシナトリウム、エトキシナトリウム、t-ブトキシナトリウム、メトキシカリウム、エトキシカリウム、t-ブトキシカリウム等のアルカリ金属のアルコシキド化合物、酢酸ナトリウム、酪酸ナトリウム、酢酸カリウム、酪酸カリウム等のアルカリ金属のカルボン酸塩、ピリジン、4-メチルピリジン等のピリジン類、トリエチルアミン、トリイソプロピルアミン、トリ-n-オクチルアミン、1,5-ジアザビシクロ[2.2.2]オクタン等の第3級アミン類、ピペリジン、N-メチルピペリジン、モルホリン等のその他のアミン類、1,8‐ジアザビシクロ[5.4.0]ウンデセン‐7(略称:DBU)、1,5‐ジアザビシクロ[4.3.0]ノネン‐5(略称:DBN)等の環状アミジン誘導体、t-ブチルイミノトリス(ジメチルアミノホスホラン)(略称:P1-t-Bu)、1-t-ブチル-4,4,4-トリス(ジメチルアミノ)-2,2-ビス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]-2Λ5,4Λ5-カテナジ(ホスファゼン)(略称:P4-t-Bu)等のホスファゼン塩基、2,8,9-トリイソプロピル-2,5,8,9-テトラアザ-1-ホスファビシクロ[3.3.3]ウンデカン、2,8,9-トリメチル-2,5,8,9-テトラアザ-1-ホスファビシクロ[3.3.3]ウンデカン等のプロアザホスファトラン塩基等が挙げられる。
【0022】
これらの塩基の中でも、アルドール縮合反応を推し進めることできるような塩基性が比較的強い塩基が好ましく、LiOH、NaOH、KOH、CsOH等のアルカリ金属の水酸化物、Li2CO3、Na2CO3、K2CO3、Cs2CO3等のアルカリ金属の炭酸塩、メトキシナトリウム、エトキシナトリウム、t-ブトキシナトリウム、メトキシカリウム、エトキシカリウム、t-ブトキシカリウム等のアルカリ金属のアルコシキド化合物が好ましい。
【0023】
塩基性化合物の使用量としては、上記の金属化合物の種類や反応条件によっても異なるが、金属化合物に対する比率(モル比)として、通常0.1〜1000であり、好ましくは1〜500、特に好ましくは10〜100の範囲である。また、これらの塩基は、1種類で用いても、2種類以上を併用しても良い。
本発明における反応は、通常、液相中で反応をおこなう。液相状態としては均一系であっても多相分離していてもスラリー状であっても構わない。
【0024】
本発明においては、溶媒の存在下或いは非存在下のどちらでも反応させることができる。
溶媒を使用する場合、好ましい溶媒としては、触媒、塩基性化合物及び原料化合物を少なくとも一部溶解させるものであって、反応活性や反応の選択性に悪影響を及ぼさないものであれば使用可能であり、特に限定されないが、本発明は塩基の存在下で反応を行うため、通常、塩基の効果を保持するために中性またはアルカリ性を示す溶媒を使用する。溶媒の具体例としては、水の他、例えば、ジグライム(ジエチレングリコールジメチルエーテル)、トリグライム(トリエチレングリコールジメチルエーテル)、ジフェニルエーテル、ジベンジルエーテル、ジアリルエーテル、テトラヒドロフラン(THF)、ジオキサン等のエーテル類、N-メチル-2-ピロリドン、ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、酢酸エチル、酢酸ブチル、酪酸エチル、酪酸ブチル、γ-ブチロラクトン、ジ(n-オクチル)フタレイト等のエステル類、ベンゼン、トルエン、キシレン、エチルベンゼン、ドデシルベンゼン等の芳香族炭化水素類、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン等の脂肪族炭化水素類、クロロホルム、ジクロロメタン、四塩化炭素等のハロゲン化炭化水素、アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル類等が挙げられる。この他、本反応の副生物として生成するエタノールやn-ブタノールよりも高い沸点を有する高沸点化合物が挙げられる。
【0025】
これらの溶媒の使用量は特に限定されるものではないが、通常、原料のアルコールの重量に対して0.1〜20倍、好ましくは0.2〜10倍であり、これらは、ある1種類の溶媒を単独で用いても2種類以上の溶媒を組み合わせて用いてもよい。
反応器内の雰囲気としては、原料アルコールがエタノールの場合、エタノール原料、反応中間体、n-ブタノール、副生成物等の蒸気、溶媒使用時にはその溶媒の蒸気が存在するが、それ以外の成分として窒素やアルゴン等の不活性ガスが存在していてもよい。特に注意を払うべき点としては、空気の漏れ込み等による酸素の混入は、触媒の劣化、特にホスフィン化合物の酸化消失の原因となるので、酸素の存在量は極力低減させることが望ましい。
【0026】
また、反応系の全圧は、反応温度に応じたエタノール、反応中間体、n-ブタノール、副生成物等の蒸気圧、溶媒使用時にはその溶媒の蒸気圧、窒素等の不活性ガス含有時にはその分圧等の和で決まり、特に制限はないものの、不必要に反応器内の圧力を高めることは経済性や安全性の観点からも避けるべきである。
また、反応温度に関しては、触媒反応が進行する温度であれば特に限定されないが、30〜280℃の温度が好ましく、80〜230℃の温度が更に好ましく、110〜200℃の温度が最も好ましい。
【0027】
本発明の反応を実施するための反応方式としては、攪拌型の完全混合反応器やプラグフロー型の反応器を用いて、連続方式、半連続方式または回分方式のいずれでも行うことができる。
また、反応により得られた二量化アルコールと金属触媒や塩基との分離には、慣用の液体触媒再循環プロセスで用いられるあらゆる分離操作を採用することができる。具体的には、単蒸留、減圧蒸留、薄膜蒸留、水蒸気蒸留等の蒸留操作のほか、気液分離、液液分離、蒸発(エバポレーション)、ガスストリッピング、ガス吸収及び抽出等の分離操作が挙げられる。各分離操作は、各々独立の工程で行ってもよく、2つ以上の成分の分離を同時に行ってもよい。また、一部のエタノール原料や反応中間体であるアセトアルデヒドやクロトンアルデヒド等が未反応で残っている場合には、同様の分離方法で回収し、再び反応器にリサイクルすると一層経済的である。更に分離された触媒や塩基性化合物もそのまま反応器にリサイクルもしくは回収して再活性化後、再利用する方が経済的で望ましい。特に、エタノールを原料とする本発明の反応を行った場合には、二量化アルコール生成物であるn-ブタノールが更に逐次的に同様の反応を受けることで三量化アルコール(ヘキサノール類)や四量化アルコール(オクタノール類)等が少量副生する。具体的には、三量化アルコールとして2-エチルブタノールおよびn-ヘキサノールが、四量化アルコールとして2-エチルヘキサノールおよびn-オクタノール等が副生成物として観測されるが、場合によってはそうした化合物も分離生成して有効に活用してもよい。
【0028】
〈実施例〉
以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。
<実施例1〜6および比較例1、2>
内容積50mlのステンレス製オートクレーブに、0.258mmolの金属化合物、所定量のアミンまたはピリジン化合物、10.28mmolのt-ブトキシカリウム、53.08mmol(2.45g)のエタノール、溶媒として67.83mmol(7.20g)のo-キシレン、およびガスクロマトグラフィー(GC)分析用の内部標準として4.42mmol(0.75g)のn-ドデカンを窒素下で仕込み、密閉状態のまま180℃で2h加熱して反応を行い、室温まで冷却して、放圧後、反応液をGCにて分析した。金属化合物、アミンまたはピリジン化合物の種類や添加量を種々変えることで、実施例1〜6を得た。なお、実施例1〜6で実際に用いた金属化合物、アミンやピリジン化合物の種類や添加量、およびn-ブタノールの収率と選択率に関しては、下の表1に記載している。なお、収率と選択率とは、以下の式で求めることができる。
【0029】
n−ブタノール収率(%)={(n−ブタノールの生成量(mol)×2)/仕込みエタノール量(mol)}×100
n−ブタノール選択率(%)=(n−ブタノール収率/エタノール転化率)×100
【0030】
また、アミンやピリジン化合物を全く添加しなかったこと以外、上記の実施例1〜6と同様に反応を行うことで比較例1および2を得た。なお、比較例1および2で用いた金属化合物に関しては、表1に記載する。
【0031】
以上の結果から、本発明によれば、原料アルコールを二量化反応させて二量化アルコールを製造する方法において、得られる二量化アルコールの収率や選択率が高いことがわかる。
【0032】
【表1】


【特許請求の範囲】
【請求項1】
遷移金属を一種以上含む錯体および塩基の存在下で、炭素数4以下の原料アルコールを2量化するアルコールの製造方法であって、該錯体が、窒素を配位原子とするものであることを特徴とするアルコールの製造方法。
【請求項2】
前記錯体が、アミン化合物又はピリジン化合物由来の配位子を有することを特徴とする請求項1に記載の製造方法。
【請求項3】
前記ピリジン化合物が多座のピリジン化合物であることを特徴とする請求項2に記載の製造方法。
【請求項4】
多座のピリジン化合物が、2,2’-ビピリジルもしくはその誘導体であることを特徴とする請求項3に記載の製造方法。
【請求項5】
前記炭素数4以下の原料アルコールがエタノールであることを特徴とする請求項1〜4のいずれかに記載の製造方法。
【請求項6】
前記遷移金属が第8族〜第10族の遷移金属であることを特徴とする請求項1〜5のいずれかに記載の製造方法。
【請求項7】
第8族〜第10族の遷移金属が、ルテニウム、ロジウム、イリジウム、ニッケル、パラジウム、及び白金からなる群より選ばれることを特徴とする請求項6に記載の製造方法。

【公開番号】特開2008−266267(P2008−266267A)
【公開日】平成20年11月6日(2008.11.6)
【国際特許分類】
【出願番号】特願2007−114959(P2007−114959)
【出願日】平成19年4月25日(2007.4.25)
【出願人】(000005968)三菱化学株式会社 (4,356)
【Fターム(参考)】