説明

イメージングシステム

患者(102)の体部位の3次元画像を生成するためのイメージングシステム(100)。このイメージングシステム(100)は、体部位のスキャンを行うために、ロボット(103)により患者(102)に対して移動されるセンサヘッド(101)を含む。センサヘッド(101)は、患者(102)から変位され、表面プロファイル情報を取得するように構成された3次元プロファイラと、放射線情報を取得するように構成されたレーダー装置とを含む。このイメージングシステム(100)は、3次元プロファイラ及びレーダー装置を動作するように構成された制御システムを有する。また制御システムは、放射線情報及び表面プロファイル情報を受け取り且つ処理して、放射線情報を合成的に集束させることにより、複数の画像ポイントを有する体部位の3次元画像を生成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えばマイクロ波のような非電離電磁放射線を利用する身体部位用のイメージングシステムに関する。詳細には、限定ではないが、このイメージングシステムは乳癌スクリーニングに好適である。
【背景技術】
【0002】
乳癌は、女性がかかる最も一般的な癌である。早期段階で悪性腫瘍を発見することが、患者にとって最善の予後をもたらすと考えられており、これが早期発見を目的とするスクリーニング計画の確立につながった。
【0003】
X線マンモグラフィは、簡単であること、高分解能の画像であること、及び費用効率が高く実施できることにより一般的に利用される1つの乳癌スクリーニング法である。しかしながら、X線マンモグラフィには、幾つかの関連する制限及び欠点がある。X線は、組織に損傷を与え、場合によっては悪性腫瘍を起こす可能性のある電離電磁放射線の一例である。X線マンモグラフィは、患者の乳房を2つのプレート間で圧迫する必要があり、これは多くの女性には不快であり、何らかの疑わしい特徴部の真の3次元(3D)位置を求めることが困難になる。更に、シリコーン製乳房インプラント手術を受けた女性は、圧迫処置によるインプラント破裂の危険もある。X線画像は、2次元(2D)であり、疑わしい特徴部の3D位置のある指標を提供するためには、通常異なるビューからの幾つかの画像を撮らなければならない。疑わしい特徴部のX線検出は、供試の乳房組織内の密度の差異に依存するが、健康な乳房組織と悪性の乳房組織との密度コントラストは小さく、通常わずか約2%であり、このため腫瘍の検出が困難になる可能性がある。更年期以降の女性については、X線マンモグラフィは、最大15%の癌を検出することができない。乳房の密度が通常高い若い女性については、最大40%の癌がX線マンモグラフィで見落とされる可能性がある。一般に、X線マンモグラフィで検出可能な最小の腫瘍は、直径約4mmである。この大きさの腫瘍は、約6年の間体内にあり、すなわち腫瘍の発達において特に初期ではないと判断される。
【0004】
上述の全ては、研究者らがX線マンモグラフィに関連する問題点の一部を解決する乳癌検出の代替的方法を開発する大きな動機となっている。マイクロ波領域の電磁波を利用するレーダーイメージングは、健康な乳房組織と悪性の乳房組織との複素誘電率の差が大きいことにより、乳癌の検出を改良する可能性があるものとして認識されてきた。米国特許第4,641,659号、第5,807,257号、第5,829,437号、第6,448,788号、及び第6,504,288号では、様々なレーダー乳房イメージングシステムを開示している。
【0005】
【特許文献1】米国特許第4,641,659号公報
【特許文献2】米国特許第5,807,257号公報
【特許文献3】米国特許第5,829,437号公報
【特許文献4】米国特許第6,448,788号公報
【特許文献5】米国特許第6,504,288号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
身体部位用の改良されたイメージングシステムを提供すること、又は少なくとも人々に有用な選択肢を提供することが本発明の目的である。
【課題を解決するための手段】
【0007】
第1の態様において、本発明は一般に、体部位の3次元画像を生成する方法にあり、体部位に関する表面プロファイル情報を取得するようにスキャンする段階と、体部位に向けて空気を通して広帯域非電離放射線を送り、次いで体部位に対して複数のスキャン位置で体部位から空気を通して反射された非電離放射線を受け取る段階と、受け取った反射放射線からスキャン位置の各々において放射線情報を取得する段階と、スキャン位置の各々において取得された放射線情報及び表面プロファイル情報を処理して、スキャン位置の各々において取得された放射線情報を合成的に集束させることによって複数の画像ポイントを有する体部位の3次元画像を生成する段階とを含む。
【0008】
1つの形態において、広帯域非電離放射線を送受する段階は、アンテナ素子のアレイを体部位に対して移動させ、各アンテナ素子を順次動作させて放射線を送受し、スキャン位置の各々で放射線情報が取得されるようにする段階を含むことができる。
【0009】
別の形態において、広帯域非電離放射線を送受する段階は、単一のアンテナ素子をスキャン位置の各々に移動させ、アンテナ素子を動作させて放射線を送受し、スキャン位置の各々で放射線情報が取得されるようにする段階を含むことができる。
【0010】
更に別の形態において、広帯域非電離放射線を送受する段階は、1つ又はそれ以上の固定アンテナ素子に対して体部位を移動させ、アンテナ素子又は各アンテナ素子を選択的に動作させて放射線を送受し、スキャン位置の各々で放射線情報が取得されるようにする段階を含むことができる。
【0011】
更に別の形態において、広帯域非電離放射線を送受する段階は、体部位及び1つ又はそれ以上のアンテナ素子の両方を互いに相対的に移動させ、アンテナ素子を選択的に動作させて放射線を送受し、スキャン位置の各々で放射線情報が取得されるようにする段階を含むことができる。
【0012】
更に別の形態において、広帯域非電離放射線を送受する段階は、固定アンテナ素子をスキャン位置の各々に設け、各アンテナ素子を順次動作させて放射線を送受し、スキャン位置の各々で放射線情報が取得されるようにする段階を含むことができる。
【0013】
好ましくは、広帯域非電離放射線を送受する段階は、スキャン位置の各々において複数の離散周波数でマイクロ波放射を送受する段階を含むことができる。
【0014】
好ましくは、広帯域非電離放射線を送受する段階は、スキャン位置の各々において少なくともおよそ10GHzの周波数でマイクロ波放射を送受する段階を含むことができる。
【0015】
好ましくは、広帯域非電離放射線を送受する段階は、スキャン位置の各々でおよそ10GHzから18GHzの範囲内の周波数でマイクロ波放射を送受する段階を含むことができる。
【0016】
好ましくは、広帯域非電離放射線を送受する段階は、一定の周波数間隔で分割され、最大の周波数間隔がナイキストサンプリング基準により決定付けられる複数の離散周波数でマイクロ波放射を送受する段階を含むことができる。
【0017】
好ましくは、スキャン位置の各々で取得された放射線情報及び表面プロファイル情報を処理して複数の画像ポイントを有する体部位の3次元画像を生成する段階は、画像ポイントに対してスキャン位置の各々で取得された放射線情報を周波数領域において合成的に集束させることにより、各画像ポイントを構築する段階を含む。より好ましくは、画像ポイントに対してスキャン位置の各々で取得された放射線情報を周波数領域において合成的に集束させることにより各画像ポイントを構築する段階は、スキャン位置の各々で取得された放射線情報をコヒーレント加算する段階を含むことができる。一形態において、スキャン位置の各々で取得された放射線情報をコヒーレント加算する段階は、スキャン位置の各々で取得された放射線情報を等化した後に合計する段階を含むことができる。別の形態において、放射線情報は、スキャン位置の各々において複数の離散周波数で取得することができ、スキャン位置の各々で取得された放射線情報をコヒーレント加算する段階は、スキャン位置の各々で取得された放射線を等化した後、全スキャン位置及び離散周波数の全てにわたり合計する段階を含む。
【0018】
好ましくは、スキャン位置の各々で取得された放射線情報を等化する段階は、各スキャン位置と構築される画像ポイントとの間の最小光路に基づいて、スキャン位置の各々で取得された放射線情報を計算して、該情報に位相シフトを適用する段階を含むことができる。更に好ましくは、本方法は、体部位の表面プロファイル情報及び特性の推定値と共にフェルマーの原理を用いることにより、スキャン位置の各々と構築される画像ポイントとの間の最小光路を求める段階を含むことができる。
【0019】
好ましくは、本方法は、体部位の特性の推定値を求める段階を含むことができ、該特性が、放射線が透過して構築される画像ポイントに達する体部位の1つ又はそれ以上の誘電体界面の厚さ及び誘電率と、画像ポイント近傍の誘電率とを含む。
【0020】
好ましくは、体部位に関する表面プロファイル情報を取得するためにスキャンする段階は、3次元レーザープロファイラを動作させる段階を含むことができる。
【0021】
一形態において、スキャン位置の各々における表面プロファイル情報及び放射線情報は、1回のスキャンで同時に取得することができる。別の形態において、スキャン位置の各々における表面プロファイル情報及び放射線情報は、2回のスキャンで順次取得することができる。
【0022】
第2の態様では、本発明は一般に、体部位の3次元画像を生成するイメージングシステムにあり、体部位をスキャンして表面プロファイル情報を取得するように構成された3次元プロファイラと、体部位から変位され、体部位に向けて空気を通して広帯域非電離放射線を送り、次いで体部位に対して複数のスキャン位置で体部位から空気を通して反射された非電離放射線を受け取り、これによってスキャン位置の各々において放射線情報を取得するように構成されたレーダー装置と、3次元プロファイラ及びレーダー装置を動作するように構成され、スキャン位置の各々で取得された放射線情報と表面プロファイル情報とを受け取り且つ処理し、スキャン位置の各々で取得された放射線情報を合成的に集束させることにより複数の画像ポイントを有する体部位の3次元画像を生成するように構成された制御システムとを備える。
【0023】
好ましくは、レーダー装置は、体部位に向けて放射線を送り、体部位から反射される放射線を受け取るように動作可能な1つ又はそれ以上のアンテナ素子に接続される放射線源及び放射線観測装置を含むことができる。
【0024】
好ましくは、スキャン位置は、体部位に対して合成開口(synthetic aperture)を定めることができる。
【0025】
一形態において、このレーダー装置は、動作可能なスキャン機構によって移動可能なアンテナ素子のアレイを含むことができ、各アンテナ素子はスイッチング回路網の動作によって放射線源及び放射線観測装置に選択的に接続可能であり、本制御システムは、スキャン機構及びスイッチング回路網を動作させて合成開口内のアレイを漸次的に移動させ且つアンテナ素子を順次的に動作させて、合成開口内のスキャン位置の各々で放射線情報を取得するように構成することができる。
【0026】
別の形態において、レーダー装置は、動作可能なスキャン機構によって移動可能であり、放射線源及び放射線観測装置に接続された単一の可動アンテナ素子を含むことができ、制御システムは、スキャン機構を動作させて合成開口内のアンテナ素子を漸次的に移動させるようにして、合成開口内のスキャン位置の各々で放射線情報を取得するように構成することができる。
【0027】
更に別の形態において、本イメージングシステムは、体部位を支持し、制御システムによって体部位をレーダー装置に対して移動させるように動作可能な可動支持体を更に備えることができ、レーダー装置は、所定位置に固定されてスイッチング回路網の動作によって放射線源及び放射線観測装置に選択的に接続可能な1つ又はそれ以上のアンテナ素子を含むことができ、制御システムは、可動支持体及びスイッチング機構を動作させて体部位をアンテナ素子に対して漸次的に移動させるようにし、合成開口内のスキャン位置の各々で放射線情報を取得するように構成することができる。
【0028】
更に別の形態において、本イメージングシステムは、体部位を支持し且つ制御システムによって体部位を移動させるように動作可能な可動支持体を更に備えることができ、レーダー装置は、動作可能なスキャン機構により移動可能であって且つスイッチング回路網の動作によって放射線源及び放射線観測装置に選択的に接続可能な1つ又はそれ以上のアンテナ素子を含むことができ、制御システムは、可動支持体、スキャン機構、及びスイッチング回路網を動作させて体部位及びアンテナ素子を互いに相対的に移動させて且つアンテナ素子を動作させ、合成開口内のスキャン位置の各々で放射線情報を漸次的に取得するように構成することができる。
【0029】
或いは、スキャン位置は、体部位に対して実開口(real aperture)を定めることができる。
【0030】
一形態において、レーダー装置は、実開口内のスキャン位置の各々に固定されている幾つかのアンテナ素子を含むことができ、このアンテナ素子は、スイッチング回路網の動作によって放射線源及び放射線観測装置に選択的に接続可能であり、制御システムは、スイッチング回路網を動作させてアンテナ素子の各々を順次的に動作させ、実開口内のスキャン位置の各々で放射線情報を取得するように構成することができる。
【0031】
好ましくは、アンテナ素子は、放射線を送受することができるようにモノスタティックとすることができる。
【0032】
好ましくは、レーダー装置は、スキャン位置の各々においてマイクロ波帯の複数の離散周波数で広帯域非電離放射線を送受するように構成することができる。
【0033】
好ましくは、レーダー装置は、少なくともおよそ10GHzのマイクロ波帯の周波数で広帯域非電離放射線を送受するよう構成することができる。
【0034】
好ましくは、レーダー装置は、およそ10GHz〜18GHzの範囲のマイクロ波帯の周波数で広帯域非電離放射線を送受するように構成することができる。
【0035】
好ましくは、レーダー装置は、一定の周波数間隔で隔てられた複数の離散周波数でマイクロ波放射を送受するよう構成することができ、最大の周波数間隔がナイキストサンプリング基準により決定付けられる。
【0036】
好ましくは、制御システムは、画像ポイントに対してスキャン位置の各々で取得された放射線情報を周波数領域において合成的に集束させることによって、各画像ポイントを構築するように構成することができる。より好ましくは、制御システムは、スキャン位置の各々で取得された放射線情報をコヒーレント加算することにより、構築される画像ポイントに対してスキャン位置の各々で取得された放射線情報を周波数領域において合成的に集束させるように構成することができる。一形態において、制御システムは、スキャン位置の各々で取得された放射線情報を等化した後に合計することにより、スキャン位置の各々で取得された放射線情報をコヒーレント加算するように構成することができる。別の形態において、レーダー装置は、スキャン位置の各々において複数の離散周波数で放射線情報を取得するように構成することができ、制御システムは、スキャン位置の各々で取得された放射線を等化した後に全スキャン位置及び全離散周波数にわたって合計することにより、スキャン位置の各々で取得された放射線情報をコヒーレント加算するように構成することができる。
【0037】
好ましくは、制御システムは、各スキャン位置と構築される画像ポイントとの間の最小光路に基づいて、スキャン位置の各々で取得された放射線情報を計算し、これに位相シフトを適用することによって、スキャン位置の各々で取得された放射線情報を等化するように構成することができる。更に好ましくは、本制御システムは、体部位の表面プロファイル情報及び特性の推定値と共にフェルマーの原理を用いることにより、スキャン位置の各々と構築される画像ポイントとの間の最小光路を求めるように構成することができる。
【0038】
好ましくは、体部位の特性の推定値は、放射線が透過して構築される画像ポイントに達する体部位の1つ又はそれ以上の誘電体界面の厚さ及び誘電率と、画像ポイント近傍の誘電率とを含むことができる。
【0039】
好ましくは、3次元プロファイラは、三角測量によって表面プロファイル情報を取得するように構成されたレーザー装置及び画像センサを含むことができる。
【0040】
一形態において、制御システムは、3次元プロファイラ及びレーダー装置を動作させてスキャン位置の各々における表面プロファイル情報及び放射線情報を1回のスキャンで同時に取得するように構成することができる。別の形態において、制御システムは、3次元プロファイラ及びレーダー装置を動作させてスキャン位置の各々における表面プロファイル情報及び放射線情報を2回のスキャンで順次的に取得するように構成することができる。
【0041】
第3の態様では、本発明は一般に、体部位の3次元画像を生成する非接触イメージングシステムにあり、体部位をスキャンして表面プロファイル情報を取得するように構成された3次元プロファイラと、体部位に向けて空気を通してある周波数帯にわたり複数の離散周波数でマイクロ波放射を送り、次いで体部位に対してスキャン位置のアレイで体部位から空気を通して反射されたマイクロ波放射を受け取り、これによってスキャン位置の各々において放射線情報を取得するように構成されたレーダー装置と、3次元プロファイラ及びレーダー装置を動作するように構成され、更にスキャン位置の各々で取得された放射線情報と表面プロファイル情報とを受け取り且つ処理し、スキャン位置の各々で取得された放射線情報を合成的に集束させることにより複数の画像ポイントを有する体部位の3次元画像を生成するように構成された制御システムとを備える。
【0042】
好ましくは、スキャン位置のアレイは、体部位に対して合成開口を定めることができ、レーダー装置は、合成開口内の1つ又はそれ以上のアンテナ素子を移動させ且つ動作させて、これによってスキャン位置の各々で放射線情報を取得するように構成することができる。
【0043】
好ましくは、レーダー装置は、合成開口内でアンテナアレイを移動させ且つ動作させて、スキャン位置の各々で放射線情報を取得するように構成することができ、アンテナアレイ内のアンテナ素子の数はスキャン位置の数よりも小さい。
【0044】
好ましくは、合成開口のサイズは、体部位の少なくとも2倍とすることができる。
【0045】
好ましくは、アンテナ素子によって送られる放射線の最小離散周波数は、合成開口のサイズにより決定付けることができる。
【0046】
好ましくはアンテナ素子は、レーダー装置のアンテナ素子により送られる放射線の最低離散周波数の少なくともおよそ10波長だけ体部位の表面から変位されている。
【0047】
好ましくは、合成開口内のスキャン位置の数は、合成開口のサイズと、スキャン位置間の最大許容間隔とによって決定付けることができ、最大間隔はレーダー装置のアンテナ素子によって送られる放射線の最高離散周波数の波長のおよそ半分である。
【0048】
好ましくは、送受される複数の離散周波数間の周波数間隔が一定であり、最大の周波数間隔はナイキストサンプリング基準により決定付けることができる。
【0049】
好ましくは、制御システムは、全スキャン位置及び全離散周波数にわたるコヒーレント加算により、スキャン位置の各々で取得された放射線情報を合成的に集束させることによって、3次元画像の各画像ポイントを構築するように構成することができる。
【0050】
好ましくは、レーダー装置は、少なくとも10GHzの周波数でマイクロ波放射を送受するように構成することができる。
【0051】
第4の態様では、本発明は一般に、体部位の3次元レーダー画像を生成するイメージングシステムにあり、体部位をスキャンして3次元幾何学的表面プロファイル情報を取得するように構成された非接触3次元プロファイラと、体部位から変位され、体部位に向けて空気を通してある周波数帯にわたって複数の離散周波数でマイクロ波放射を送り、次いで体部位に対してスキャン位置のアレイで体部位から空気を通して反射されたマクロ波放射線を受け取り、これによってスキャン位置の各々で放射線情報を取得するように構成されたレーダー装置と、3次元プロファイラ及びレーダー装置を動作するように構成され、更にスキャン位置の各々で取得された放射線情報及び表面プロファイル情報を受け取り且つ処理し、複数の画像ポイントを有する体部位の3次元レーダー画像を生成するように構成された制御システムとを備え、該制御システムは、スキャン位置のアレイで取得された放射線情報を等化して全スキャン位置及び全離散周波数で合計することによって、スキャン位置のアレイで取得された放射線情報を合成的に集束させて各画像ポイントを構築するように構成されている。
【0052】
好ましくは、スキャン位置のアレイは、体部位に対して合成開口を定めることができ、レーダー装置は、合成開口内のアンテナアレイを移動させて動作させ、スキャン位置の各々において放射線を送受し、これによってスキャン位置の各々で放射線情報を取得するように構成することができ、スキャン位置の数は少なくとも100であり、離散周波数の数は少なくとも10である。
【0053】
好ましくは周波数帯は、およそ10GHz〜18GHzとすることができる。
【0054】
本明細書及び請求項において使用される用語「含む」は、「少なくとも一部を包含する」ことを意味し、すなわち、この用語を含む本明細書及び請求項の記述を解釈する場合、各記述においてこの用語で始まる特徴は、全て存在する必要があるが、他の特徴も存在することができる。
【0055】
本発明は上述のものにあり、更に、以下に単に例証として与えられる構成も想定される。
【発明を実施するための最良の形態】
【0056】
添付図面と共に本発明の好ましい形態を例証として説明する。
本発明の好ましい形態のイメージングシステムは、乳癌スクリーニングツールであり、患者の乳房をマイクロ波放射によりスキャンして、悪性腫瘍などの疑いのある特徴部を検査することができる各乳房の3Dレーダー画像を生成するように構成されている。健康な乳房組織と悪性の乳房組織との間の複素誘電率に大きな差異があり、これにより健康組織中に埋まった悪性腫瘍から大きな散乱場振幅がもたらされ、散乱場の強度のマイクロ波画像内にすぐに現れる。例えば、悪性腫瘍の複素誘電率(誘電定数)の実数部は、10GHzの周波数では約50程度であるが、健康な組織の値は約9である。従って、悪性組織と健康組織との間の誘電率の高い対比が高コントラスト画像に変わるので、レーダー画像は乳房腫瘍の検出に適している。
【0057】
このイメージングシステムは、乳房外部の散乱場の測定から位置の関数として散乱場の強度に基づいた3Dレーダー画像を生成する。このイメージングシステムは、集束アルゴリズムを利用して3Dレーダー画像内の所与の画像ポイントにおいて散乱場にコヒーレント加算を行い、これによってスキャンされる乳房のポイントにおける散乱場の強度を測定する。
【0058】
図1を参照すると、好ましい形態のイメージングシステム100は、ロボット103により患者102に対して並進されるセンサヘッド101を含む。このイメージングシステムは、患者の露出された乳房の各々を個々にスキャンしてそれぞれの3Dレーダー画像を生成するように構成されている。詳細には、このイメージングシステムは、患者の乳房をスキャンして放射線情報と表面プロファイル情報とを同時に取得し、これらを画像生成アルゴリズムによって処理して3D画像を生成する。好ましい形態のセンサヘッド101は患者102と接触せず、スキャン中患者とセンサヘッドとの間には空気以外の伝達媒質が存在しない。イメージングシステムの代替形態では、センサヘッド101は、ロボット103以外の手段により移動させることが可能である。また、イメージングシステムの別の代替形態では、固定センサヘッドに対して患者を移動させることができる点は理解されるであろう。例えば、イメージングシステムは、患者を支持する移動可能な支持体、プラットフォーム、又はベッドを有することができ、これらをスキャン中にイメージングシステムのセンサヘッドを通過させるように動作可能である。
【0059】
図2を参照すると、センサヘッド101は、取付フランジ200によって好ましい形態でロボットスキャン機構に取り付けられている。センサヘッドは、スキャン中に乳房の幾何学的表面プロファイル情報を取得するように構成された3Dプロファイラ201を含む。好ましい形態において、3Dプロファイラは、スキャンレーザーストライプ及び荷電結合素子(CCD)センサを利用して三角測量による距離情報を提供するレーザープロファイラ装置である。3Dプロファイラからのレーザー出力は、眼に安全であるとみなされる。他のタイプの3Dプロファイラ装置を利用して、乳房に関する幾何学的表面プロファイル情報を取得できることは理解される。例えば、3Dプロファイラの代替形態は、超音波又は広帯域マイクロ波信号を利用して、表面プロファイル情報を取得することができる。イメージングシステムで使用することができる3Dプロファイラの他の実施例には、レーザーベースの飛行時間型システム又は画像ベースシステムがある。人間の乳房などの任意の形状に関する幾何学的情報を取得する他の手段は、当業者には公知であり、必要であればイメージングシステムにおいて利用することも可能である。
【0060】
またセンサヘッド101はレーダー装置を保持し、該レーダー装置は、非電離放射線を乳房に向けて送り、乳房に対して複数の予め設定されたスキャン位置で乳房から反射される放射線を受け取るように構成されている。レーダー装置は、スイッチング回路網205を介してアンテナ素子又は導波管のアレイ204に連結された放射線源202及び観測装置203を含む。好ましい形態において、放射線源202は、広範囲の周波数にわたりマイクロ波を生成するイットリウム鉄ガーネット(YIG)発振器であり、放射線観測装置203は6ポート反射率計である。レーダー装置は、オンボードコンピュータシステム206によって動作及び制御され、更に較正装置207及び関連するサーボモータ208を有する。
【0061】
好ましい形態のレーダー装置は、患者の乳房に対して合成開口を定めるスキャン位置のアレイで放射線情報を取得するように構成されている。レーダー装置は、合成開口内でアンテナアレイ204を並進移動させ、個々のアンテナ素子の各々を順次動作させることによって合成開口を掃引して、極めて多数のスキャン位置で放射線情報を取得する。例えば、好ましい形態のレーダー装置は、16のアンテナ素子が2列で配置された32のアンテナ素子の直線アレイを有する。スキャン中、アンテナアレイは、例えばロボットスキャン機構によってアンテナアレイに対して直交方向の32の等間隔位置に機械的に並進移動される。32の位置の各々で、32の個々のアンテナ素子はスイッチング回路網によって放射線源及び観測装置に順次連結され、合成開口の1024のスキャン位置の各々で放射線情報を取得することができるようになっている。スキャン位置の数は、設計要件によって変わる可能性がある。好ましくは、少なくとも100のスキャン位置、より好ましくは少なくとも500のスキャン位置、更に好ましくは1024のスキャン位置が存在する。最終的に、スキャン位置の数は、適度な3Dレーダー画像を生成することができるほど十分でなければならず、開口サイズ、アンテナ素子の間隔、周波数範囲、必要な放射線データの量などの他の設計パラメータによって決まる。
【0062】
スキャン位置の好ましい形態のアレイは、本質的に直線状であって、スキャン位置は一定の間隔で平面に沿って行と列の形で配置されている。しかしながら、スキャン位置のアレイは、スキャン位置間の間隔に関して必ずしも直線状又は一定である必要はない点は理解される。スキャン位置のアレイは、不規則な形状であってもよく、スキャン位置の間は様々な間隔とすることができる。更に、スキャン位置は、必ずしも同一平面にある必要はない。
【0063】
好ましい形態において、アンテナアレイはモノスタティックアンテナを有し、すなわちアンテナ素子は、マイクロ波信号の送信及び受信の両方を行うが、別個の送信素子と受信素子とを代替的なバイスタティック配置で用いることもできる。
【0064】
合成開口のサイズは、撮像されることになる体部位の2倍以上であることが好ましく、体部位が各アンテナ素子からの電磁放射線によって十分によく照射されるようにする。乳房のイメージングでは、典型的な長さ寸法として15cmの値が想定されている。従って、最小合成開口サイズDは、この値の2倍、すなわち各横軸に沿って30cmであることが好ましい。或いは、イメージングシステムは、システム要件によっては合成開口対体部位の比率が小さい状態で動作可能であることは理解される。
【0065】
アンテナアレイにおける必要なアンテナ素子間隔は、最高動作周波数(最短波長)でナイキストサンプリング基準を満たす要件により決定され、結果として得られる画像においてグレイティングローブが回避されるようにする。この基準は、素子間隔が、最高動作周波数において半波長以下であることを要求する。例えば、18GHzの上限周波数では、最大許容素子間隔が8.3mmとなる。更にこの素子間隔は、最小の合成開口サイズと組み合わせたときに、合成開口内の予め設定されたアンテナスキャン位置の数を決定付ける。
【0066】
合成開口内の各スキャン位置における放射線情報は、送信アンテナからマイクロ波放射を乳房に照射し、次いで乳房からの反射波(散乱場)の振幅及び位相を測定することによって取得される。好ましい形態のイメージングシステムでは、放射線情報は、1回に1つの周波数ずつ広範囲の周波数にわたって測定を繰り返すことにより各スキャン位置で取得される。例えば、イメージングシステムは、マイクロ波帯の予め設定された範囲にわたる多数の離散周波数で広帯域マイクロ波エネルギーを利用する。好ましい形態のレーダー装置では、6ポート反射率計がマイクロ波信号経路に組み込まれる。6ポート反射率計は、その出力ポートに連結されたダイオード検出器から4つの電圧を生じるように構成されており、この電圧から入射(送信)信号に対する反射信号の振幅及び位相を測定することができる。
【0067】
合成開口内のスキャン位置の各々において放射線情報を取得するために、他の代替的なアンテナ配置を利用することもできる点を理解されたい。例えば、レーダー装置を単一のアンテナ素子に備え付けて、これを合成開口と共に全てのスキャン位置に機械的に並進させることができるが、かかる配置はデータ取得速度が遅くなる。上述のように、イメージングシステムの代替形態では、患者がスキャン中に固定センサヘッドを通って自動的に移動することを含むことができる。動作可能な可動支持体によって予め設定された経路で患者がセンサヘッドを通って移動されると、センサヘッドはアンテナ素子のアレイ又は単一のアンテナ素子を用いて、合成開口の多数の予め設定されたスキャン位置の各々において放射線情報を取得することができる。上述の合成開口配置の必須条件は、患者の乳房に対して多数の位置で放射線情報を取得して合成開口を掃引することができるように、センサヘッドのアンテナ素子と患者との間で相対移動を行うことである。別の可能な合成開口手法では、スキャン中に患者とアンテナ素子の両方が互いに相対移動するように構成することができる。
【0068】
イメージングシステムの代替形態において、乳房全体にわたり予め設定されたスキャン位置の各々にアンテナ素子が存在する実開口を設けることができる。固定の実開口では、1回に各アンテナ素子を1つずつ順次動作させることにより、放射線情報を取得する。この配置では、センサヘッドと患者との間に相対移動は必要ではない。実開口配置はデータ収集の観点からは高速になるが、コストもより高くなる。好ましい形態のレーダー装置では、データ収集時間と費用とを折り合わせた合成開口配置を利用する。
【0069】
図3を参照すると、3Dプロファイラ302とレーダー装置303の両方を保持するセンサヘッド300が、ロボットスキャン機構301に取り付けられている。3Dプロファイラ302及びレーダー装置303が上述のようにそれぞれ表面プロファイル情報及び放射線情報を取得する間、ロボットスキャン機構301は、患者の乳房に対してセンサヘッド300を移動させるように構成されている。乳房スキャン中にロボットスキャン機構301、3Dプロファイラ302、及びレーダー装置303を制御する制御システム304が備えられる。更に、制御システム304は、表面形状及び放射線情報を処理して、乳房の3Dレーダー画像を生成するように構成されている。一例として、制御システム304は、PC又はラップトップなどのコンピュータを含むことができ、これらでグラフィカルユーザインターフェース(GUI)が実行される。ユーザがGUIを動作し、イメージングシステムを制御することができる。
【0070】
好ましくは、表面プロファイル情報及び放射線情報は、センサヘッド101によって患者の乳房の1回のスキャン中に同時に取得される。しかしながら、各スキャンの間に患者が比較的動かずにいる場合には、放射線情報及び表面プロファイル情報を取得するための連続スキャンを代替的にイメージングシステムで行うことが可能であるので、同時動作作はイメージングシステムに必須ではない。例えば、イメージングシステムは、3Dプロファイラ302のみを動作させた第1のスキャンから表面プロファイル情報を取得するよう構成することができ、次いで、レーダー装置303のみを動作させた第2のスキャンから放射線情報を取得することができ、或いはその逆も同様にすることができる。デュアルスキャンシステムは、可動センサヘッド、すなわち3Dプロファイラセンサヘッドとレーダー装置センサヘッドを独立して利用することができる点は理解される。
【0071】
図4を参照し、レーダー装置303の構成及び動作を更に詳細に説明する。レーダー装置303は、オンボードコンピュータシステム400を介して制御システム304と通信する。レーダー装置はYIG発振器401を有し、該発信器は、駆動回路402を介して掃引周波数モードで動作し、多数の所望の離散周波数でマイクロ波放射線を生成する。更に駆動回路402は、オンボードコンピュータシステム400からの一連のバイナリ信号によって制御される。
【0072】
レーダー装置の重要な特徴は、アンテナアレイ403の各アンテナ素子により放出されるマイクロ波の電力レベルが低く、非電離性であることである。例えば、YIG発振器401からのマイクロ波の出力は、周波数に応じて30mW〜50mWまで変動する可能性がある。しかしながら、アンテナアレイ403の各放射素子が利用可能となる電力レベルは、6ポート反射率計404及びスイッチング回路網405での減衰により0.1mW程度の場合がある。また、センサヘッド303は、患者の身体から例えば約30cm離れて配置され、これにより患者への放射線暴露が更に低下する。従って、放射線学の観点から、レーダー装置は本質的に安全である。
【0073】
スタンドオフ距離は必須ではないが、各アンテナ素子からの照射波面が局所的な平面波の特性を有する球状位相面を有するように、最低動作周波数で5波長よりも大きいことが好ましい。すなわち、乳房は、反応しやすいアンテナの近接場領域から遠方に移動されて、予測可能な位相及び振幅特性を有する波面によって照射される。測定したデータ及びその結果のレーダー画像を劣化させる可能性がある、乳房とアンテナとの間の多重反射の影響を低減するために、最低動作周波数において10波長のスタンドオフ距離が最も好ましい。スタンドオフ距離は、間隔減衰率(すなわち、Rが対象アンテナの距離間隔であるときに、受信電力レベルに対する依存が1/R4となる)によって、上述の基準を満たすほど十分に大きいものから、送受信信号レベルが低すぎない十分に小さいものまでの間で折り合わせる。この影響は、好ましい形態において、合成集束を適用するときに合成開口に多数の素子を使用して受信電力レベルを高めることにより相殺される。加えて、合成集束プロセス(以下で説明する)の間、対象のアンテナの距離間隔が増大すると、焦点のサイズも低品位になる(すなわち大きくなる)。このために、適切なスタンドオフ距離を決定する際に焦点比を約1に維持することが望ましい。
【0074】
非接触のセンサヘッド300は、乳房から反射された信号を正確に測定できるようにし、レーダー装置のアンテナシステムの較正を独立して可能にする。上述のように、乳房と合成開口の平面との間のスタンドオフ距離は、最低動作周波数において少なくとも10波長であるのが好ましく、アンテナと乳房との間の多重反射の影響を無視できるレベルまで低減させるようにする。これにより、アンテナシステムの影響を所定位置での乳房の測定放射線情報から差し引き、乳房の反射率だけが単独で得られる。従って、乳房イメージングシステムで使用される典型的なスタンドオフ距離は、10GHzの最小動作周波数において30cmである。
【0075】
レーダー装置により測定される放射線情報は、合成開口内の各位置で、及び関心のある各周波数で反射されたマイクロ波信号の反射係数である。詳細には、反射係数の位相及び振幅が測定される。マイクロ波信号経路内の6ポート反射率計404は、その出力ポートに連結されたダイオード検出器から4つの電圧を発生させ、この電圧から入射(送信)信号に対する反射信号の振幅及び位相が求められる。
【0076】
6ポート反射率計404は、本質的に、供試の乳房から反射されたマイクロ波信号を入射波の一部と組み合わせる。これは、入射波と反射波との間の6ポート反射率計404により導入される4つの異なる相対位相差を利用して行われる。次いで、マイクロ波信号の4つの組み合わせは、4つの出力電圧を発生させる4つの二乗検出器ダイオードに送られる。4つの出力電圧のうちの1つは基準として用いられ、各測定で3つの電圧比が導出されるようにする。これら3つの電圧比は、反射係数の実部と虚部に変換される。次いで、測定された反射係数の情報は、アナログ−デジタル変換器406によってデジタルデータに変換され、更にオンボードコンピュータシステム400に送信される。
【0077】
レーダー装置は、アンテナ素子と患者の乳房との間の距離が通常約1の焦点比を有するので、近視野イメージング法を用いる。従って、乳房を照射する伝送波面は大きく湾曲している。更に、イメージングシステムは、乳房内部に埋まった対象物を撮像する画像生成アルゴリズムを利用する。詳細には、画像生成アルゴリズムは、乳房内で有効に集束するために、様々な誘電体界面における屈折を考慮する。
【0078】
好ましい形態において、レーダー装置303は、6ポート反射率計404及びアンテナシステムを較正するように構成された較正装置407及び関連するサーボモータ408を含む。最初に、6ポート反射率計404の較正について説明する。6ポート反射率計404の電圧出力から複素反射係数を正確に測定するために、構成部品のあらゆる欠陥及び特異性を考慮するように反射率計を較正する必要がある。幾つかの「較正基準器」が反射率計の測定ポートに接続され、通常の測定の通りに出力電圧が収集される。較正基準器は、関心のある全ての周波数についての反射係数を記憶している。例えば、好ましい形態のレーダー装置では、9つの基準器が使用され、その全ては短絡方形導波管の長さが異なる。
【0079】
わずか5つの基準器を用いて6ポート反射率計を較正することが可能である。しかしながら、使用される周波数の範囲が広いので、好ましい形態のイメージングシステムでは合計で9つが利用可能にされている。6ポート反射率計における正確な較正手順の鍵は、反射係数位相角が広く離れた5つの基準器を選択することである(反射係数の振幅は全短絡基準で1である)。9つの基準器を利用可能にすると、所与の周波数での使用に対して最良の5つの位相角を選択することができるので、周波数帯全体にわたって正確な較正を維持する。
【0080】
導波管標準器は、回転較正装置407に組み込まれてセンサヘッドに取り付けられ、サーボモータ408を用いて各標準器を反射率計の測定ポートに1つずつ連結することができる。
【0081】
9つの較正基準器の各々では、帯域の各周波数について6ポート反射率計の4つの出力電圧が測定されて記憶される。これらは、反射係数の実部及び虚部に変換され、標準的なアルゴリズム(ここでは説明しない)を用いて較正係数のセットが生成される。この較正係数は6ポート反射率計404を特徴付け、該較正係数により反射率計404自体の欠陥を考慮して、4つのダイオード検出器の出力電圧から供試の乳房の反射係数を正確に求めることができるようになる。
【0082】
次いで、アンテナシステムの較正について説明する。純粋に供試の患者の乳房に起因する反射係数の振幅及び位相を抽出するためには、アンテナシステムからの寄与を排除する必要がある。これは、患者がいない状態でアンテナシステムの一連の反射係数測定を行うことにより達成される。詳細には、以下に概説するようにアンテナシステムに2回の測定を実行する。
【0083】
第1の測定:患者がいない状態で、ロボットスキャン機構がアンテナシステムを近距離内に反射物体がない自由空間に放射するように位置付ける。直線アレイの各アンテナ素子を順に作動させ、6ポート反射率計からの出力電圧による全ての周波数について反射係数を測定する。これは、アンテナシステム及び関連するスイッチング回路網成分の複素反射係数を表し、これを「無人空間」ケースと呼ぶ。このケースの反射係数に最も大きく寄与するのは、アンテナ開口である。
【0084】
第2の測定:金属プレートを直線アレイの各アンテナ素子の開口と密接させて配置して、上記の手順を繰り返す。これは、「フラッシュ短絡」ケースと呼ぶ。ロボットスキャナは、金属プレートが開口面と自動的に密接する位置までアンテナアレイを移動させる。このケースの反射係数に最も大きく寄与するのは、短絡プレートになる。
【0085】
上述の「フラッシュ短絡」の測定手順はその後、金属プレートをアンテナ開口面と密接させて配置することにより更に2回繰り返されるが、金属プレートとアンテナ開口との間に既知の長さの2つの導波管スペーサを配置する。導波管スペーサの2つの異なる長さは、導波管アンテナ素子の長さを既知量だけ延長し、「オフセット短絡較正基準器」と呼ばれる。
【0086】
3セットの短絡データ(フラッシュ短絡及び2つのオフセット短絡)並びに無人空間データを用いて、アンテナアレイで測定された反射係数全体から乳房単独の反射係数を抽出する。これは、対象物の反射係数を単独で求めるために、測定した反射係数データに適用する「埋め込み除去」の実施例である。使用される埋め込み除去アルゴリズムについての説明は以下の通りである。
【0087】
合成集束に必要とされる適切な位相シフトを行うためには、第1に、反射率計基準面で求められた反射係数を知ることにより、アンテナ開口面における反射係数を求める必要がある。これは、反射率計基準面とアンテナ開口基準面との間にある(線形の)成分の「ブラックボックス」として扱われるアンテナシステムの散乱パラメータを理解する必要がある。
【0088】
各面における反射係数は、次式で関連付けられる。

…(1)
ここで、
Γ=反射率計基準面において測定された複素反射係数。
Γa=アンテナ開口基準面において測定された複素反射係数。
11、S22、S12、S21は、2×2アンテナシステムの散乱行列の成分である。
【0089】
式(1)は、次の形に書き換えることができる。


…(2)
ここで、
D=S1122−S1221は、散乱行列の行列式である。
【0090】
従って、反射率計基準面における反射係数の測定からアンテナ面における反射係数を求めることができるようにするため、(2)において求めるべき3つの未知の複素係数(S11、S22、D)がある。これには、アンテナの較正プロセスで使用される3つの既知の較正基準器が必要となる。
【0091】
1つのフラッシュ短絡及び2つのオフセット短絡を、

の形の反射係数で使用すると、アンテナ較正係数S11、S22及びDについて以下の解が導かれる。

…(3)

…(4)

…(5)
ここで上式で、
Γ1、Γ2、Γ3は、それぞれアンテナ開口面に装備された較正基準器1、2、及び3を用いて反射率計基準面において測定された複素反射係数であり、

φn=2βln n=1,2,3
β=導波管伝搬定数(ラジアン/メートル)
n=n番目の較正基準器の導波管オフセット長(メートル)
【0092】
埋め込み除去された反射係数Γaは、次式で得られる。

…(6)
ここで、Γは反射率計基準面において測定された反射係数である。
【0093】
式(6)は、アンテナ単独(「無人」状態)及び患者がいる状態の2回計算される。次に、患者がいる状態で取得したΓaの値から「無人」状態で取得したΓaの値を減算することにより、アンテナ開口面を基準とする乳房単独の反射係数が求められる。2つの(複素)反射係数のこの単純な減算は、アンテナと対象物との間が比較的大きく離れている(10GHzで10λ)ことにより、これらの間の多くの反射が無視できる点に基づいて正当性が証明される。次に、このようにして取得された埋め込み除去反射係数にイメージングアルゴリズムが適用される。
【0094】
レーダー装置のYIG発振器401は、広周波数帯域をカバーする連続波(CW)電磁放射線を生成し、すなわち好ましい形態のイメージングシステムは、広帯域で動作する。好ましい形態において、動作周波数帯は10GHzから18GHzであり、放射線情報は、合成開口内の各スキャン位置において帯域全体にわたる幾つかの周波数で収集される。広帯域の周波数領域動作は、小さな焦点サイズ及びこれによってダウンレンジ方向で十分な画像分解能を得るために利用される。好ましい形態のレーダー装置では、10GHzから18GHzの間の50MHzの周波数間隔に対応する161の離散周波数が利用される。周波数間隔は、像空間の関心のある位置での最終的な3Dレーダー画像においてダウンレンジ方向のエイリアシングが回避されるように十分小さく選択される。
【0095】
横断面において焦点サイズに対して半波長の理論上の回折限界に近づける優れた集束特性を得るためには、合成開口サイズが、波長、λに比べて大きい必要がある。従って、最低周波数(最長波長)でD=10λである必要がある。上述のD=30cmの場合、λ=3cmとなる。従って、イメージングシステムの最小動作周波数は、10GHzであるのが好ましい。
【0096】
周波数帯域幅が広くなるとダウンレンジ分解能が良好になるので、可能な限り広い帯域幅が望ましい。しかしながら、大部分の成分は、通常は最高で1オクターブの限界帯域にわたり動作するだけである。従って、8GHzの帯域幅をもたらす利用可能な成分の現在の性能を考えると、上限動作周波数は通常18GHzである。
【0097】
また、装置が全周波数帯域にわたり掃引されるときのステップ間の周波数間隔は、ナイキストサンプリング基準を満たす必要性により決定される。周波数領域データに対する統合から生じる時間領域応答においてグレイティングローブを回避するために、十分に小さな周波数間隔を用いる必要がある。これは、供試の対象物を介した線源から観測装置までの往復時間遅延に関連する。周波数間隔は、信号が往復する時間間隔以内に時間領域応答のエイリアス帯域がないように選択される。また、この時間遅延は、エイリアス無し領域(AFR)と呼ばれる自由空間における等価距離(往復で)として表すこともできる。10GHzから18GHzの間の161の周波数を与える好ましい形態の乳房イメージングシステムでは、50MHzの周波数間隔が用いられる。
【0098】
周波数間隔をδfで表すと、時間領域におけるエイリアス帯域の対応する間隔δtは、次式で与えられる。

…(7)
【0099】
式(7)を用いて、cを自由空間における光速とするときに、δtに2cを乗算することにより、自由空間における等価「往復」距離(AFR)を算出することができ、次式になる。

…(8)
【0100】
線源から画像まで及び戻ってくるまでの間のマイクロ波の経路長は、周波数領域で使用されるサンプリング間隔によるエイリアス応答からのレーダー画像の汚染を回避するために、AFRよりも小さくすべきである。式(8)でδf=50MHzを用いると、自由空間においてAFR=11.99メートルが得られ、これは提案するイメージングシステムがエイリアス応答を回避するのに十分な大きさと考えられる。更に多くの周波数(従って、より小さな周波数間隔)を使用することができるが、これは、患者に不都合にならないように短時間を維持すべき全データ収集時間と相殺される必要がある。例えば、患者は、スキャンの継続時間の間息を止めることができるのが理想的である。
【0101】
このようにして、説明されたシステムは、マイクロ波の周波数範囲にわたって乳房からの反射係数データ(放射線情報)を収集する。次いで、合成集束アルゴリズムを適用することによって散乱場の強度の画像(3Dレーダー画像)が生成される。
【0102】
図5は、3Dデカルト座標系におけるアンテナ及び乳房構成の幾何学的配置を示している。一例として、1つのアンテナ500を合成開口S内のスキャン位置の1つに示し、乳房502は、皮膚503及び乳房内部組織504で形成されている。図5を参照すると、ベクトルR1は、アンテナ測定面501(合成開口Sで定められる)のP(x,y,z)で表されるアンテナポイントからPS(xs,ys,zs)で表される乳房の外面上の表面ポイントまで延びている。ベクトルR2は、外皮表面上のこの表面ポイントから内皮表面のポイントまで延びる。ベクトルR3は、この内皮表面ポイントから、マイクロ波エネルギーが集束することになる画像ポイントP’(x’,y’,z’)まで延びる。この画像ポイントは任意に選択することができる。しかしながら、アンテナポイントと画像ポイントとの間のベクトルR1、R2、及びR3により作られる経路は、任意の方法では定められない。フェルマーの原理によると、光路は起こりうる最小経路であるようになる。最小光学経路Rminは、図5の幾何学的配置では以下で定義される。

…(9)
ここで、
εskin=皮膚の誘電率
εtissue=乳房組織の誘電率
【0103】
各画像ポイント及びアンテナポイント(スキャン位置)には1つの最小経路Rminが存在する。よって、画像の所与のポイントに対して、一組のNRmin値があり、ここでNは合成開口で使用されるアンテナポイント(スキャン位置)の数である。
【0104】
自由空間の伝搬定数kで表される周波数のポイントP(x,y,z)でアンテナにより測定される散乱電場ベクトルは、Escat(x,y,z,k)で定められる。自由空間の伝搬定数kは、λが自由空間の波長であるときに、2π/λで得られる。測定面上でz=定数となるように、ここでは平面上の合成開口を用いる。
【0105】
合成開口の各ポイント(スキャン位置)について測定された反射係数のデータに対して2kRminに等しい位相シフトを適用し、次いで全アンテナ位置にわたり合計することによって、所与のポイントP’における3Dレーダー画像が形成される。また、周波数領域にわたる合計も行われる。皮膚及び乳房組織の誘電特性が、周波数(近似値)に関して無視できるほど変化しないと仮定される場合、各画像ポイントと全てのアンテナポイントとの間の最小経路は周波数に依存しないことになる。従って、画像ポイント及びアンテナポイントの所与の組み合わせについて最小経路が計算されると、周波数領域にわたる合計において全周波数について用いることができる。
【0106】
数学的には、上述のプロセスは、P’(x',y',z')における画像Iの生成において以下の三重積分で表現することができる。

…(10)
ここで、
S=合成開口面積
1=最低周波数における自由空間の伝搬定数
2=最高周波数における自由空間の伝搬定数
【0107】
式(10)において、位相シフト項の係数2が存在することは、アンテナと画像ポイントとの間の「往復」の双方向経路を考慮する必要があることによる。この位相シフト項は、全アンテナ位置において所与の画像ポイントから受信した信号の位相を等化し、合成開口にわたり合計したときに、全ての物理量が同相で加算され、画像ポイント位置で一層強化された場が生成されるようにする。その結果、測定される場は画像ポイントで集束される。これは、アンテナアレイに適用される合成集束の一例である。
【0108】
最小光路Rminを用いて適切な位相シフトを計算することは、式(10)で与えられるタイプの積分値を計算するのによく用いられる停留位相法と一致する。このタイプの積分は、被積分関数の位相関数によって特徴付けられ、(10)におけるように複素指数関数として表されることが多く、積分変数の関数である。位置に応じて急激に変化する位相関数の値では、振動する位相関数の正及び負に向かう部分は互いに相殺される傾向があるので、これらの領域で被積分関数が振動する性質は、積分への寄与はごくわずかなものになる。積分値への唯一の有意な寄与は、位相関数の停留点の近傍のような、位相関数が緩慢に変化している領域によってもたらされる。この領域は最小経路Rminに相当し、このような理由で(10)の被積分関数の位相関数のexp(2jkRmin)で最小経路が用いられる。
【0109】
主要散乱場成分はアンテナ開口にある主偏光と共偏光することになるので、(10)における電場のベクトル性は無視されてきた。すなわち、偏光解消作用は集束アルゴリズムにおいて無視され、これらは、モノスタティック反射係数測定システムには重要ではない。
【0110】
式(10)は、単純な形式に見えるが、画像ポイントとアンテナポイント(スキャン位置)との各組み合わせにおいてRminの値を求める必要がある点で複雑になる。Rminの測定は、個別計算として実行することができ、所与のアンテナ及び乳房の幾何学的配置について一度計算すれば十分である。Rminを測定するためには、以下のことを知る必要がある。
・幾つかの既知の起点に対する乳房の外面の幾何学的プロファイル。
・皮膚及び内部乳房組織の誘電率の推定値。
・皮膚厚の推定値。
【0111】
好ましい形態のシステムにおいて、乳房の外面の幾何学プロファイルは、上述のレーダーセンサに同時に取り付けられた3Dレーザープロファイラ201によって測定される。皮膚厚と皮膚及び乳房組織の誘電率とを高精度にまで知る必要はない。10GHzから18GHzの範囲の周波数において皮膚の誘電率として受け入れられる値は40であり、内部乳房組織の値は9である。皮膚厚は、公称2mmとすることができる。誘電率の真の値の10%以内の値は、誘電率に依存する平方根によって、光路算出に5%の誤差を発生させることになる(式(9)を参照)。皮膚は、空気と乳房組織との間の誘電体界面であるとみなすことができ、放射線はここを通って進む。
【0112】
イメージングの目的では、乳房内部は、(平均)誘電率εtissueを有する均質媒質と仮定する。実際には、乳房内部は均質ではないが、この平均誘電率からの偏差は、正常な乳房組織では大きくない。例えば悪性腫瘍などで生じるような、この「バックグラウンド」誘電率からの大きな偏差は、レーダー画像にすぐに現れるが、通常は正常な乳房組織で生じる誘電特性の小さな偏差が弱く散乱させ、レーダー画像の中では有意な特徴として現れない。典型的には、本発明のイメージングシステムは、診断用ツールとしてよりも、乳房内に疑わしい対象物の存在を発見することを目的としたスクリーニングツールとして動作することになる。乳房内部を均質とする上記の仮定は、スクリーニングの目的では十分であると考えられる。
【0113】
最小経路Rminは、乳房の幾何学的形状並びにアンテナの幾何学的配置の関数であり、従って、特定の患者に固有のものとなる。Rminの値は、アンテナ及び画像ポイント位置を固定して、光路の最小値が見つかるまで皮膚の外面上のポイントPsの位置を変えることによって算出される。ここで関心のある2つの変数は、xs及びysであり、x及びyは皮膚の外面上の座標である。zsの値は、(レーザーシステムにより測定された)外面プロファイルデータによって規定され、xs及びysの関数である。
【0114】
皮膚の外面上の所与のポイントにおいて、皮膚の内面上のポイント(内部乳房組織と接する箇所)は、スネルの屈折の法則により自動的に定義され、よって、ベクトルR1、R2、及びR3は、xs及びysの値と共にアンテナ及び画像ポイントの所与の値に対して全て完全に定義される。スネルの屈折の法則は、全体的に最小光路においてフェルマーの原理と一致する。従って、最小経路の検索手順における唯一の変数は、xs及びysである。
【0115】
最小経路Rminの値が求められると、該値は5次元アレイで記憶される。2つの指数は合成開口におけるアンテナ位置を定めるために、他の3つは3D空間における画像ポイントを定めるために使用される。次いで、式(10)の積分の数値的評価により画像生成が行われる。画像自体は、通常、画像関数I(x’,y’,z’)の大きさとして表示される。
【0116】
3Dレーダー画像データを表示する最も効果的な手段は、市販の3D可視化ソフトウェアを使用することである。乳房内の疑わしい特徴部を検出するのには、等値面及びボリュームレンダリング可視化が特に適している。
【0117】
物理的に同じ合計サイズのアンテナのように全体として機能するが、各素子に適用する相対位相及び振幅の重み付けを動作することによってその特性を再構成することができる小さなアンテナ素子のアレイからなる上述の合成開口方法及び装置によって、このような区分的な方法でデータが収集された後に実行される信号処理を介して空間内の任意のポイントへの合成集束が可能になる。これは、乳房内の任意の位置に集束させることができる強力なマイクロ波レンズを提供する。この合成集束の能力は、悪性腫瘍のような小さな内部特徴部をイメージングする手段をもたらす。また、所与のポイントに集束する際に合成アレイ内の全ての素子から取得される信号をコヒーレント加算することによって、測定値の信号対雑音比(SNR)は、合成アレイ内のアンテナ素子の数をNとするときに、単一周波数における単一の測定よりも係数Nだけ改善される。更に、周波数領域において一度に1つの周波数について測定し、次いで(時間領域応答を求めるために)全ての周波数における全てのアンテナ素子からのコヒーレント信号を合計することにより、信号対雑音比は、使用する離散周波数の数をFとするとき係数Fだけ更に向上する。
【0118】
指定された合成集束ポイントにおける信号のコヒーレント加算により、イメージング装置は、焦点に位置する散乱場に対し極めて高感度になる。コヒーレント加算は、全てのアンテナ位置で全ての周波数において行われる。有用な良度指数は、このようにして信号を集束させる結果としてのイメージング装置の感度の向上であり、これは、アンテナ素子の数と周波数の数との積に等しい。またこれは、単一周波数での単一のアンテナにより行われる反射率測定に加えて信号対雑音比を向上させることに相当する。乳房イメージング装置では、この係数は、161×1024=164,864であり、これは約+52dBの改善に等しい。これは、18GHzの周波数で5cmの深さにおいて約−40dBである、乳房組織及び皮膚における信号の双方向の減衰を克服するのに十分すぎるほどである。このために、18GHzよりも高い周波数は、横方向及びダウンレンジ方向の分解能を結果として向上させることを企図することができる。
【0119】
好ましい形態のイメージングシステムでは、10GHzから18GHzの範囲の周波数が用いられる。一般に、周波数の増大と共に乳房組織内での減衰が大きくなる。より高い周波数を用いる利点は、波長が短くなることによって空間分解能が向上することである。(例えば161の)周波数の積分と併せて多数のアンテナ素子(例えば1024)にわたる受信信号をコヒーレント加算した結果得られる感度の向上(例えば+52dB)によって、本発明の好ましい形態の方法及び装置では発生減衰は問題とはならない。このように、本発明のイメージングシステムは、高いマイクロ波周波数に対応することができ、より低い周波数のシステムと比べて分解能が向上する。
【0120】
また、乳癌スクリーニングにおいて関心のある小さな悪性腫瘍のような、波長に比べて小さな対象物から散乱する電磁波の性質を考慮する必要がある。このような対象物は、レイリー散乱理論に従って入射エネルギーを受信アンテナに反射させる。レイリー散乱では、後方散乱出力は、周波数の4乗に比例する。従って、乳房に埋まっている小さい対象物からの後方散乱信号は、18GHzでは10GHzの場合と比べて1.84倍大きくなる。これは、およそ10.5又は+10.2dBの係数である。また、提案の周波数スペクトルの高周波数限度で増強するこの散乱は、高周波数での乳房組織内で増大する減衰を相殺するのに役立つ。
【0121】
好ましい形態において、イメージングシステムは非接触であって、乳房及びアンテナシステムを囲む液浸媒質を必要としない。更に、アンテナと乳房との距離間隔は通常、最低動作周波数において10波長程度(10GHzで30cm)である。これは、液体伝達媒質を使用し、乳房と接触又は近接近したアンテナ素子を有する幾つかの従来のマイクロ波システムよりも有利である。乳房の周りに液体媒質を含む目的は、内部乳房組織の特性に対してインピーダンスを整合させることである。皮膚層からの反射が大きいので、乳房に入るエネルギー量を低減させることができる。液体媒質の誘電率が乳房組織と同じである場合、乳房を透過するマイクロ波エネルギーの量が最大になる。唯一の残留作用は皮膚からの反射及び全媒質の減衰である。
【0122】
好ましい形態のイメージングシステムを10GHz〜18GHzの範囲で動作するものとして説明してきたが、このシステムは、マイクロ波帯の高い又は低い他の周波数範囲内で動作するように構成することができる。例えば、イメージングシステムは、10GHzより低い周波数、又は18GHzより高い周波数を用いることができる。1つの利用可能な高周波数帯の実施例は、20GHz〜40GHzである。使用される周波数範囲は、最終的には機械構成要素の性能によって決まる。更に、選択された周波数範囲内で利用される離散周波数の数は、設計要件に合わせて調整することができる。好ましくは、イメージングシステムは、少なくとも10の離散周波数、より好ましくは少なくとも100の離散周波数、更に好ましくは少なくとも161の離散周波数を利用する。最終的に利用される離散周波数の数は、適当な3Dレーダー画像を生成することができるほど十分でなければならず、周波数範囲、ナイキストサンプリング基準、AFR、必要な放射線データの量などの他の設計パラメータによって決まることになる。
【0123】
放射線情報が取得される開口サイズは、所望に応じて変更することができることは理解される。更に、開口内の予め設定された測定位置の数及びそれぞれの間隔は、指定要件に合わせて調整することができる。例えば、より多くの放射線情報を提供して、生成される3Dレーダー画像の質を高めるために、開口内の予め設定された測定位置の数を増やすことができる。
【0124】
好ましい形態のイメージングシステムを乳房イメージングに関連して説明してきたが、本システムを用いて他の体部位及びその内部を撮像することも可能である点は理解されるであろう。例えば、このイメージングシステムは、他の体部位をスキャンして、骨、脳、皮膚、筋肉、コラーゲン、靭帯、腱、軟骨、臓器、もしくはリンパ系又は身体の他の部分を描いた3Dレーダー画像を生成するように構成することができる。詳細には、このイメージングシステムを利用して、他の体部位をスキャンし、放射線情報及び外面プロファイル情報を取得し、次いで、体部位内の放射線情報を集束させることによって体部位の3Dレーダー画像を生成することができる。例えば、このイメージングシステムは、放射線情報と脚又は腕についての皮膚/外部表面プロファイル情報とを取得するようにスキャンし、次いで放射線情報を集束させて3Dレーダー画像を生成することによって、脚又は腕などの四肢の3Dレーダー画像を生成することができる。その後、脚又は腕の3Dレーダー画像を用いて、脚又は腕の皮膚、骨、間接、腱、筋肉、靭帯、もしくは他の軟組織を評価することができる。同様のプロセスを利用して、頭部、胸部、又は胴部の3Dレーダー画像を生成し、脳並びに他の器官、骨、組織を評価することができる。生成された3Dレーダー画像は、様々な診断目的で利用することができる。例えば、画像を利用して骨折、内出血、又は脳腫瘍を検出することができる。更に、本イメージングシステムは、動物の体部位を撮像するのに利用することができる。
【0125】
イメージングシステムは、体部位の完全な3Dレーダー画像又は体部位内の特定領域の部分的な3Dレーダー画像を生成するように構成することができる点は理解されるであろう。詳細には、イメージングシステムは、皮膚表面プロファイル情報を利用して体部位内の放射線情報を集束させ、部分的又は完全な3Dレーダー画像を生成する。乳房イメージングでは、外面プロファイル情報と併せて、皮膚厚、皮膚の誘電率、及び乳房組織の誘電率を認知し又は推定することにより、放射線情報を乳房内に合成的に集束させることができる。同様に、他の体部位を撮像するために、皮膚厚、皮膚の誘電率、並びに体部位内の他の様々な誘電体界面(例えば筋肉、軟組織、器官、骨など)の厚さ及び誘電率の認知及び推定を表面プロファイル情報と共に利用して、体部位内の放射線情報を合成的に集束させ、所望の3Dレーダー画像を生成することができる。例えば、脳イメージングでは、頭部の表面プロファイル情報と共に、皮膚及び頭蓋骨の厚さと、皮膚、頭蓋骨、及び脳の誘電率とを認知又は推定することにより、合成集束アルゴリズムが頭部まで放射線情報(レーダーデータ)を集束させ、脳の3Dレーダー画像を生成する。従って、イメージングシステムは、体部位をスキャンして放射線情報を取得し、次いで、表面プロファイル情報、及び体部位内の様々な誘電体界面の特性(例えば厚さ及び誘電率など)の認知又は推定を利用して当該放射線情報を集束させて、所要の3Dレーダー画像を生成することができる。
【0126】
本イメージングシステムは、救急車の運転手などによって現場で使用することができる携帯式スキャン装置の形態で提供することができる点は理解される。
【0127】
実験結果−前臨床試験
乳癌スクリーニング用イメージングシステムの試作品を構築し、患者でテストした。試作品は、実質的に上述の好ましい設計仕様に従って構築した。詳細には、試作品は、約27cm×27cmの合成開口にわたり0.85cmステップで32×32成分のデータアレイをもたらすレーダー反射率データ(放射線情報)を取得するように構成された。更に、この試作品は、1024の合成開口スキャン位置の各々に対して10GHz〜18GHzの周波数帯において50MHzの増分でレーダー反射率測定(位相及び振幅)値を取得するように構成された。スキャン中、患者は乳房を露出させて仰向けになり、アンテナ開口面は患者の上のおよそ30cmに位置付けられた。試作品は、3Dレーザープロファイラを用いて患者の乳房をスキャンし、乳房の外側プロファイルの幾何学的情報を得た。この情報は、レーダーデータと組み合わせて、乳房内部の3次元レーダー画像を生成した。皮膚厚並びに皮膚及び正常な乳房組織の誘電特性の推定を利用し、集束内部画像を生成した。2mmの皮膚厚は、皮膚組織の誘電率40で仮定した。正常な乳房組織は、誘電率9と仮定した。
【0128】
例証として、前臨床試験の一患者の結果を、図6、7a、及び7bを参照しながら説明する。図6は、患者の一人の乳房内部についての結果として得られた3次元レーダー画像の1つの2次元スライス600を示す。このスライス600は、乳房表面下12mmの深さで測定されている(矢印601が患者の頭部の方を指し、矢印602が患者の足の方を指す)。疑わしい腫瘍603が、周囲の組織よりもレーダー強度が高くなった明瞭な楕円特徴部として現れている。外側の胸郭604もまた、スライス600内に見える。取り込まれた3次元レーダー画像は、図7a及び7b(頭尾方向700ビュー及び内外斜位方向701ビュー)に示す同じ患者の対応する乳房X線像画像と比較した。この乳房X線像700、701は、乳房の上部外側の四分円にある大きな疑わしい腫瘍702(〜2cmの直径)を明確に示している。乳房X線像とレーダー画像とを直接比較することはできないが(レーダー画像とは違い、乳房X線像は乳房を圧迫するため)、取り込まれたレーダー画像は、乳房の正確な位置にある大きな疑わしい腫瘍の存在をはっきりと識別した。詳細には、イメージングシステムによって取り込まれたレーダー画像は疑わしい腫瘍を示し、その位置及び大きさは、図7a及び7bの乳房X線像画像に示された疑わしい腫瘍と一致した。
【0129】
図8は、前臨床試験で使用された試作品イメージングシステムを示している。センサヘッド801は、前述のようにロボットスキャン機構803によって患者802に対して移動される。オペレータ804は、制御システムを介してイメージングシステムを制御する。スキャン中、患者の乳房は露出され、レーダー装置及びセンサヘッド801の3Dプロファイラは、放射線及び表面プロファイル情報を取得するように動作されて、乳房の3Dレーダー画像を生成できるようにする。
【0130】
本発明の上述の説明は、その好ましい形態を含む。添付の請求項により定義される本発明の範囲から逸脱することなくこれに変更を行うことができる。
【図面の簡単な説明】
【0131】
【図1】センサヘッドをロボットスキャナに取り付けた好ましい形態の乳房イメージングシステムの斜視図である。
【図2】図1のセンサヘッドの斜視図である。
【図3】好ましい形態の乳房イメージングシステムのブロック線図である。
【図4】乳房イメージングシステムのレーダー装置のブロック線図である。
【図5】3次元画像を生成するためにイメージングシステムにより実装される合成集束アルゴリズムに関連する幾何学的配置を示す概略図である。
【図6】患者に対する前臨床試験における試作品の乳房イメージングシステムにより取り込まれた乳房の3次元レーダー画像による2次元画像のスライスを示す図である。
【図7a】図6に関連して言及した前臨床試験における患者の同じ乳房の頭尾方向からの乳房X線像である。
【図7b】図6に関連して言及した前臨床試験における患者の同じ乳房の内外斜位方向からの乳房X線像である。
【図8】図6に関連して言及した前臨床試験における試作品の乳房イメージングシステムを示す図である。
【符号の説明】
【0132】
100 イメージングシステム
101 センサヘッド
102 患者
103 ロボット

【特許請求の範囲】
【請求項1】
体部位の3次元画像を生成する方法であって、
前記体部位に関する表面プロファイル情報を取得するようにスキャンする段階と、
前記体部位に向けて空気を通して広帯域非電離放射線を送り、次いで前記体部位に対して複数のスキャン位置で前記体部位から空気を通して反射された非電離放射線を受け取る段階と、
前記受け取った反射放射線から前記スキャン位置の各々において放射線情報を取得する段階と、
前記スキャン位置の各々において取得された前記放射線情報及び前記表面プロファイル情報を処理して、前記スキャン位置の各々において取得された前記放射線情報を合成的に集束させることによって複数の画像ポイントを有する前記体部位の3次元画像を生成する段階と、
を含む方法。
【請求項2】
広帯域非電離放射線を送受する前記段階が、アンテナ素子のアレイを前記体部位に対して移動させ、各アンテナ素子を順次動作させて放射線を送受し、前記スキャン位置の各々で放射線情報が取得されるようにする段階を含む請求項1に記載の方法。
【請求項3】
広帯域非電離放射線を送受する前記段階が、単一のアンテナ素子を前記スキャン位置の各々に移動させ、前記アンテナ素子を動作させて放射線を送受し、前記スキャン位置の各々で放射線情報が取得されるようにする段階を含む請求項1に記載の方法。
【請求項4】
広帯域非電離放射線を送受する前記段階が、1つ又はそれ以上の固定アンテナ素子に対して前記体部位を移動させ、前記又は各アンテナ素子を選択的に動作させて放射線を送受し、前記スキャン位置の各々で放射線情報が取得されるようにする段階を含む請求項1に記載の方法。
【請求項5】
広帯域非電離放射線を送受する前記段階が、前記体部位及び1つ又はそれ以上のアンテナ素子の両方を互いに相対的に移動させ、前記アンテナ素子を選択的に動作させて放射線を送受し、前記スキャン位置の各々で放射線情報が取得されるようにする段階を含む請求項1に記載の方法。
【請求項6】
広帯域非電離放射線を送受する前記段階が、固定アンテナ素子を前記スキャン位置の各々に設け、各アンテナ素子を順次動作させて放射線を送受し、前記スキャン位置の各々で放射線情報が取得されるようにする段階を含む請求項1に記載の方法。
【請求項7】
複数のスキャン位置で広帯域非電離放射線を送受する前記段階が、前記体部位に対して少なくとも100のスキャン位置で放射線を送受する段階を含む前記請求項1から6のいずれか1項に記載の方法。
【請求項8】
複数のスキャン位置で広帯域非電離放射線を送受する前記段階が、前記体部位に対して少なくとも500のスキャン位置で放射線を送受する段階を含む請求項1から6のいずれか1項に記載の方法。
【請求項9】
複数のスキャン位置で広帯域非電離放射線を送受する前記段階が、前記体部位に対して少なくとも1024のスキャン位置で放射線を送受する段階を含む請求項1から6のいずれか1項に記載の方法。
【請求項10】
広帯域非電離放射線を送受する前記段階が、前記スキャン位置の各々において複数の離散周波数でマイクロ波放射を送受する段階を含む前記請求項1から9のいずれか1項に記載の方法。
【請求項11】
広帯域非電離放射線を送受する前記段階が、前記スキャン位置の各々において少なくともおよそ10GHzの周波数でマイクロ波放射を送受する段階を含む前記請求項1から10のいずれか1項に記載の方法。
【請求項12】
広帯域非電離放射線を送受する前記段階が、前記スキャン位置の各々においておよそ10GHzから18GHzの範囲内の周波数でマイクロ波放射を送受する段階を含む前記請求項1から11のいずれか1項に記載の方法。
【請求項13】
広帯域非電離放射線を送受する前記段階が、前記スキャン位置の各々において少なくとも10の離散周波数でマイクロ波放射を送受する段階を含む前記請求項1から12のいずれか1項に記載の方法。
【請求項14】
広帯域非電離放射線を送受する前記段階が、前記スキャン位置の各々において少なくとも100の離散周波数でマイクロ波放射を送受する段階を含む請求項1から12のいずれか1項に記載の方法。
【請求項15】
広帯域非電離放射線を送受する前記段階が、前記スキャン位置の各々において少なくとも161の離散周波数でマイクロ波放射を送受する段階を含む請求項1から12のいずれか1項に記載の方法。
【請求項16】
広帯域非電離放射線を送受する前記段階が、一定の周波数間隔で分割され、最大の周波数間隔がナイキストサンプリング基準により決定付けられる複数の離散周波数でマイクロ波放射を送受する段階を含む前記請求項1から15のいずれか1項に記載の方法。
【請求項17】
前記スキャン位置の各々で取得された前記放射線情報及び前記表面プロファイル情報を処理して複数の画像ポイントを有する前記体部位の3次元画像を生成する段階が、画像ポイントに対して前記スキャン位置の各々で取得された放射線情報を周波数領域において合成的に集束させることにより、各前記画像ポイントを構築する段階を含む前記請求項1から16のいずれか1項に記載の方法。
【請求項18】
前記画像ポイントに対して前記スキャン位置の各々で取得された前記放射線情報を周波数領域において合成的に集束させることにより前記各画像ポイントを構築する段階が、前記スキャン位置の各々で取得された前記放射線情報をコヒーレント加算する段階を含む請求項17に記載の方法。
【請求項19】
前記スキャン位置の各々で取得された前記放射線情報をコヒーレント加算する段階が、前記スキャン位置の各々で取得された前記放射線情報を等化した後に合計する段階を含む請求項18に記載の方法。
【請求項20】
前記放射線情報が前記スキャン位置の各々において複数の離散周波数で取得され、前記スキャン位置の各々で取得された前記放射線情報をコヒーレント加算する段階が、前記スキャン位置の各々で取得された放射線を等化した後、全スキャン位置及び前記離散周波数の全てにわたり合計する段階を含む請求項18に記載の方法。
【請求項21】
前記スキャン位置の各々で取得された前記放射線情報を等化する段階が、各スキャン位置と構築される画像ポイントとの間の最小光路に基づいて前記スキャン位置の各々で取得された前記放射線情報を計算して、該情報に位相シフトを適用する段階を含む請求項19又は20に記載の方法。
【請求項22】
前記体部位の表面プロファイル情報及び特性の推定値と共にフェルマーの原理を用いることによって前記スキャン位置の各々と構築される前記画像ポイントとの間の最小光路を求める段階を含む請求項21に記載の方法。
【請求項23】
前記体部位の特性の推定値を求める段階を含み、前記特性が、前記放射線が透過して構築される前記画像ポイントに達する前記体部位の1つ又はそれ以上の誘電体界面の厚さ及び誘電率と、前記画像ポイント近傍の誘電率とを含むことを特徴とする請求項22に記載の方法。
【請求項24】
前記体部位に関する表面プロファイル情報を取得するためにスキャンする段階が、3次元レーザープロファイラを動作させる段階を含む前記請求項1から23のいずれか1項に記載の方法。
【請求項25】
前記スキャン位置の各々における前記表面プロファイル情報及び放射線情報が、1回のスキャンで同時に取得されることを特徴とする前記請求項1から24のいずれか1項に記載の方法。
【請求項26】
前記スキャン位置の各々における前記表面プロファイル情報及び放射線情報が、2回のスキャンで順次取得されることを特徴とする前記請求項1から24のいずれか1項に記載の方法。
【請求項27】
前記スキャン位置の各々において放射線情報を取得する段階が、受け取った反射放射線の反射係数の振幅及び位相を測定する段階を含む前記請求項1から26のいずれか1項に記載の方法。
【請求項28】
前記方法が、人間の乳房の3次元画像を生成するのに利用されることを特徴とする前記請求項1から27のいずれか1項に記載の方法。
【請求項29】
体部位の3次元画像を生成するイメージングシステムであって、
前記体部位をスキャンして表面プロファイル情報を取得するように構成された3次元プロファイラと、
前記体部位から変位され、前記体部位に向けて空気を通して広帯域非電離放射線を送り、次いで前記体部位に対して複数のスキャン位置で前記体部位から空気を通して反射された非電離放射線を受け取り、これによって前記スキャン位置の各々において放射線情報を取得するように構成されたレーダー装置と、
前記3次元プロファイラ及びレーダー装置を動作するように構成され、前記スキャン位置の各々で取得された前記放射線情報と前記表面プロファイル情報とを受け取り且つ処理し、前記スキャン位置の各々で取得された前記放射線情報を合成的に集束させることにより、複数の画像ポイントを有する前記体部位の3次元画像を生成するように構成された制御システムと、
を備えるイメージングシステム。
【請求項30】
前記レーダー装置が、前記体部位に向けて放射線を送り、前記体部位から反射される放射線を受け取るように動作可能な1つ又はそれ以上のアンテナ素子に接続される放射線源及び放射線観測装置を備える請求項29に記載のイメージングシステム。
【請求項31】
前記スキャン位置が、前記体部位に対する合成開口を定めることを特徴とする請求項30に記載のイメージングシステム。
【請求項32】
前記レーダー装置が、動作可能なスキャン機構によって移動可能なアンテナ素子のアレイを含み、各アンテナ素子はスイッチング回路網の動作によって前記放射線源及び放射線観測装置に選択的に接続可能であり、前記制御システムは、前記スキャン機構及びスイッチング回路網を動作させて前記合成開口内のアレイを漸次的に移動させ且つ前記アンテナ素子を順次的に動作させるようにして、前記合成開口内のスキャン位置の各々で前記放射線情報を取得するように構成されていることを特徴とする請求項31に記載のイメージングシステム。
【請求項33】
前記レーダー装置が、動作可能なスキャン機構によって移動可能であって前記放射線源及び前記放射線観測装置に接続された単一の可動アンテナ素子を含み、前記制御システムが、前記スキャン機構を動作させて前記合成開口内のアンテナ素子を漸次的に移動させるようにして、前記合成開口内の前記スキャン位置の各々で前記放射線情報を取得するように構成されていることを特徴とする請求項31に記載のイメージングシステム。
【請求項34】
前記体部位を支持し且つ前記制御システムによって前記体部位を前記レーダー装置に対して移動させるよう動作可能な可動支持体を更に備え、前記レーダー装置は、所定位置に固定されてスイッチング回路網の動作によって前記放射線源及び放射線観測装置に選択的に接続可能な1つ又はそれ以上のアンテナ素子を含み、前記制御システムは、前記可動支持体及びスイッチング機構を動作させて前記体部位を前記アンテナ素子に対して漸次的に移動させて前記アンテナ素子を動作させるようにし、前記合成開口内の前記スキャン位置の各々で前記放射線情報を取得するように構成されていることを特徴とする請求項31に記載のイメージングシステム。
【請求項35】
前記体部位を支持し且つ前記制御システムによって前記体部位を移動させるように動作可能な可動支持体を更に備え、前記レーダー装置が、動作可能なスキャン機構により移動可能であって且つスイッチング回路網の動作によって前記放射線源及び放射線観測装置に選択的に接続可能な1つ又はそれ以上のアンテナ素子を含み、前記制御システムが、前記可動支持体、スキャン機構、及びスイッチング回路網を動作させて前記体部位及びアンテナ素子を互いに相対的に移動させて且つ前記アンテナ素子を動作させ、前記合成開口内の前記スキャン位置の各々で前記放射線情報を漸次的に取得するように構成されていることを特徴とする請求項31に記載のイメージングシステム。
【請求項36】
前記スキャン位置が、前記体部位に対する実開口を定めることを特徴とする請求項30に記載のイメージングシステム。
【請求項37】
前記レーダー装置が、前記実開口内の前記スキャン位置の各々に固定されている幾つかのアンテナ素子を含み、前記アンテナ素子は、スイッチング回路網の動作によって前記放射線源及び放射線観測装置に選択的に接続可能であり、前記制御システムは、前記スイッチング回路網を動作させて前記アンテナ素子の各々を順次的に動作させ、前記実開口内のスキャン位置の各々で前記放射線情報を取得するように構成されていることを特徴とする請求項36に記載のイメージングシステム。
【請求項38】
前記アンテナ素子が、放射線を送受することができるようにモノスタティックであることを特徴とする請求項30から37のいずれか1項に記載のイメージングシステム。
【請求項39】
前記レーダー装置が、前記体部位に対して少なくとも100のスキャン位置で放射線を送受するよう構成されていることを特徴とする請求項29から38のいずれか1項に記載のイメージングシステム。
【請求項40】
前記レーダー装置が、前記体部位に対して少なくとも500のスキャン位置で放射線を送受するよう構成されていることを特徴とする請求項29から38のいずれか1項に記載のイメージングシステム。
【請求項41】
前記レーダー装置が、前記体部位に対して少なくとも1024のスキャン位置で放射線を送受するよう構成されていることを特徴とする請求項29から38のいずれか1項に記載のイメージングシステム。
【請求項42】
前記レーダー装置が、前記スキャン位置の各々においてマイクロ波帯の複数の離散周波数で広帯域非電離放射を送受するよう構成されていることを特徴とする請求項29から41のいずれか1項に記載のイメージングシステム。
【請求項43】
前記レーダー装置が、少なくともおよそ10GHzのマイクロ波帯の周波数で広帯域非電離放射を送受するよう構成されていることを特徴とする請求項29から42のいずれか1項に記載のイメージングシステム。
【請求項44】
前記レーダー装置が、およそ10GHz〜18GHzの範囲のマイクロ波帯の周波数で広帯域非電離放射を送受するよう構成されていることを特徴とする請求項29から43のいずれか1項に記載のイメージングシステム。
【請求項45】
前記レーダー装置が、前記スキャン位置の各々において少なくとも10個の離散周波数でマイクロ波放射を送受するよう構成されていることを特徴とする請求項29から44のいずれか1項に記載のイメージングシステム。
【請求項46】
前記レーダー装置が、前記スキャン位置の各々において少なくとも100個の離散周波数でマイクロ波放射を送受するよう構成されていることを特徴とする請求項29から44のいずれか1項に記載のイメージングシステム。
【請求項47】
前記レーダー装置が、前記スキャン位置の各々において少なくとも161個の離散周波数でマイクロ波放射を送受するよう構成されていることを特徴とする請求項29から44のいずれか1項に記載のイメージングシステム。
【請求項48】
前記レーダー装置は、一定の周波数間隔で隔てられた複数の離散周波数でマイクロ波放射を送受するよう構成され、最大の周波数間隔がナイキストサンプリング基準により決定付けられることを特徴とする請求項29から47のいずれか1項に記載のイメージングシステム。
【請求項49】
前記制御システムが、画像ポイントに対して前記スキャン位置の各々で取得された前記放射線情報を周波数領域において合成的に集束させることによって、前記各画像ポイントを構築するように構成されていることを特徴とする請求項29から48のいずれか1項に記載のイメージングシステム。
【請求項50】
前記制御システムが、前記スキャン位置の各々で取得された前記放射線情報をコヒーレント加算することにより構築される前記画像ポイントに対して、前記スキャン位置の各々で取得された前記放射線情報を周波数領域において合成的に集束させるように構成されていることを特徴とする請求項49に記載のイメージングシステム。
【請求項51】
前記制御システムが、前記スキャン位置の各々で取得された前記放射線情報を等化した後に合計することにより、前記スキャン位置の各々で取得された前記放射線情報をコヒーレント加算するように構成されていることを特徴とする請求項50に記載のイメージングシステム。
【請求項52】
前記レーダー装置が、前記スキャン位置の各々において複数の離散周波数で前記放射線情報を取得するように構成され、前記制御システムが、前記スキャン位置の各々で取得された前記放射線を等化した後に、全スキャン位置及び全離散周波数にわたって合計することにより前記スキャン位置の各々で取得された前記放射線情報をコヒーレント加算するように構成されていることを特徴とする請求項50に記載のイメージングシステム。
【請求項53】
前記制御システムが、各スキャン位置と構築される前記画像ポイントとの間の最小光路に基づいて前記スキャン位置の各々で取得された前記放射線情報を計算して、該情報に位相シフトを適用することによって、前記スキャン位置の各々で取得された前記放射線情報を等化するように構成されていることを特徴とする請求項51又は請求項52に記載のイメージングシステム。
【請求項54】
前記制御システムが、前記体部位の表面プロファイル情報及び特性の推定値と共にフェルマーの原理を用いることによって、前記スキャン位置の各々と構築される前記画像ポイントとの間の最小光路を求めるように構成されていることを特徴とする請求項53に記載のイメージングシステム。
【請求項55】
前記体部位の特性の推定値が、前記放射線が透過して構築される前記画像ポイントに達する前記体部位の1つ又はそれ以上の誘電体界面の厚さ及び誘電率と、前記画像ポイント近傍の誘電率とを含むことを特徴とする請求項54に記載のイメージングシステム。
【請求項56】
前記3次元プロファイラが、三角測量によって表面プロファイル情報を取得するように構成されたレーザー装置及び画像センサを含む請求項29から55のいずれか1項に記載のイメージングシステム。
【請求項57】
前記制御システムが、前記3次元プロファイラ及びレーダー装置を動作させて前記スキャン位置の各々における前記表面プロファイル情報及び放射線情報を1回のスキャンで同時に取得するように構成されていることを特徴とする請求項29から56のいずれか1項に記載のイメージングシステム。
【請求項58】
前記制御システムが、前記3次元プロファイラ及びレーダー装置を動作させて前記スキャン位置の各々における前記表面プロファイル情報及び放射線情報を2回のスキャンで順次的に取得するようにされた請求項29から56のいずれか1項に記載のイメージングシステム。
【請求項59】
前記レーダー装置が、前記受け取った反射放射線の反射係数の振幅及び位相を測定することによりスキャン位置の各々で前記放射線情報を取得するように構成さていることを特徴とする請求項29から58のいずれか1項に記載のイメージングシステム。
【請求項60】
前記イメージングシステムが、人間の乳房の3次元画像を生成するように構成されていることを特徴とする請求項29から59のいずれか1項に記載のイメージングシステム。
【請求項61】
体部位の3次元画像を生成する非接触イメージングシステムであって、
前記体部位をスキャンして表面プロファイル情報を取得するように構成された3次元プロファイラと、
前記体部位に向けて空気を通してある周波数帯にわたって複数の離散周波数でマイクロ波放射を送り、次いで前記体部位に対してスキャン位置のアレイで前記体部位から空気を通して反射されたマイクロ波放射を受け取り、これによって前記スキャン位置の各々において放射線情報を取得するように構成されたレーダー装置と、
前記3次元プロファイラ及びレーダー装置を動作するように構成され、更に、前記スキャン位置の各々で取得された前記放射線情報と前記表面プロファイル情報とを受け取り且つ処理し、前記スキャン位置の各々で取得された前記放射線情報を合成的に集束させることにより、複数の画像ポイントを有する前記体部位の3次元画像を生成するように構成された制御システムと、
を備える非接触イメージングシステム。
【請求項62】
前記スキャン位置のアレイが、前記体部位に対して合成開口を定め、前記レーダー装置が、前記合成開口内の1つ又はそれ以上のアンテナ素子を移動させ且つ動作させて前記スキャン位置の各々で放射線情報を送受し、これによって前記スキャン位置の各々で前記放射線情報を取得するように構成されていることを特徴とする請求項61に記載の非接触イメージングシステム。
【請求項63】
前記レーダー装置が、前記合成開口内でアンテナアレイを移動させ且つ動作させて、前記スキャン位置の各々で前記放射線情報を取得するように構成されており、前記アンテナアレイ内のアンテナ素子の数は前記スキャン位置の数よりも少ないことを特徴とする請求項62に記載の非接触イメージングシステム。
【請求項64】
前記合成開口のサイズが、前記体部位のサイズの少なくとも2倍であることを特徴とする請求項62又は請求項63に記載の非接触イメージングシステム。
【請求項65】
前記アンテナ素子によって送られる放射線の最小離散周波数が、前記合成開口のサイズによって決定付けられることを特徴とする請求項62から64のいずれか1項に記載の非接触イメージングシステム。
【請求項66】
前記アンテナ素子が、前記レーダー装置のアンテナ素子によって送られる放射線の最低離散周波数の少なくともおよそ10波長だけ前記体部位の表面から変位されていることを特徴とする請求項62から65のいずれか1項に記載の非接触イメージングシステム。
【請求項67】
前記合成開口内のスキャン位置の数が、前記合成開口のサイズと、前記スキャン位置間の最大許容間隔とによって決定付けられ、前記最大間隔が、前記レーダー装置のアンテナ素子によって送られる放射線の最高離散周波数の波長のおよそ半分であることを特徴とする請求項62から66のいずれか1項に記載の非接触イメージングシステム。
【請求項68】
送受信される前記複数の離散周波数間の周波数間隔が一定であり、最大の前記周波数間隔がナイキストサンプリング基準によって決定付けられることを特徴とする請求項61から67のいずれか1項に記載の非接触イメージングシステム。
【請求項69】
前記制御システムが、全スキャン位置及び全離散周波数にわたるコヒーレント加算により前記スキャン位置の各々で取得された前記放射線情報を合成的に集束させることによって、前記3次元画像の各画像ポイントを構築するように構成されていることを特徴とする請求項61から68のいずれか1項に記載の非接触イメージングシステム。
【請求項70】
前記レーダー装置が、少なくとも10GHzの周波数でマイクロ波放射を送受するよう構成されていることを特徴とする請求項61から69のいずれか1項に記載の非接触イメージングシステム。
【請求項71】
体部位の3次元レーダー画像を生成するイメージングシステムであって、
前記体部位をスキャンして3次元幾何学的表面プロファイル情報を取得するように構成された非接触3次元プロファイラと、
前記体部位から変位され、前記体部位に向けて空気を通してある周波数帯にわたって複数の離散周波数でマイクロ波放射を送り、次いで前記体部位に対してスキャン位置のアレイで前記体部位から空気を通して反射されたマイクロ波放射を受け取り、これによって前記スキャン位置の各々で放射線情報を取得するように構成されたレーダー装置と、
前記3次元プロファイラ及びレーダー装置を動作するように構成され、更に前記スキャン位置の各々で取得された前記放射線情報及び前記表面プロファイル情報を受け取り且つ処理し、複数の画像ポイントを有する前記体部位の3次元レーダー画像を生成するように構成された制御システムであって、前記スキャン位置のアレイで取得された前記放射線情報を等化して全スキャン位置及び全離散周波数で合計することにより、前記スキャン位置のアレイで取得された放射線情報を合成的に集束させて各画像ポイントを構築するように構成された制御システムと、
を備えるイメージングシステム。
【請求項72】
前記スキャン位置のアレイが、前記体部位に対して合成開口を定め、前記レーダー装置が、前記合成開口内のアンテナアレイを移動させて動作させ、前記スキャン位置の各々において放射線を送受し、これによって前記スキャン位置の各々で放射線情報を取得するように構成されており、前記スキャン位置の数が少なくとも100であり、前記離散周波数の数が少なくとも10であることを特徴とする請求項71に記載のイメージングシステム。
【請求項73】
前記周波数帯が、およそ10GHzから18GHzであることを特徴とする請求項71又は請求項72に記載のイメージングシステム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7a】
image rotate

【図7b】
image rotate

【図8】
image rotate


【公表番号】特表2008−512175(P2008−512175A)
【公表日】平成20年4月24日(2008.4.24)
【国際特許分類】
【出願番号】特願2007−531102(P2007−531102)
【出願日】平成17年9月12日(2005.9.12)
【国際出願番号】PCT/NZ2005/000238
【国際公開番号】WO2006/028395
【国際公開日】平成18年3月16日(2006.3.16)
【出願人】(506332030)インダストリアル・リサーチ・リミテッド (3)
【Fターム(参考)】