説明

コロナ放電検知センサーと携帯型測定器及び測定方法

【課題】コロナ放電から発生する高周波電流をケーシングの材質に無関係に高感度で検出する測定方法を提供する。
【解決手段】電気・電子機器ケーシング1が絶縁性を有する場合は、感電防止用保護絶縁板16との間の静電容量を介して流れるコロナ放電電流をコロナ放電検出器12のプローブ端子9,10を感電防止用保護絶縁板16に密着させて検出する。また電気・電子機器ケーシング1が金属製の場合には、コロナ放電電流検出器12のプローブ端子9、10をケーシングの外壁に密着させて検出する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コロナ放電の微弱な電流を検知し電気機器の絶縁劣化を早期に発見し電気/電子機器の修理や交換時期を予測させ突然の故障や停電を未然に防ぐため役立つコロナ放電検知測定器を提供する。
【背景技術】
【0002】
電気機器の中には経年劣化が進み、製品寿命を過ぎていても交換されることなく稼動しているものも有る。
その為、数多くの電気機器が突然絶縁破壊を起こし故障し、場合によっては、波及事故に発展し、広域停電に至り、復旧に長時間を要する事もある。
最近、電力供給がひっ迫している中でこのような停電や、発送電のトラブルは極めて社会的影響が大きいため電気設備技術者の日常点検は重要度を増している。
【0003】
日常点検や定期点検する場合は、現状ある電気機器測定器で測定し判断している。
しかし、コロナ放電劣化を簡単に、しかも電気を通電中(機器稼働中)に測定することが出来ないのが現状である。
【0004】
稼働中の電気機器のコロナ放電検知方法は数種類有るが、いづれも携帯型検知機ではない。一般的には重要設備機器の常時監視用として検査機器も工場などに設置されているものがほとんどである。従って日常点検時に携帯出来き、活線状態で放電検知が出来ることが望まれている。
【0005】
一部に携帯型コロナ放電検知機が有るが、ケーシング内に納められた電気機器の放電電圧の変化をケーシングにセンサーを接触検知するやり方である。
本来は、設備検査技術者が行っている騒音測定などで不特定多数の機器の中から異音発生箇所を探し当てるようにコロナ放電発生箇所を探し出せる測定器が望まれている。 (以下、電気・電子機器収納箱をケーシングと称する)
【0006】
電気設備には欠くことの出来ない電源盤や分電盤に組み込まれているブレーカーや避雷器等の点検は、盤の扉を開けて機器の異常の有無を調査しなければならない。
この時、コロナ放電が発生していないかを盤類の外部から、近づけるか接触することで判定できるセンサーが望まれている。
ちなみにブレーカーや避雷器の外装は樹脂製であるからここから放電する現象を検知出来るセンサーを持った測定器が望まれている。
【0007】
電源盤の検査で、避雷器が正常かどうかの判定はアース線に漏れ電流が発生して無いかを測定する。しかし、近年避雷器も酸化亜鉛式からギャップ式も混在する状況になっているので、漏電検知だけでなく、コロナ放電しているか否かも故障判定に加えることが望ましい。
【0008】
トランスの劣化を調査する為には、電気を止めてトランスの中の油を抜き取り成分分析し劣化具合判定している。電気を止めずにもっと簡単に劣化診断出来る測定器が望まれている。OFケーブルでも同じ要望がある。
【0009】
電力ケーブルは、ピットなどにおいて、多数敷設されており、その中から電力ケーブルのどこから放電現象を起こしているか特定するのは非常に難しい。
その難しい初期の放電現象を検知出来る測定器が望まれている。
【発明の概要】
【発明が解決しようとする課題】
【0010】
前述の背景技術の鑑みて、従来のコロナ放電測定においてはコロナ放電電流をコンデンサで積分することによるその電荷量を測定する方式のため、重要な周波数特性が消滅することで測定感度が低下し、電源ノイズなどの問題で制約が大きく現地での測定が難しい。本発明は、コロナ放電から発生する高周波電流をケーシングの材質に無関係に高感度で検出する測定方法を提供する
【0011】
本発明は、従来以上の高感度なセンサーなので、初期のコロナ放電劣化がある電気機器を多数の機器の中から特定出来る測定器である。
これによりコロナ放電で絶縁劣化が進展し、突然の停電などを未然に防ぐことが出来ることとなる。
【課題を解決するための手段】
【0012】
ケーシングが絶縁性材質ないしは、ケーシングがない場合
図1において、コロナ放電電流:6は、矢印に示すようにコロナ放電点:3から放出された10〜40MHzの高周波電流は、コロナ放電点:3とケーシング:1の内面で構成されるコンデンサー:4、ケーシング自体のコンデンサー:7、ケーシング:1の外壁と感電防止用保護絶縁板(アダプターを兼ねる。以下アダプターと称する):16間に構成されるコンデンサ:14、アダプターのインピーダンス:Zfを経由してコロナ放電検出器のプローブ:9で受信され、当該検出器を通り、プローブ:10、アダプターのインピーダンスZf、コンデンサ:15→8→5を経由してコロナ放電発生点:3のコロナ放電エネルギーの供給点に戻る。
ケーシングが金属製の場合
図2の場合は、ケーシングが鋼材など金属材料で構成されているため、コロナ放電電流は、ケーシングの外面からは、大気中に電気力線が放出されないため、コロナ放電検出器のプローブ9,10は、ケーシングに直接接触させるか必要があり、コロナ放電電流:6のコロナ放電検出器への電流ルートは、コロナ放電点:3→4→7(ケーシングの塗装を含むインピーダンス:z)→プローブ:9で受信→プローブ:10→8→5→コロナ放電発生点:3のエネルギー供給点に戻る
この場合でも、アダプターを使用して検出は可能であり、アダプターは、ケーシングの外壁に密着させることで達成できる。
構成としては、図1のコンデンサ:14、15が無い状態と同じになる。
【発明の効果】
【0013】
早期に放電現象を検知する必要な電気設備としては、受変電設備をはじめ、被服された
電線/ケーブル、発電機、モータ、直撃雷保護用の避雷器等また、電子機器がある。

コロナ放電を検知出来る。
感電防止用保護絶縁版:16は、検出のためのアダプターとしての機能も有し、センサーとセットとして被検出体に近づけることによる電界分布を変えることなく測定できる機能を有している。
コロナ放電検出対象電気・電子機器装置の外形構造に則したアダプターを構成することで検出の確度を保障できる。
【図面の簡単な説明】
【0014】
【図1】電気・電子機器ケーシングが絶縁物の場合の図 電気・電子機器のケーシングが塩化ビニルなどの絶縁物で構成しているの場合のコロナ放電電流の検出方法を示す。感電防止用保護用絶縁版は、検出ためのアダプターを兼ねている。
【図2】電気・電子機器のケーシングが金属材料の場合の図 図2には、ケーシングが鋼材など金属材料で構成されている場合のコロナ放電電流の検出方法を示す。
【符号の説明】
【0015】
1電気・電子機器のケーシング
2電気・電子機器本体
3コロナ放電発生源
4コロナ放電発生源とケーシング間の静電容量(外部浮遊容量)
5コロナ放電発生源とケーシング間の静電容量(外部浮遊容量)
6コロナ放電電流:I
7ケーシングのインピーダンス
図1:絶縁性ケーシングの場合は、コンデンサ
図2:金属製ケーシングの場合は、インピーダンス
8ケーシングのインピーダンス
図1:絶縁性ケーシングの場合は、コンデンサ
図2:金属製ケーシングの場合は、インピーダンス
9コロナ放電電流検出器のプローブ端子:A
10コロナ放電電流検出器のプローブ端子:B
11コロナ放電電流検出コイル
12コロナ放電検出器
13コロナ放電電流受信回路及び表示回路
14電気・電子機器用ケーシングと感電防止用保護絶縁板間の静電容量
15電気・電子機器用ケーシングと感電防止用保護絶縁板間の静電容量
16感電防止用保護絶縁板:インピーダンス
Zfとし、コロナ放電電流の検出用アダプターを兼ねる。

【特許請求の範囲】
【請求項1】
電気機器のコロナ放電や部分放電(以下コロナ放電と称する表記)による微小高周波電流の変化を検知出来る測定回路方式と検査供試品の内部で発生するコロナ放電による微小高周波電流を外部浮遊容量を利用することによる高感度センサー回路。
【請求項2】
上記センサーで大気中の微小な放電電流の変化を検知し、不特定多数な電気機器の中から、放電の源を探知出来る携帯型測定器。
センサーから入力されるアナログ信号をデジタル信号に変換するA/D変換器を有し、表示部に放電電流の強弱を多段階に切り替えて表示出来る携帯型測定器。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2013−113837(P2013−113837A)
【公開日】平成25年6月10日(2013.6.10)
【国際特許分類】
【出願番号】特願2011−270646(P2011−270646)
【出願日】平成23年11月24日(2011.11.24)
【出願人】(509272643)有限会社 山本エンジニアリング (3)
【Fターム(参考)】