説明

ゴム組成物

【課題】従来の改良ポリブタジエンゴムの長所をそのまま保持しつつ、硬度及び弾性(特に低伸長化での弾性)などの特性に優れたゴム組成物を提供する。
【解決手段】(A)天然ゴム及び/又はジエン系合成ゴム成分、(B)補強ポリブタジエンゴム成分、並びに(C)繊維強化ゴム成分からなるゴム組成物であって、下記の特徴を有するゴム組成物。(B)成分:(1)平均の単分散繊維結晶の短軸長が0.2μm以下、アスペクト比が10以下であり、且つ平均の単分散繊維結晶数が10以上の短繊維状であり、かつ、融点が170℃以上であるシンジオタクチック−1,2−ポリブタジエン結晶樹脂および、(2)ゴム分からなるビニル・シス−ポリブタジエンゴム。(C)成分:加硫可能なエラストマ−からなるマトリックス中に、主鎖にアミド基を有する熱可塑性ポリマーが微細繊維状に分散しており、該熱可塑性ポリマーがマトリックスと結合している繊維強化ゴム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、新規なゴムであって、産業用自動車タイヤなどの部材に好適な高硬度、高弾性率ゴム組成物に関する。
【背景技術】
【0002】
近年、自動車業界においては、省資源、省エネルギーの観点から、ゴムの硬度、弾性、耐摩耗性、機械的性質、及び動的特性(発熱特性やtanδ)を改良することが検討されてきた。このようなゴムとして、高シス−1,4−ポリブタジエン(以下「高シスポリブタジエン」)のマトリックス中にシンジオタクチック−1,2−ポリブタジエン(SPBD)を分散させた改良ポリブタジエンゴムが提案された(特公昭49−17666号(特許文献1))。このポリブタジエンゴムは、SPBDが高シスポリブタジエンのマトリックス中に繊維状に分散した構造を有しているため、従来のゴム、例えば高シスポリブタジエン単味のゴム等と比較して硬度及び弾性が高く耐屈曲亀裂成長性に優れているという特徴を有している。
【0003】
このため、この改良ポリブタジエンを用いたタイヤ部材も各種提案されている。このようなものとして、例えばトレッドに使用した例(特公昭63−1355号(特許文献2))やサイドウォールに使用した例(特公昭55−17059号(特許文献3))等がある。
【0004】
特許2763480号公報(特許文献4)には、シンジオ結晶を含有するジエン系ゴム成分と充填剤、イオウを配合してなる高硬質ゴム組成物をベース部に用いた産業用トラクッシュタイヤが開示されている。特開平6−192479号公報(特許文献5)には、熱可塑性ポリアミド短繊維とジエン系ゴムとを化学結合してなるマスターバッチゴム、ジエン系ゴム、カーボンブラック、ノボラック型変性フェノール系樹脂を含有するゴム組成物が開示されている。
【0005】
しかし、フォークリフト用タイヤ、ソリッドタイヤ、あるいは、ビードフィラ−やチェーファーなどビードゴムなどには、走行安定性、形状維持、低ロス化の観点から、低伸長時での弾性率、硬度などがさらに高いゴム組成物が望まれていた。
【0006】
一般にラジアルタイヤでは、高速耐久性や高速操縦性の点からスチールコードも使用されている。スチールコードを使用する場合、タイヤ走行時にスチールコード近傍のゴムに非常に大きな歪み集中が生じやすい。従って、スチールコード用ゴムとしては高弾性率で金属との接着性に優れることが必要とされる。有機繊維コードを用いるラジアルタイヤ、バイアスタイヤにおいても耐久性の観点からコード用ゴムとしては高弾性率のものが好ましい。
【0007】
高弾性率のゴムを得る方法としては従来から種々の方法が試みられている。カーボンブラックを多量配合する方法は、加工工程でのゴムのまとまりが悪いこと、混練や押出時に電力負荷が増大すること、配合物MLが大きくなるので押出成形時に困難が伴うため好ましくない。硫黄を多量配合する方法は、硫黄がブルームすること、架橋密度の増大によって亀裂成長が速くなる等の欠点を有する。熱硬化性樹脂の添加は、熱硬化性樹脂がコードコーティングゴムとして一般的に用いられる天然ゴムやジエン系ゴムとの相溶性が低いので分散不良になりやすく耐クラック性に劣る。また、従来公知のタイヤコードコーティングゴム組成物はグリーンストレングスが小さく、成形加工性の点からさらにグリーンストレングスの大きいものが要求されている。
【0008】
特開2002−47376(特許文献6)には、(A)特定の天然ゴム及び/又はジエン系合成ゴム成分10〜80重量%、(B)特定の補強ポリブタジエンゴム成分5〜60重量%、並びに(C)特定の繊維強化ゴム成分5〜70重量%からなるゴム組成物であって、(B)成分が還元比粘度が0.5〜4であるシンジオタクチック−1,2−ポリブタジエンを主成分とする沸騰n−ヘキサン不溶分1〜30重量%と、高シス−1,4−ポリブタジエンを主成分とする沸騰n−ヘキサン可溶分70〜99重量%からなる補強ポリブタジエンゴムであり、(C)成分が加硫可能なエラストマ−からなるマトリックス中に、主鎖にアミド基を有する熱可塑性ポリマーが微細繊維状に分散しており、該熱可塑性ポリマーがマトリックスと結合している繊維強化ゴムであって、硬度及び弾性(特に低伸長化での弾性)などの特性に優れたポリブタジエンゴムが開示されている。
【0009】
【特許文献1】特公昭49−17666号公報
【特許文献2】特公昭63−1355号公報
【特許文献3】特公昭55−17059号公報
【特許文献4】特許2763480号公報
【特許文献5】特開平6−192479号公報
【特許文献6】特開2002−47376公報
【発明の開示】
【発明が解決しようとする課題】
【0010】
本発明は、従来の改良ポリブタジエンゴムの長所をそのまま保持しつつ、硬度及び弾性(特に低伸長化での弾性)などの特性に優れたゴム組成物を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明は、(A)天然ゴム及び/又はジエン系合成ゴム成分10〜80重量%、(B)補強ポリブタジエンゴム成分5〜60重量%、並びに(C)繊維強化ゴム成分5〜70重量%からなるゴム組成物であって、該(B)成分及び(C)成分が下記の特徴を有するゴム組成物。
(B)成分:(1)平均の単分散繊維結晶の短軸長が0.2μm以下、アスペクト比が10以下であり、且つ平均の単分散繊維結晶数が10以上の短繊維状であり、かつ、融点が170℃以上であるシンジオタクチック−1,2−ポリブタジエン結晶樹脂(以下、SPB樹脂と略)1〜50重量部、および、(2)ゴム分100重量部からなる(a)ビニル・シス−ポリブタジエンゴム。
(C)成分:(c−1)加硫可能なエラストマ−からなるマトリックス中に、主鎖にアミド基を有する熱可塑性ポリマーが微細繊維状に分散しており、該熱可塑性ポリマーがマトリックスと結合している繊維強化ゴムに関する。
【0012】
本発明は、該(a)ビニル・シスポリブタジエンゴムが、ポリイソプレン、融点150℃以下の結晶性ポリブタジエン、液状ポリブタジエン、及びそれらの誘導体から選ばれた少なくとも1種からなる、繰り返し単位当り少なくとも1個の不飽和二重結合を有する高分子物質を含有することを特徴とするゴム組成物に関する。
【0013】
本発明は、該(a)ビニル・シスポリブタジエンゴムが、1,3−ブタジエンを炭化水素系溶媒中にて、シス−1,4重合触媒を用いてシス−1,4重合させ、次いで、得られた重合反応混合物中に1,2重合触媒を共存させて、1,3−ブタジエンを1,2重合させて、融点が170℃以上の1,2−ポリブタジエンを生成せしめ、しかる後、得られた重合反応混合物より生成したビニル・シス−ポリブタジエンゴムを分離回収して取得するビニル・シス−ポリブタジエンゴムの製造方法であって、繰り返し単位当たり少なくとも1個の不飽和二重結合を有する高分子物質を、ビニル・シス−ポリブタジエンゴムの製造系内に添加する工程を含むことを特徴とした製造方法で製造されていることを特徴とするゴム組成物に関する。
【0014】
本発明は、該(a)ビニル・シスポリブタジエンゴムの製造方法において、前記不飽和高分子物質を1,2−ポリブタジエンの結晶繊維とシス−ポリブタジエンゴムの合計に対して0.01〜50質量%の範囲で含まれていることを特徴とするゴム組成物に関する。
【0015】
本発明は、該ビニル・シスポリブタジエンゴム(a)中の1,2−ポリブタジエンの短い繊維が、前記高分子物質の粒子に含有されずに前記マトリックス成分であるシス−ポリブタジエンゴム中にも分散しており、該マトリックス中に分散している短い結晶繊維の長軸長が0.2〜1,000μmの範囲であり、かつ、該高分子物質の粒子中に分散している前記1,2−ポリブタジエンの短い結晶繊維の長軸長が0.01〜0.5μmの範囲であることを特徴とするゴム組成物に関する。
【発明の効果】
【0016】
本発明により、高硬度、高弾性率、低ロス性、低圧縮歪に優れているゴム組成物を提供できる。
【発明を実施するための最良の形態】
【0017】
本発明のゴム組成物の(A)成分としては、天然ゴム、ジエン系合成ゴムが挙げられる。具体的には、天然ゴム、高シスポリブタジエンゴム、低シスポリブタジエンゴム、スチレン−ブタジエンゴム、イソプレンゴム、アクリロニトリルーブタジエンゴムなどのジエン系ゴム等があげられる。これらの中でも、天然ゴムが好ましい。又、これらのゴムをエポキシ変性、シラン変性、マレイン変性などをしたものも用いられる。
【0018】
本発明のゴム組成物の(B)成分は、(1)平均の単分散繊維結晶の短軸長が0.2μm以下、アスペクト比が10以下であり、且つ平均の単分散繊維結晶数が10以上の短繊維状であり、かつ、融点が170℃以上であるシンジオタクチック−1,2−ポリブタジエン結晶樹脂(以下、SPB樹脂と略)1〜50重量部、および、(2)ゴム分100重量部からなる(a)ビニル・シス−ポリブタジエンゴムである。
【0019】
上記(1)成分の1,2−ポリブタジエンの結晶繊維としては、平均の単分散繊維結晶の短軸長が0.2μm以下、好ましくは、0.1μm以下であり、また、アスペクト比が10以下、好ましくは、8以下であり、且つ平均の単分散繊維結晶数が10以上、好ましくは、15以上の短繊維状であり、かつ、融点が170℃以上、好ましくは、190〜220℃であることが望ましい。
【0020】
そして本発明のビニル・シス−ポリブタジエンゴム(a)は、上記マトリックス成分である(2)成分のシス−ポリブタジエン中に、上記(1)成分の融点が170℃以上である1,2−ポリブタジエンが短い結晶繊維状で存在している。
【0021】
また、該(a)ビニル・シスポリブタジエンゴムが、(3)成分として、ポリイソプレン、融点150℃以下の結晶性ポリブタジエン、液状ポリブタジエン、及びそれらの誘導体から選ばれた少なくとも1種からなる、繰り返し単位当り少なくとも1個の不飽和二重結合を有する高分子物質を含有していることが好ましい。上記(3)成分の不飽和高分子物質が粒子状で存在していることが好ましい。
【0022】
また、上記マトリックス成分である(2)成分のシス−ポリブタジエン中に分散している不飽和高分子物質の粒子の長軸径が0.2〜1,000μmの範囲であり、該高分子物質の粒子中に分散している前記1,2−ポリブタジエンの短い結晶繊維の長軸長が0.01〜0.5μmの範囲である。
【0023】
上記(2)成分のシス−ポリブタジエンゴムとしては、高シス−1,4−ポリブタジエンそのもの、及び/又は高シス−1,4構造を主要な構造とするポリブタジエンを主成分とするものである。
【0024】
(2)成分は、ムーニー粘度(ML1+4 、100℃、以下「ML」と略す)が10〜130であることが好ましく、特に15〜80であることが好ましい。MLが上記範囲の未満の場合は、得られるポリブタジエンゴムの耐久性が悪化するという問題が生じる。一方、MLが上記の範囲を超える場合は、配合物のムーニー粘度が高くなり過ぎ、加工が困難になるという問題が起こる。又、配合ゴムの流動性も悪化する。
【0025】
沸騰n−ヘキサン可溶分の主成分である高シス−1,4−ポリブタジエンのシス構造は、90%以上が好ましく、特に95%以上が好ましい。シス構造が上記以下であると耐摩耗性の低下などの問題がある。
【0026】
上記のポリブタジエン(B)成分は、二段重合法によって製造できる。二段重合法とは、1,3−ブタジエンを二段階に分けて重合する方法であり、第1段階でシス−1,4−重合を行って高シス−1、4−ポリブタジエン(沸騰n−ヘキサン可溶分)を得、次いで重合を停止することなく引き続いてシンジオタクチック−1,2重合触媒を投入し、シンジオタクチック−1,2−ポリブタジエン(沸騰n−ヘキサン不溶分)を合成し、沸騰n−ヘキサン不溶分が沸騰n−ヘキサン可溶分中に分散したポリブタジエンゴムを得るというものである。又、この逆に、第1段階でシンジオタクチック−1,2重合を行い、第2段階でシス−1,4重合を行ってもよい。
【0027】
シス−1,4重合触媒及びシンジオタクチック−1,2重合触媒には、各々公知のものを用いることができる。
【0028】
シス−1,4重合触媒の例としては、ジエチルアルミニウムクロライド−コバルト系触媒やトリアルキルアルミニウム−三弗化硼素−ニッケル系触媒、ジエチルアルムニウムクロライド−ニッケル系触媒、トリエチルアルミニウム−四沃化チタニウム系触媒、等のチーグラー・ナッタ系触媒、及びトリエチルアルミニウム−有機酸ネオジウム−ルイス酸系触媒等のランタノイド元素系触媒等が挙げられる。
【0029】
シンジオタクチック−1,2重合触媒の例としては、可溶性コバルト−有機アルミニウム化合物−二硫化炭素系触媒、可溶性コバルト−有機アルミニウム化合物−二硫化炭素系触媒、ニトリル化合物系触媒、等が挙げられる。重合度、重合触媒等の重合条件も公知の方法に従って適宜設定することができる。
【0030】
本発明のポリブタジエンは、この他、ブレンド法によっても製造できる。
【0031】
ブレンド法は、シンジオタクチック−1,2−ポリブタジエンと高シス−1,4−ポリブタジエンとを予め別々に重合してからブレンドするという方法であるが、各々を溶液の状態でブレンドする溶液ブレンド法の他、バンバリーミキサーや押出混練機等で溶融、混練する溶融ブレンド法も可能である。又、二段重合法で合成したポリブタジエンゴムに、高シス−1,4−ポリブタジエンやシンジオタクチック−1,2−ポリブタジエンをブレンドしてもよい。
【0032】
ここで、トルエン不溶解分は、試料ゴム10gと400mlのトルエンを三角フラスコに入れてRT(25℃)にて完全溶解させ、その後200メッシュの金網を設置した濾過器を用い上記溶液を濾過し、濾過後に金網に付着したゲル分を言い、上記割合はゲルが付着した金網を真空乾燥し付着量を測定し、試料ゴムに対する百分率で計測した値を指す。
【0033】
また、[η](固有粘度)は試料ゴム0.1gと100mlのトルエンを三角フラスコに入れ、30℃で完全溶解させ、その後30℃にコントロールされた恒温水槽中で、キャノンフェンスケ動粘度計に10mlの上記溶液を入れ、溶液の落下時間(T)を測定し、下記式により求めた値を[η]とする。
【0034】
ηsp=T/T0−1 (T0:トルエンだけの落下時間)
ηsp/c= [η]+k'[η]2
(ηsp:比粘度、k':ハギンズ定数(0.37)、C:試料濃度(g/ml))
【0035】
上記(1)成分の1,2−ポリブタジエン結晶繊維と(2)成分のシス−ポリブタジエンゴムの割合は、上記のとおり(2)成分のシス−ポリブタジエンゴム100質量部に対して(1)成分の1,2−ポリブタジエン結晶繊維が1〜50質量部、好ましくは、1〜30質量部であることが望ましい。上記範囲内であると、50質量部を超えて多量の場合の、シス−ポリブタジエンゴム中の1,2−ポリブタジエン結晶繊維の短繊維結晶が大きくなりやすく、その分散性が悪くなることや、1質量部未満の少量の場合、短繊維結晶による補強性が低下することを回避でき、したがって、特長となる弾性率・押出加工性及び成形性等が発現し難く、また加工性が悪化するなどの問題が起こりにくいため好ましい。また、(3)成分の不飽和高分子物質の割合は、上記のとおりビニル・シス−ポリブタジエンゴムの0.01〜50質量%、好ましくは0.01〜30質量%であることが望ましい。上記範囲内であることは、上記(1)成分の1,2−ポリブタジエン結晶繊維の凝集による分散性向上、それに伴うビニル・シス−ポリブタジエンゴムが引出す諸物性の低下抑制などの点で好ましい。
【0036】
本発明のビニル・シス−ポリブタジエンゴムの製造においては、一般に炭化水素系溶媒を用いて1,3−ブタジエンの重合を行う。この炭化水素系溶媒としは、溶解度パラメーター(以下「SP値」と略す)が9.0以下である炭化水素系溶媒が好ましく、更に好ましくは8.4以下の炭化水素系溶媒である。溶解度パラメーターが9.0以下である炭化水素系溶媒としては、例えば、脂肪族炭化水素、脂環族炭化水素であるn−ヘキサン(SP値:7.2)、n−ペンタン(SP値:7.0)、n−オクタン(SP値:7.5)、シクロヘキサン(SP値:8.1)、n−ブタン(SP値:6.6)等が挙げられる。中でも、シクロヘキサンなどが好ましい。
【0037】
これらの溶媒のSP値は、ゴム工業便覧(第四版、社団法人:日本ゴム協会、平成6年1月20日発行;721頁)などの文献で公知である。
【0038】
SP値が9.0よりも小さい溶媒を使用することで、シス−ポリブタジエンゴム中への1,2−ポリブタジエン結晶繊維の短繊維結晶の分散状態が本発明で期待する如く形成され、優れたダイ・スウェル特性や高弾性、引張強さを発現するので好ましい。
【0039】
まず、1,3−ブタジエンと前記溶媒とを混合し、次いで、得られた溶液中の水分の濃度を調節する。水分は、該溶液中の、後記シス−1,4重合触媒として用いられる有機アルミニウムクロライド1モル当たり、好ましくは0.1〜1.0モル、特に好ましくは0.2〜1.0モルの範囲である。この範囲では充分な触媒活性得られて好適なシス−1,4構造含有率や分子量が得られつつ、重合時のゲルの発生を抑制できることにより重合槽などへのゲルの付着を防ぐことができ、連続重合時間を延ばすことができるので好ましい。水分の濃度を調節する方法は公知の方法が適用できる。多孔質濾過材を通して添加・分散させる方法(特開平4−85304号公報)も有効である。
【0040】
水分の濃度を調節して得られた溶液には、シス−1,4重合触媒の一つとして、有機アルミニウムクロライドを添加する。有機アルミニウムクロライドとしては、一般式AlRn3-nで表される化合物が好ましく用いられ、その具体例としては、ジエチルアルミニウムモノクロライド、ジエチルアルミニウムモノブロマイド、ジイソブチルアルミニウムモノクロライド、ジシクロヘキシルアルミニウムモノクロライド、ジフェニルアルミニウムモノクロライド、ジエチルアルミニウムセスキクロライドなどを好適に挙げることができる。有機アルミニウムクロライドの使用量のとしては、1,3−ブタジエンの全量1モル当たり0.1ミリモル以上が好ましく、0.5〜50ミリモルがより好ましい。
【0041】
次いで、有機アルミニウムクロライドを添加した混合溶液に、シス−1,4重合触媒の他の一つとして、可溶性コバルト化合物を添加して、1,3−ブタジエンをシス−1,4重合させる。可溶性コバルト化合物としては、用いる炭化水素系溶媒又は液体1,3−ブタジエンに可溶なものであるか、又は、均一に分散できる、例えばコバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナートなどコバルトのβ−ジケトン錯体、コバルトアセト酢酸エチルエステル錯体のようなコバルトのβ−ケト酸エステル錯体、コバルトオクトエート、コバルトナフテネート、コバルトベンゾエートなどの炭素数6以上の有機カルボン酸コバルト塩、塩化コバルトピリジン錯体、塩化コバルトエチルアルコール錯体などのハロゲン化コバルト錯体などを挙げることができる。可溶性コバルト化合物の使用量は、1,3−ブタジエンの1モル当たり0.001ミリモル以上が好ましく、0.005ミリモル以上であることがより好ましい。また可溶性コバルト化合物に対する有機アルミニウムクロライドのモル比(Al/Co)は10以上であり、特に50以上であることが好ましい。また、可溶性コバルト化合物以外にもニッケルの有機カルボン酸塩、ニッケルの有機錯塩、有機リチウム化合物、ネオジウムの有機カルボン酸塩、ネオジウムの有機錯塩を使用することも可能である。
【0042】
シス−1,4重合の温度は、一般に0℃を超える温度〜100℃、好ましくは10〜100℃、更に好ましくは20〜100℃までの温度範囲である。重合時間(平均滞留時間)は、10分〜2時間の範囲が好ましい。シス−1,4重合後のポリマー濃度が5〜26質量%となるようにシス−1,4重合を行うことが好ましい。重合槽は1槽、又は2槽以上の槽を連結して行われる。重合は重合槽(重合器)内にて溶液を攪拌混合して行う。重合に用いる重合槽としては高粘度液攪拌装置付きの重合槽、例えば特公昭40−2645号に記載された装置を用いることができる。
【0043】
本発明のビニル・シス−ポリブタジエンゴムの製造では、シス−1,4重合時に、公知の分子量調節剤、例えばシクロオクタジエン、アレン、メチルアレン(1,2−ブタジエン)などの非共役ジエン類、又はエチレン、プロピレン、ブテン−1などのα−オレフィン類を使用することができる。又重合時のゲルの生成を更に抑制するために、公知のゲル化防止剤を使用することができる。また、重合生成物のシス−1,4構造含有率が一般に80%以上、好ましくは90%以上で、ML10〜50、好ましくは10〜40であり、実質的にゲル分を含有しないようにする。
【0044】
そして、前記の如くして得られたシス−1,4重合反応混合物に、1,2重合触媒として、一般式AlRで表せる有機アルミニウム化合物と二硫化炭素、必要なら前記の可溶性コバルト化合物を添加して、1,3−ブタジエンを1,2重合させて、ビニル・シス−ポリブタジエンゴムを製造する。この際、該重合反応混合物に1,3−ブタジエンを添加してもよいし、添加せずに未反応の1,3−ブタジエンを反応させてもよい。一般式AlRで表せる有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn−ヘキシルアルミニウム、トリフェニルアルミニウムなどを好適に挙げることができる。有機アルミニウム化合物は、1,3−ブタジエン1モル当たり0.1ミリモル以上、特に0.5〜50ミリモル以上である。二硫化炭素は特に限定されないが水分を含まないものであることが好ましい。二硫化炭素の濃度は20ミリモル/L以下、特に好ましくは0.01〜10ミリモル/Lである。二硫化炭素の代替として公知のイソチオシアン酸フェニルやキサントゲン酸化合物を使用してもよい。
【0045】
1,2重合の温度は、一般に0〜100℃、好ましくは10〜100℃、更に好ましくは20〜100℃の温度範囲である。1,2重合を行う際の重合系には、前記のシス−1,4重合反応混合物100質量部当たり1〜50質量部、好ましくは1〜20質量部の1,3−ブタジエンを添加することで、1,2重合時の1,2−ポリブタジエンの収量を増大させることができる。重合時間(平均滞留時間)は、10分〜2時間の範囲が好ましい。1,2重合後のポリマー濃度が9〜29質量%となるように1,2重合を行うことが好ましい。重合槽は1槽、又は2槽以上の槽を連結して行われる。重合は重合槽(重合器)内にて重合溶液を攪拌混合して行う。1,2重合に用いる重合槽としては、1,2重合中に更に高粘度となりポリマーが付着しやすいので、高粘度液攪拌装置付きの重合槽、例えば特公昭40−2645号公報に記載された装置を用いることができる。
【0046】
本発明のビニル・シス−ポリブタジエンゴムの製造においては、前記のようにシス−1,4重合、次いで1,2重合を行ってビニル・シス−ポリブタジエンゴムを製造するにあたり、ポリイソプレン、融点150℃以下の結晶性ポリブタジエン、液状ポリブタジエン、及びそれらの誘導体から選ばれた少なくとも1種からなる、繰り返し単位当たり少なくとも1個の不飽和二重結合を有する高分子物質を、ビニル・シス−ポリブタジエンゴムの製造系内に添加する工程を含む。ビニル・シス−ポリブタジエンゴム製造後、たとえば配合時に添加しても本願発明の効果は得られない。この不飽和高分子物質の製造系内への添加は、前記シス−1,4重合を行う際から、前記1,2重合を行う際までの間の任意の時点で重合反応混合物中に添加することが好ましく1,2重合を行うときがより好ましい。
【0047】
上記不飽和高分子物質としては、ポリイソプレン、融点170℃未満の結晶性ポリブタジエン、液状ポリブタジエン、及びそれらの誘導体から選ばれた少なくとも1種が好ましい。
【0048】
ポリイソプレンとしては、通常の合成ポリイソプレン(シス構造90%以上のシス−1,4−ポリイソプレン等)、液状ポリイソプレン、トランス−ポリイソプレン、その他変性ポリイソプレン等が挙げられる。
【0049】
融点170℃未満の結晶性ポリブタジエンは、好ましくは融点0〜150℃の結晶性ポリブタジエンであり、たとえば、低融点1,2−ポリブタジエン、トランス−ポリブタジエン等が挙げられる。
【0050】
液状ポリブタジエンとしては、固有粘度[η]=1以下の極低分子のポリブタジエン等があげられる。
【0051】
また、これらの誘導体としては、たとえば、イソプレン・イソブチレン共重合体、イソプレン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体、液状エポキシ化ポリブタジエン、液状カルボキシル変性ポリブタジエン等及びこれら誘導体の水添物等が挙げられる。
【0052】
上記各不飽和高分子物質の中でも、イソプレン、スチレン・イソプレン・スチレンブロック共重合体、融点70〜110℃の1,2−ポリブタジエンが好ましく用いられる。また、上記各不飽和高分子物質は、単独で用いることも、2種以上を混合して用いることもできる。
【0053】
上記のよう不飽和高分子物質を添加すると、前記のとおり、得られるビニル・シス−ポリブタジエンゴムにおいて、不飽和高分子物質の相溶効果により、融点が170℃以上の1,2−ポリブタジエンの、マトリックス成分のシス−ポリブタジエンゴム中への分散性が著しく向上され、その結果得られるビニル・シス−ポリブタジエンゴムの特性が優れたものとなる。
【0054】
不飽和高分子物質の添加量は、取得されるビニル・シス−ポリブタジエンゴムに対して0.01〜50質量%の範囲であることが好ましく、0.01〜30質量%の範囲であることが更に好ましい。また、いずれの時点での添加でも、添加後10分〜3時間攪拌することが好ましく、更に好ましくは10分〜30分間攪拌することである。
【0055】
また、1個以上の酸素結合を含有する有機化合物及び/又は高分子化合物を添加するkとができる。エーテル基、エポキシ基、カルボキシル基、エステル基、水酸基、カルボニル基を含有する化合物であることが好ましい。具体的化合物として、例えば酸無水物、脂肪族アルコール、芳香族アルコール、脂肪族エーテル・芳香族エーテル、脂肪族カルボン酸・芳香族カルボン酸・不飽和カルボン酸、脂肪族カルボン酸エステル・芳香族カルボン酸エステル・不飽和カルボン酸エステル、フェノール樹脂、ナイロン樹脂、ポリウレタン、ポリエチレングリコール、エポキシ化ポリブタジエン、ポリエステル、エポキシ化スチレンブタジエン共重合体、ポリアリールエーテル、などが挙げられる。
【0056】
1個以上の酸素結合を含有する有機化合物及び/又は高分子化合物を重合系に添加することにより、ビニル・シス−ポリブタジエンゴムのマトリックス成分であるシスポリブタジエンとSPB樹脂の界面親和性が変化し、結果としてSPB樹脂の繊維結晶の単分散化及びビニル・シス−ポリブタジエンゴムの諸物性の向上に効果がある。
【0057】
重合反応が所定の重合率に達した後、常法に従って公知の老化防止剤を添加することができる。老化防止剤の代表としては、フェノール系の2,6−ジ−t−ブチル−p−クレゾール(BHT)、リン系のトリノニルフェニルフォスファイト(TNP)、硫黄系の4.6−ビス(オクチルチオメチル)−o−クレゾール、ジラウリル−3,3'−チオジプロピオネート(TPL)などが挙げられる。単独でも2種以上組み合わせて用いてもよく、老化防止剤の添加はビニル・シス−ポリブタジエンゴム100質量部に対して0.001〜5質量部である。次に、重合停止剤を重合系に加えて重合反応を停止させる。その方法としては、例えば、重合反応終了後、重合反応混合物を重合停止槽に供給し、この重合反応混合物にメタノール、エタノールなどのアルコール、水などの極性溶媒を大量に投入する方法、塩酸、硫酸などの無機酸、酢酸、安息香酸などの有機酸、塩化水素ガスを重合反応混合物に導入する方法などの、それ自体公知の方法が挙げられる。次いで、通常の方法に従い生成したビニル・シス−ポリブタジエンゴムを分離回収し、洗浄、乾燥して目的のビニル・シス−ポリブタジエンゴムを取得する。
【0058】
このようにして取得される本発明のビニル・シス−ポリブタジエンゴムは、一般に、その各成分比率、即ち融点が170℃以上である1,2−ポリブタジエン、シス−ポリブタジエンゴム、及び不飽和高分子物質の比率が前記のとおりであり、また、シス−ポリブタジエンゴムのミクロ構造は、80%以上がシス−1,4−ポリブタジエンであり、その残余がトランス−1,4−ポリブタジエン及びビニル−1,2−ポリブタジエンである。そして、このシス−ポリブタジエンゴムと不飽和高分子物質は、沸騰n−ヘキサン可溶分であり、融点が170℃以上の1,2−ポリブタジエンは、沸騰n−ヘキサン不溶分(以下「H.I」と略す)である。この融点が170℃以上の1,2−ポリブタジエンは、一般に融点が170〜220℃であり、前記のような短繊維状の結晶繊維である。また、シス−ポリブタジエンゴムのMLは、前記のように10〜50、好ましくは20〜40である。
【0059】
また、本発明のビニル・シス−ポリブタジエンゴムは、前記のとおり、融点が170℃以上の1,2−ポリブタジエンと不飽和高分子物質とが、シス−ポリブタジエンゴムのマトリックス中に均一に分散されてなるものである。
【0060】
上記本発明のビニル・シス−ポリブタジエンゴムの製造方法においては、生成したビニル・シス−ポリブタジエンゴムを分離取得した残余の、未反応の1,3−ブタジエン、炭化水素系溶媒及び二硫化炭素などを含有する重合反応混合物母液から、通常、蒸留により1,3−ブタジエン、炭化水素系溶媒を分離し、また、二硫化炭素の吸着分離処理、あるいは二硫化炭素付加物の分離処理によって二硫化炭素を分離除去し、二硫化炭素を実質的に含有しない1,3−ブタジエンと炭化水素系溶媒とを回収する。また、上記重合反応混合物母液から、蒸留によって3成分を回収して、この蒸留物から上記の吸着分離あるいは二硫化炭素付着物分離処理によって二硫化炭素を分離除去することによっても、二硫化炭素を実質的に含有しない1,3−ブタジエンと炭化水素系溶媒とを回収することもできる。前記のようにして回収された二硫化炭素と炭化水素系溶媒とは新たに補充した1,3−ブタジエンを混合して再使用することができる。
【0061】
上記ビニル・シス−ポリブタジエンゴムの製造方法によれば、触媒成分の操作性に優れ、高い触媒効率で工業的に有利に本発明のビニル・シス−ポリブタジエンゴムを連続的に長時間製造することができる。特に、重合槽内の内壁や攪拌翼、その他攪拌が緩慢な部分に付着することもなく、高い転化率で工業的に有利に連続製造できる。
【0062】
そして、上記のように製造したビニル・シス−ポリブタジエンゴムが優れた所望特性を発現するには、ビニル・シス−ポリブタジエンゴム中に分散した1,2−ポリブタジエン結晶繊維は、シス−ポリブタジエンゴムのマトリックス中に微細な結晶として単分散化した形態で部分的に分散し、凝集構造を有する大きな1,2−ポリブタジエン結晶繊維と共存していることが好ましい。即ち、シス−ポリブタジエンゴムのマトリックス中の単分散化1,2−ポリブタジエン結晶繊維は、平均の単分散繊維結晶の短軸長が0.2μm以下であり、また、アスペクト比が10以下であり、且つ平均の単分散繊維結晶数が10以上の短繊維状であり、且つ、融点が170℃以上であることが好ましい。また、上記融点が170℃以上の1,2−ポリブタジエン結晶繊維に加えて、上記不飽和高分子物質がシス−ポリブタジエンゴムのマトリックス中に分散していることが好ましい。この不飽和高分子物質は、シス−ポリブタジエンゴムのマトリックス中に、1,2−ポリブタジエン結晶繊維と高い親和性を持し、該結晶繊維近傍に物理的、化学的に吸着した状態で分散されていることが好ましい。上記のように、融点が170℃以上の1,2−ポリブタジエン結晶繊維と不飽和高分子物質とが共存してシス−ポリブタジエンゴムのマトリックス中に分散されることによって、上記の諸物性が優れたものとなり、好ましい。
【0063】
本発明のゴム組成物の(C)成分は、(c−1)加硫可能なエラストマ−からなるマトリックス中に、熱可塑性ポリアミドが微細繊維状に分散しており、該熱可塑性ポリアミドがマトリックスと結合している繊維強化ゴム、(c−2)天然ゴム及び/又はジエン系合成ゴム及び(c−3)カーボンブラックを配合してなる繊維強化ゴム組成物である。(c−1)成分のマトリックスを形成する加硫可能なエラストマーとしては、天然ゴム、ポリイソプレン、ポリブタジエン、スチレン−ブタジエンゴム、ブチルゴム、塩素化ブチルゴム、臭素化ブチルゴム、アクリロニトリル−ブタジエンゴム等を挙げることができる。これらの中でも天然ゴムが好ましい。又、これらのゴムをエポキシ変性したものや、シラン変性、或いはマレイン化したものも用いられる。
【0064】
上記のマトリックスには、ポリオレフィンを含有してもよい。ポリオレフィンは、80〜250℃の融点を有することがこのましく、又、50℃以上のビカット軟化点、特に50〜200℃のビカット軟化点をもつものも好ましい。
【0065】
このようなポリオレフィンとしては、炭素数2〜8のオレフィンの単独重合体や共重合体、及び、炭素数2〜8のオレフィンと、スチレン、クロロスチレン、α−メチルスチレン等の芳香族ビニル化合物との共重合体、炭素数2〜8のオレフィンと、酢酸ビニル、アクリル酸或いはそのエステル、メタアクリル酸或いはそのエステルとの共重合体、炭素数2〜8のオレフィンと、ビニルシラン化合物などとの共重合体が挙げられる。
【0066】
具体的には、例えば、高密度ポリエチレン、低密度ポリエチレン、ポリプロピレン、エチレン・プロピレンのブロックまたはランダム共重合体、線状低密度ポリエチレン、ポリ4−メチルペンテン−1、ポリブテン−1、ポリヘキセン−1などのポリオレフィン、エチレンと酢酸ビニル共重合体、アクリル酸、アクリル酸メチルなどとの共重合体、エチレンとビニルトリメトキシシラン、ビニルトリエトキシシランなどとの共重合体、エチレンあるいはプロピレンとスチレン共重合体等がある。又、塩素化ポリエチレンなどのハロゲン化ポリオレフィンも好ましく用いられる。これらのポリオレフィンは1種のみ用いてもよく、2種以上を組合せてもよい。
【0067】
上記のマトリックス中に微細繊維状に分散しマトリックスと結合している該熱可塑性ポリアミドとしては、主鎖中にアミド基を有する熱可塑性ポリマーである。シランカップリング剤で変性されたものが好ましい。
【0068】
主鎖にアミド基を有する熱可塑性ポリマーとしては、熱可塑性ポリアミド及び尿素樹脂が挙げられる。融点が135℃〜350℃のものが好ましく、150℃〜300℃が特に好ましい。
【0069】
熱可塑性ポリアミドとしては、ナイロン6、ナイロン66、ナイロン6−ナイロン66共重合体、ナイロン610、ナイロン612、ナイロン46、ナイロン11、ナイロン12、ナイロンMXD6、キシリレンジアミンとアジピン酸、ピメリン酸、スペリン酸、アゼライン酸、セバシン酸などとの重縮合体、テトラメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、トリメチルヘキサメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミンなどとテレフタル酸の重縮合体、テトラメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、トリメチルヘキサメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミンなどとイソフタル酸の重縮合体等が挙げられる。
【0070】
これらの熱可塑性ポリアミドの内、最も好ましいものとしては融点160〜265℃の熱可塑性ポリアミドが挙げられ、具体的にはナイロン6、ナイロン66、ナイロン6−ナイロン66共重合体、ナイロン610、ナイロン612、ナイロン46、ナイロン11、及びナイロン12等が挙げられる。
【0071】
(c−1)のマトリックスが加硫可能なエラストマ−とポリオレフィンから形成する場合は、加硫可能なエラストマ−中にポリオレフィンが島状に分散した構造を採っていてもよく、又、その逆にポリオレフィン中に加硫可能なエラストマ−が島状に分散した構造を採っていてもよい。各成分はその界面で互いに結合していることが好ましい。
【0072】
主鎖にアミド基を有する熱可塑性ポリマーは、その殆どが微細な繊維として上記マトリックス中に分散している。具体的には、その70重量%、好ましくは80重量%、特に好ましくは90重量%以上が微細な繊維として分散している。該繊維は、平均繊維径が1μm以下であることが好ましい。
【0073】
上記の(c−1)繊維強化ゴムは、例えば、特開平8−3368号公報に記載の工程により製造できる。即ち、工程1:マトリックスを調製する工程、工程2:主鎖にアミド基を有する熱可塑性ポリマーを結合剤と反応させる工程、工程3:上記マトリックスと、結合剤と反応させた熱可塑性ポリマーとを溶融、混練する工程、工程4:得られた混練物を、熱可塑性ポリマーの融点以上の温度で押出し、次いで熱可塑性ポリマーの融点より低い温度で延伸及び/又は圧延する工程により製造できる。溶融、混練は、樹脂やゴムの混練に通常用いられている装置で行うことができる。例えば、バンバリー型ミキサー、ニーダー、ニーダーエキストルーダー、オープンロール、一軸混練機、二軸混練機等が挙げられる。
【0074】
結合剤としては、シランカップリング剤、チタネートカップリング剤、ノボラック型アルキルフェノールホルムアルデヒド初期縮合物、レゾール型アルキルフェノールホルムアルデヒド初期縮合物、ノボラック型フェノールホルムアルデヒド初期縮合物、レゾール型フェノールホルムアルデヒド初期縮合物、不飽和カルボン酸及びその誘導体、有機過酸化物等、高分子のカップリング剤として通常用いられているものを用いることができる。これら中で、(シランカップリング剤が好ましい。シランカップリング剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン等のビニルアルコキシシラン、ビニルトリアセチルシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−〔N−(β−メタクリロキシエチル)−N,N−ジメチルアンモニウム(クロライド)〕プロピルメトキシシラン、並びにスチリルジアミノシラン等、ビニル基、アルキロキシ基等他から水素原子を奪って脱離し易い基及び/又は極性基を有するシランカップリング剤が好ましく用いられる。結合剤としてシランカップリング剤を用いる際は、有機過酸化物を併用することができる。
【0075】
熱可塑性ポリマー成分は、予め結合剤と溶融混練して反応させてから上記マトリックスと溶融混練してもよいし、結合剤の存在下で上記マトリックスと溶融混練してもよい。
【0076】
熱可塑性ポリマー成分に対する結合剤の場合は、熱可塑性ポリマー成分と結合剤の合計量を100重量%としたとき、0.1〜5.5重量%の範囲が好ましい。
【0077】
この工程において、マトリックスと熱可塑性ポリマー成分とを溶融、混練する温度は、熱可塑性ポリマー成分の融点以上が好ましい。融点よりも低い温度で溶融、混練を行っても、混練物は、マトリックス中に熱可塑性ポリマー成分の微細な粒子が分散した構造にはならない。又、混練温度は、ポリオレフィンの融点又はビカット軟化点以上の温度であることが好ましい。
【0078】
上記工程で得られた混練物を、紡糸口金或いはインフレーションダイ又はTダイから押出し、次いでこれを延伸又は圧延する。この工程においては、紡糸又は押出によって、混練物中の熱可塑性ポリマー成分の微粒子が繊維に変形する。この繊維は、それに引続く延伸又は圧延によって延伸処理され、より強固な繊維となる。従って、紡糸及び押出は、熱可塑性ポリマー成分の融点以上の温度で実施し、延伸及び圧延は熱可塑性ポリマー成分の融点よりも低い温度で実施することが好ましい。
【0079】
紡糸又は押出、及びこれに引続く延伸或いは圧延は、例えば、混練物を紡糸口金から押出して紐状乃至糸状に紡糸し、ドラフトを掛けつつボビン等に巻取る等の方法で実施できる。ここでドラフトを掛けるとは、紡糸速度よりも巻取速度を高くとることをいう。巻取速度/紡糸速度の比(ドラフト比)は1.5〜100の範囲とすることが好ましい。
【0080】
この工程は、この他、紡糸した混練物を圧延ロール等で連続的に圧延することによっても実施できる。更に、混練物をインフレーション用ダイやTダイから押出し、ドラフトを掛けつつロール等に巻取ることによっても実施できる。又、ドラフトを掛けつつロールに巻取る代わりに圧延ロール等で圧延してもよい。
【0081】
延伸或いは圧延後の上記(c−1)繊維強化ゴムは、ペレットとすることが好ましい。ペレットとすることによって、下記の(c−2)天然ゴム、ジエン系ゴム、及び(c−3)カーボンブラック等と、均一に混練しやすくなる。
【0082】
本発明の(C)成分の繊維強化ゴム組成物には、上記の(c−1)繊維強化ゴムと共に、(c−2)天然ゴム及び/又はジエン系ゴム、並びに(c−3)カーボンブラックを配合してなるものが好ましい。
【0083】
前記の(c−2)ジエン系ゴムとしては、高シス−1,4−ポリブタジエン、低シス−1,4−ポリブタジエン、イソプレンゴム、スチレン−ブタジエン共重合体ゴム、イソプレン−イソブチレン共重合体等が挙げられる。(c−3)カーボンブラックとしては、粒子径90μm以下、ジブチルフタレート(DBP)吸油量70ml/100g以上のものが好適に使用される。例えばHAF、FF、FEF、GPF、SAF、ISAF、SRF等の各種カーボンブラックが使用される。
【0084】
前記熱可塑性ポリマーの量が前記下限より少ないと、MLが小さく加硫物の弾性率及び屈曲回数の大きいゴム組成物が得られず、熱可塑性ポリマーの量が前記上限より多いと、組成物のMLが大きくなり、加工が難しくなる。天然ゴム又はポリイソプレンの配合割合が前記範囲外であると加硫物の屈曲回数が小さくなる傾向にある。カーボンブラックの量が前記下限より少ないと加硫物のピコ摩耗指数が小さくなり、カーボンブラックの量が前記上限より多いと組成物のMLが大きくなる。
【0085】
本発明の上記の(C)繊維強化ゴム組成物は、前記各成分をバンバリーミキサー、ニーダー、オープンロール、二軸混練機等の混練機を用い、混合することで得られる。混練温度は、当該繊維強化熱可塑性組成物中の微細な短繊維を構成する熱可塑性ポリマーの融点よりは低いことが好ましい。熱可塑性ポリマーの融点より高い温度で混練すると、繊維強化熱可塑性組成物中の微細な短繊維が溶けて球状の粒子等に変形する場合がある。
【0086】
(C)繊維強化ゴム組成物はペレット状のものが好ましい。ペレット状の繊維強化ゴム組成物は(A)成分及び(B)の成分と均一に混練でき、微細な繊維が均一に分散した組成物が得られやすい。
【0087】
本発明の各成分の配合割合は、(A)天然ゴム及び/又はジエン系合成ゴム成分10〜80重量%、好ましくは、10〜60重量%、特に好ましくは10〜30重量%(B)補強ポリブタジエンゴム成分5〜60重量%、好ましくは、5〜50重量%、特に好ましくは10〜50重量%、並びに(C)繊維強化ゴム成分5〜70重量%、好ましくは20〜70重量%である。
【0088】
本発明のゴム組成物は、以下の工程で製造することが好ましい。すなわち、加硫可能なエラストマ−、ポリオレフィン及び主鎖にアミド基を有する熱可塑性ポリマーを混練し、ポリオレフィンの連続相に加硫可能なエラストマ−が分散しているマトリックスに主鎖にアミド基を有する熱可塑性ポリマーが微細繊維状に分散しているペレットを調整する第1工程、さらに、加硫可能なエラストマ−を添加して混練し、加硫可能なエラストマ−の連続相にポリオレフィンが分散しているマトリックスの相構造が転移したマスターバッチを調整する第2工程、さらに、補強ポリブタジエンゴム成分を添加して混練する第3工程ことからなる工程で製造することが好ましい。
【0089】
本発明のゴム用組成物には加硫剤等の添加剤が配合される。加硫剤としては公知の加硫剤、例えばイオウ、有機過酸化剤、含イオウ化合物等を使用することができる。加硫剤をゴム組成物に配合する方法については特に制限はなく、それ自体公知の配合方法を採用することができる。加硫剤とともに、ホワイトカーボン、活性化炭酸カルシウム、超微粉けい酸マグネシウム、ハイスチレン樹脂、クマロンインデン樹脂、フェノール樹脂、リグニン、変性メラミン樹脂、石油樹脂等の補強剤、各種グレードの炭酸カルシウム、塩基性炭酸マグネシウム、クレー、亜鉛華、けいそう土、再生ゴム、粉末ゴム、エボナイト粉末等の充填剤、アルデヒド、アンモニア類、アルデヒド・アミン類、グアニジン類、チオウレア類、チアゾール類、チウラム類、ジチオカーバメート類、キサンテート類等の加硫促進剤、金属酸化物、脂肪酸等の加硫促進助剤、アミン・アルデヒド類、アミン・ケトン類、アミン類、フェノール類、イミダゾール類、含イオウ系或いは含リン系老化防止剤、ナフテン系、アロマティック系、パラフィン系のプロセス油等を、この発明の効果を損なわない範囲で配合して組成物を調製することができる。特に、この発明の組成物には、ゴム100重量部に対して1〜30重量部のプロセス油を配合するのが好ましい。
【0090】
本発明のゴム組成物の加硫温度は100〜190℃程度が好ましい。但し加硫温度は、ゴム組成物中の微細な繊維を構成する熱可塑性ポリマーの融点よりも低い温度である必要がある。この熱可塑性樹脂の融点以上の温度で加硫を行うと、繊維強化熱可塑性ゴム組成物の調製時に形成された繊維が溶けてしまい、加工性に優れ、加硫物の引張弾性率の大きいゴム組成物が得られない場合がある。
【0091】
この発明の組成物は、加硫物のM10が30kg/cm2以上、好ましくは100〜30kg/cm2、あるいは、3Mpa以上、好ましくは10〜3Mpa、硬度が85以上、好ましくは150〜85、圧縮永久歪(CS)が70%以下など、低伸長時での弾性率が大きく、タイヤなどが優れている特性を有している。
【0092】
産業用タイヤ、乗用車、バス、トラック、飛行機等のタイヤ部材、特にビードフィラーやチェーファーゴム、電線保護カバー、側溝ゴムジョイント、ゴムシート、防振ゴム、コンベアーベルトなどに用いることができる。
【0093】
(1)1,2ポリブタジエン結晶繊維含有量;2gのビニル・シスポリブタジエンゴムを200mlのn−ヘキサンにて4時間ソックスレー抽出器によって沸騰抽出した抽出残部を重量部で示した。
(2)1,2ポリブタジエン結晶繊維の融点;沸騰n−ヘキサン抽出残部を示差走査熱量計(DSC)による吸熱曲線のピーク温度により決定した。
(3)結晶繊維形態;ビニル・シスポリブタジエンゴムを一塩化硫黄と二硫化炭素で加硫し、加硫物を超薄切片で切り出して四塩化オスミウム蒸気でビニル・シスポリブタジエンのゴム分の二重結合を染色して、透過型電子顕微鏡で観察して求めた。
(4)ビニル・シスポリブタジエンゴム中のゴム分のミクロ構造;赤外吸収スペクトル分析によって行った。シス740cm-1、トランス967cm-1、ビニル910cm-1の吸収強度比からミクロ構造を算出した。
(5)ビニル・シスポリブタジエンゴム中のゴム分のトルエン溶液粘度;25℃における5重量%トルエン溶液の粘度を測定してセンチポイズ(cp)で示した。
(6)ビニル・シスポリブタジエンゴム中のゴム分の[η];沸騰n−ヘキサン可溶分を乾燥採取し、トルエン溶液にて30℃の温度で測定した。
(7)ムーニー粘度;JIS K6300に準じて100℃にて測定した値である。
(8)ダイ・スウェル;加工性測定装置(モンサント社、MPT)を用いて配合物の押出加工性の目安として100℃、100sec−1のせん断速度で押出時の配合物の径とダイオリフィス径(但し、L/D=1.5mm/1.5mm)の比を測定して求めた。
(9)グリーンモジュラス;未加硫ゴムを3号ダンベルに打ち抜いて試験片とし、室温、200mm/minの引張速度で測定した。
(10)引張弾性率;JIS K6301に従い、引張弾性率M300を測定した。
(11)金属との接着強さ;ASTM D2229に準じて測定した。
【実施例】
【0094】
(B成分)
窒素ガスで置換した内容30Lの攪拌機付ステンレス製反応槽中に、脱水シクロヘキサン18kgに1.3−ブタジエン1.6kgを溶解した溶液を入れ、コバルトオクトエート4mmol、ジエチルアルミニウムクロライド84mmol及び1,5−シクロオクタジエン70mmolを混入、25℃で30分間攪拌し、シス重合を行った。得られたポリマーのMLは33、T-cpは59、ミクロ構造は1,2構造0.9%、トランス−1,4構造0.9%、シス1,4構造98.2%であった。シス重合後、得られた重合生成液に、ポリイソプレン(IR)(ML=87、シス−1,4構造98%)からなる不飽和高分子物質を5質量%(得られるビニル・シスポリブタジエンゴムに対する百分率)加え、25℃で1時間攪拌を行った。その後直ちに重合液にトリエチルアルミニウム90mmol及びニ硫化炭素50mmolを加え、25℃で更に60分間攪拌し、1,2重合を行った。重合終了後、重合生成液を4,6−ビス(オクチルチオメチル)−o−クレゾール1質量%を含むメタノール18Lに加えて、ゴム状重合体を析出沈殿させ、このゴム状重合体を分離し、メタノールで洗浄した後、常温で真空乾燥した。この様にして得られたビニル・シスポリブタジエンゴムの収率は80%であった。
【0095】
(C成分)繊維強化ゴム成分の調製ポリエチレン(宇部興産株式会社製、F522)、天然ゴム(NR、SMR−L)、ナイロン6(宇部興産株式会社製、宇部ナイロン1030B、融点215〜220℃、分子量30,000)を用いた。ポリエチレンは、100重量部に対し、0.5重量部のγ−メタクリロキシプロピルトリメトキシシラン、及び0.1重量部の4,4−ジ−t−ブチルパーオキシバレリン酸n−ブチルエーテルと溶融混練して変性した。ナイロン6は、100重量部に対し、1.0重量部のN−β(アミノエチル)γ−アミノプロピルトリメトキシシランと溶融混練して変性した。
【0096】
先ず、上記のようにして変性したポリエチレン100重量部を、天然ゴム100重量部とバンバリー型ミキサーで混練しマトリックスを調製した。これを170℃でダンプ後ペレット化した。次いで、このマトリックスとナイロン6の100重量部を、240℃に加温した二軸混練機で混練し、混練物をペレット化した。得られた混練物を245℃にセットした一軸押出機で紐状に押出し、ドラフト比10で引取りつつペレタイザーでペレット化した。得られたペレットをo−ジクロルベンゼンとキシレンの混合溶媒中で還流して、ポリオレフィン及びNRを除去し、残った繊維の形状や直径を電子顕微鏡で観察したところ、平均繊維径0.2μmの繊維で有ることが確認できた。得られたペレット50重量部、油展S−SBR(日本ゼオン製)150重量部、ISAF カーボン 50重量部の割合で配合して(C)成分を調製した。

【特許請求の範囲】
【請求項1】
(A)天然ゴム及び/又はジエン系合成ゴム成分10〜80重量%、(B)補強ポリブタジエンゴム成分5〜60重量%、並びに(C)繊維強化ゴム成分5〜70重量%からなるゴム組成物であって、該(B)成分及び(C)成分が下記の特徴を有するゴム組成物。
(B)成分:(1)平均の単分散繊維結晶の短軸長が0.2μm以下、アスペクト比が10以下であり、且つ平均の単分散繊維結晶数が10以上の短繊維状であり、かつ、融点が170℃以上であるシンジオタクチック−1,2−ポリブタジエン結晶樹脂(以下、SPB樹脂と略)1〜50重量部、および、(2)ゴム分100重量部からなる(a)ビニル・シス−ポリブタジエンゴム。
(C)成分:(c−1)加硫可能なエラストマ−からなるマトリックス中に、主鎖にアミド基を有する熱可塑性ポリマーが微細繊維状に分散しており、該熱可塑性ポリマーがマトリックスと結合している繊維強化ゴム。
【請求項2】
該(a)ビニル・シスポリブタジエンゴムが、ポリイソプレン、融点150℃以下の結晶性ポリブタジエン、液状ポリブタジエン、及びそれらの誘導体から選ばれた少なくとも1種からなる、繰り返し単位当り少なくとも1個の不飽和二重結合を有する高分子物質を含有することを特徴とする請求項1に記載のゴム組成物。
【請求項3】
該(a)ビニル・シスポリブタジエンゴムが、1,3−ブタジエンを炭化水素系溶媒中にて、シス−1,4重合触媒を用いてシス−1,4重合させ、次いで、得られた重合反応混合物中に1,2重合触媒を共存させて、1,3−ブタジエンを1,2重合させて、融点が170℃以上の1,2−ポリブタジエンを生成せしめ、しかる後、得られた重合反応混合物より生成したビニル・シス−ポリブタジエンゴムを分離回収して取得するビニル・シス−ポリブタジエンゴムの製造方法であって、繰り返し単位当たり少なくとも1個の不飽和二重結合を有する高分子物質を、ビニル・シス−ポリブタジエンゴムの製造系内に添加する工程を含むことを特徴とした製造方法で製造されていることを特徴とする請求項1〜2に記載のゴム組成物。
【請求項4】
該(a)ビニル・シスポリブタジエンゴムの製造方法において、前記不飽和高分子物質を1,2−ポリブタジエンの結晶繊維とシス−ポリブタジエンゴムの合計に対して0.01〜50質量%の範囲で含まれていることを特徴とする請求項1〜3に記載のゴム組成物。
【請求項5】
該ビニル・シスポリブタジエンゴム(a)中の1,2−ポリブタジエンの短い繊維が、前記高分子物質の粒子に含有されずに前記マトリックス成分であるシス−ポリブタジエンゴム中にも分散しており、該マトリックス中に分散している短い結晶繊維の長軸長が0.2〜1,000μmの範囲であり、かつ、該高分子物質の粒子中に分散している前記1,2−ポリブタジエンの短い結晶繊維の長軸長が0.01〜0.5μmの範囲であることを特徴とする請求項1〜4に記載のゴム組成物。

【公開番号】特開2006−249298(P2006−249298A)
【公開日】平成18年9月21日(2006.9.21)
【国際特許分類】
【出願番号】特願2005−68891(P2005−68891)
【出願日】平成17年3月11日(2005.3.11)
【出願人】(000000206)宇部興産株式会社 (2,022)
【Fターム(参考)】