説明

スタニオカルシン1(STC1)mRNAの測定方法

【課題】スタニオカルシン1(STC1) mRNAを一定温度かつ1段階で、簡便、迅速、高感度に測定する方法を提供する。
【解決手段】少なくとも一方の5’末端にプロモーター配列を有する第一のプライマー、第二のプライマー、および逆転写酵素により、プロモーター配列を含む2本鎖DNAを生成し、該2本鎖DNAを鋳型としてRNAポリメラーゼによりRNA転写産物を生成し、該RNA転写産物が引き続き前記逆転写酵素によるDNA合成の鋳型となって前記2本鎖DNAを生成する工程からなるRNA増幅工程において増幅されたRNA産物量をインターカレーター性蛍光色素標識核酸プローブにて測定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、簡便、一定温度、一段階で、迅速にスタニオカルシン1 mRNAを測定する方法に関する。本発明は、医学、特に臨床診断の分野に属し、白血病や癌の早期診断、微小残存病変診断、治療のモニタリング、予後判定、治療方針決定の指標に有用である。
【背景技術】
【0002】
スタニオカルシン(以後、STC)は、魚類の腎臓に付着する魚類特有の器官スタニウス小体から分泌され、エラに作用して血中カルシウムレベルを調節するホルモンとして同定された糖タンパク質である。近年、サカナSTCと相同性の高いヒトSTC cDNAがクローニングされた(非特許文献1および2参照)。該ヒトSTCは、後にクローニングされたSTC2と区別するためSTC1と命名された。STC1は、カルシウム調節機能を担い、カルシウムの制御を通して細胞分化・増殖に関与すると推定されている。現在、STC1と様々な疾病との関連が推定されている。例えば、(1)ハンチントン病やワーナー症候群などの遺伝病に関与する可能性が示唆されている(非特許文献3参照)。(2)骨形成に関与することが示唆されている(非特許文献4参照)。(3)STC1 メッセンジャーRNA(mRNA)は脳梗塞で亢進がみられ、虚血、低酸素状態での神経細胞の保護に関与することが示唆されている(特許文献1、非特許文献5参照)。(4)動脈硬化症と関連する可能性が示唆されている(非特許文献6参照)。以上に関連する疾病の診断、経過観察のために、STC1 mRNA発現レベルの測定が有効であると期待されるが、特に、近年、慢性白血病、乳癌、その他の癌においてSTC1 mRNA発現レベルの上昇が示され、白血病やその他の癌の早期診断、転移診断および微小残存病変診断のマーカーとしてSTC1 mRNA測定が有効であることが示唆された(特許文献2、非特許文献7および8参照)。以上に例示の疾病の診断に適用するために、STC1 mRNAの簡便、迅速、高感度、かつ高精度な測定法が望まれてきた。
【0003】
STC1 mRNAを高感度に測定する手段としてSTC1 mRNAをRT−PCRで増幅し、増幅産物量を測定する方法があげられるが、この場合、一般的には逆転写(RT)工程およびPCR工程の二段階の工程が必要で、このことは操作を煩雑にして再現性を悪化させる要因となるだけでなく、二次汚染の危険性をも増加させることになる。また、前記RT工程およびPCR工程を合わせると通例2時間以上の時間を要し、多数検体処理や検査コストの低減には不向きであった。また、RT−PCRではDNAも増幅してしまうため、mRNAのみを増幅する場合は核酸抽出工程においてDNase処理などにより染色体DNAを完全に除去する必要があり、核酸抽出操作の煩雑化をまねいた。さらに、PCRは急激に反応温度を昇降させる必要があり、自動化の際の反応装置の省力化や低コスト化のための障壁となっていた。
【0004】
標的RNAの定量法としては、PCR工程をインターカレーター性蛍光色素存在下で実施して蛍光増加を測定するKinetic RT−PCR法が汎用されているが、該方法ではプライマーダイマーなどの非特異増幅産物も検出してしまうという問題があった。
【0005】
一方、一定温度でRNAのみを増幅する方法としては、NASBA法(特許文献3および4参照)、およびTMA法(特許文献5参照)などが報告されている。該RNA増幅方法は、標的となるRNAに対してプロモーター配列を含むプライマー、逆転写酵素および必要に応じてリボヌクレアーゼH(RNaseH)により、プロモーター配列を含む2本鎖DNAを合成し、RNAポリメラーゼによって標的となるRNAの特定塩基配列を含むRNAを合成し、該RNAが引き続きプロモーター配列を含む2本鎖DNA合成の鋳型となる連鎖反応を行うものである。そして、RNA増幅後、電気泳動または検出可能な標識を結合させた核酸プローブを用いたハイブリダイゼイション法などにより増幅されたRNAを検出する。
【0006】
以上のように前記RNA増幅方法は一定温度、一段階でRNAのみを増幅することから簡便なmRNA測定に適しているが、ハイブリダイゼイション法などによる検出は煩雑な操作を必要とし、再現性良く定量できないという課題がある。また、NASBA法、TMA法等は反応の開始時に一度反応温度よりも高温にし、標的となるRNAの高次構造を変性させる工程があるため、RNA増幅反応の開始から終了までが完全に一定温度ではない。そのため、反応装置の複雑化を招き、工程が増えるために迅速な検出には課題が残る。 簡便に、反応中は完全に一定温度でmRNAを増幅および測定する方法としては、Ishiguroら(特許文献6および非特許文献9参照)の方法があげられる。該方法は、インターカレーター性蛍光色素で標識された核酸プローブで、かつ標的核酸と相補的2本鎖を形成するとインターカレーター性蛍光色素部分が前記相補的2本鎖部分にインターカレートすることによって蛍光特性が変化するように設計された核酸プローブの存在下、前記RNA増幅方法を実施し、蛍光特性の変化を測定するもので、簡便、一定温度、一段階かつ密閉容器内でRNA増幅および測定を同時に実施することが可能である。しかし特許文献6の方法では完全に一定温度で反応を行なうため、標的となるmRNAが高次構造を形成してオリゴヌクレオチドの結合を阻害すると考えられる。したがってSTC1 mRNAの簡便、迅速な測定を行なうためには、一定温度においても結合効率が低下せず、STC1 mRNAの増幅、検出を行い得るオリゴヌクレオチドの配列が必要であった。
【0007】
【特許文献1】特表2003−531107号公報
【特許文献2】特開2000−2709号公報
【特許文献3】特許第2650159号
【特許文献4】特許第3152927号
【特許文献5】特許第3241717号
【特許文献6】特開2000−14400号公報
【特許文献7】特開平8−211050号公報
【特許文献8】特開2001−13147号公報
【非特許文献1】Chang,A.C−M.et al,(1995)Mol.Cell.Endocrinol.,112,241−247
【非特許文献2】Olsen,H.S.et al,(1996)Proc.Natl.Acad.Sci.USA,93,1792−1796
【非特許文献3】Chang,A.C−M.et al,(1998)Genomics,47,393−398
【非特許文献4】Worthington,R.A.et al,(1999)Electrophoresis,20,2071−2076
【非特許文献5】Zhang,K−Z.et al,(2000)Proc.Natl.Acad.Sci.USA,97,3637−3642
【非特許文献6】Sato,N.et al,(1998)J.Biochem.,123,1119−1126
【非特許文献7】Fujiwara,Y.et al,(2000)Int.J.Oncol.,16,799−804
【非特許文献8】Wascher,R.A.et al,(2003)Clin.Cancer Res.,9,1427−1435
【非特許文献9】Ishiguro,T.et al,(2003)Anal.Biochem.,314,77−86
【非特許文献10】Ishiguro,T.et al,(1996)Nucleic Acids Res.,24,4992−4997
【発明の開示】
【発明が解決しようとする課題】
【0008】
前記スタニオカルシン1 mRNAの測定は、白血病、乳癌およびその他の癌の早期診断、微小残存病変診断、経過観察に有用であるが、RT−PCRを用いた場合は、二段階工程が必要で、操作が煩雑、急激な反応温度の昇降が必要などの課題があり、これらは二次汚染の危険性および再現性不良をまねくとともに簡便測定や自動化への展開の障壁となっていた。本発明は、前記課題を克服し、簡便、迅速、一定温度かつ一段階で前記スタニオカルシン1 mRNAを測定する方法を提供する。
【課題を解決するための手段】
【0009】
本発明者は上記課題を解決するべく鋭意研究を重ねた結果、前記RNA増幅方法を適用し、簡便、迅速、一定温度かつ一段階のスタニオカルシン1 mRNA測定方法を構築した。すなわち、第一のプライマーおよび第二のプライマー(少なくとも一方の5’末端にプロモーター配列を有する)により、プロモーター配列を含む2本鎖DNAを生成し、該2本鎖DNAを鋳型としてRNA転写産物を生成し、該RNA転写産物が引き続き前記DNA合成の鋳型となって前記2本鎖DNAを生成するRNA増幅工程において増幅されたRNA産物量を測定することによって、スタニオカルシン1 mRNAを簡便、一定温度かつ一段階に測定することが可能となった。
【0010】
以下に本発明を詳細に説明する。
【0011】
本発明は、試料中に存在するスタニオカルシン1(STC1) mRNAの測定法であって、該RNAの特定塩基配列の5’末端から下流の少なくとも一部に相同な第一のプライマーおよび前記特定塩基配列の3’末端から上流の少なくとも一部に相補的な第二のプライマー(前記第一および第二のプライマーの少なくとも一方は5’末端にプロモーター配列を有する)により、プロモーター配列と該プロモーター配列下流に前記特定塩基配列を含む2本鎖DNAを生成する工程、該2本鎖DNAを鋳型としてRNA転写産物を生成する工程、該RNA転写産物が引き続き前記DNA合成の鋳型となって前記2本鎖DNAを生成する工程、以上の各工程が同時に進行する条件で前記工程が繰り返される核酸増幅工程、および前記RNA転写産物量を測定する工程からなる。
【0012】
本発明中の試料とは、血液、血清、血漿、組織、その他の体液等の検体より既知の方法によって抽出された核酸である。
【0013】
本発明中の特定塩基配列とはスタニオカルシン1 mRNAの少なくとも一部の配列あるいは該配列の相補配列からなり、第一のプライマーおよび第二のプライマーによって規定される領域の配列を有する。本発明では、前記特定塩基配列に由来するRNA転写産物が増幅される。第一のプライマーにプロモーター配列を付加させる場合、STC1 mRNAはcDNA合成の鋳型となる前に特定核酸配列の5’末端で切断されていることが好ましい。このような切断方法は特に限定するものではないが、STC1 mRNAの特定塩基配列の5’末端に重複して隣接する領域に対して相補的な配列を有するオリゴヌクレオチド(切断用オリゴヌクレオチド)を添加することによって形成されたRNA−DNAハイブリッドのRNA部分をリボヌクレアーゼH(RNaseH)活性を有する酵素等により切断する方法が好ましく、該切断用オリゴヌクレオチドの3’末端−OHは伸長反応を防止するために適当な修飾を施されたもの、例えばアミノ化等されているものを使用することが好ましい。
【0014】
本発明中の標的核酸とは、前記特定塩基配列において、第一および第二のプライマーに相同もしくは相補的でない領域を示し、インターカレーター性蛍光色素標識核酸プローブとの相補的結合が可能である配列を有する。よって、インターカレーター性蛍光色素標識核酸プローブは、本発明中の特定塩基配列の一部と相補的な配列となる。そのため、たとえば本発明の一態様として、特定塩基配列がSTC1 mRNAと相同な配列である場合は、インターカレーター性蛍光色素標識核酸プローブは配列番号3に示された配列の少なくとも連続した15塩基を含む配列を有し、特定塩基配列がSTC1 mRNAと相補な配列である場合は、インターカレーター性蛍光色素標識核酸プローブは配列番号3に示された配列の相補配列の少なくとも連続した15塩基を含む配列を有するという態様があげられる。また、インターカレーター性蛍光色素標識核酸プローブが相補的結合可能な標的核酸は、第一および第二のプライマーに相同もしくは相補的でない領域であるため、インターカレーター性蛍光色素標識核酸プローブが第一および第二のプライマーと相補的結合して蛍光特性が変化することはない。
【0015】
本発明中の第一および第二のプライマーは、少なくとも一方の5’末端にプロモーター配列を有しており、第一のプライマーはSTC1 mRNAの相補配列に対して、第二のプライマーはSTC1 mRNAに対して、それぞれ十分に相補的なオリゴヌクレオチドである。十分に相補的とは、本発明の核酸増幅工程の反応条件(反応温度および塩などの組成)において前記特定塩基配列あるいは該配列の相補配列に対して相補的結合が可能であることをさす。
【0016】
なお、前記第一のプライマーはSTC1 mRNAの相補配列に対して、前記第二のプライマーはSTC1 mRNAに対して、および前記インターカレーター性蛍光色素標識核酸プローブは標的核酸に対して、それぞれ十分に相補的であるために、前記第一のプライマーは配列番号1に示す配列の少なくとも連続した15塩基を含むこと、前記第二のプライマーは配列番号2に示す配列の少なくとも連続した15塩基を含むこと、前記インターカレーター性蛍光色素標識核酸プローブは配列番号3に示す配列あるいは該配列の相補配列の少なくとも連続した15塩基を含むことがそれぞれ好ましく、前記第一のプライマー、第二のプライマーおよびインターカレーター性蛍光色素標識核酸プローブの組み合わせで用いることがさらに好ましい。
【0017】
前記第一のプライマー、前記第二のプライマー、および前記インターカレーター性蛍光色素標識核酸プローブは、それぞれ配列番号1、配列番号2、および配列番号3の範囲内で任意な連続する15塩基以上のオリゴヌクレオチドを設定することが可能である。該オリゴヌクレオチドの長さは特に限定しないが、15〜35塩基が好ましい。またTm値などを考慮して適切に設定する必要はあるが、それぞれ配列番号1、配列番号2、および配列番号3の範囲内であればいかなるオリゴヌクレオチドを設定しても、本発明における機能および効果はいずれも同等である。
【0018】
本発明中のプロモーター配列とはRNAポリメラーゼが結合し転写を開始する配列であり、RNAポリメラーゼの種類に対応する特異配列が既知である。このようなRNAポリメラーゼは特に限定されるものではないが、汎用されているT7ファージRNAポリメラーゼ、T3ファージRNAポリメラーゼ、SP6ファージRNAポリメラーゼなどが好適であり、これらに対応するプロモーター配列が使用可能である。
【0019】
本発明中のSTC1 mRNAの測定方法においては、各酵素(1本鎖RNAを鋳型とするRNA依存DNAポリメラーゼ活性を有する酵素(逆転写酵素)、RNaseH活性を有する酵素、1本鎖DNAを鋳型とするDNA依存DNAポリメラーゼ活性を有する酵素、およびRNAポリメラーゼ活性を有する酵素)が必要である。各酵素は、いくつかの活性を合わせ持つ酵素を使用してもよいし、それぞれの活性を持つ複数の酵素を使用してもよい。また、たとえば、1本鎖RNAを鋳型とするRNA依存DNAポリメラーゼ活性、RNaseH活性、および1本鎖DNAを鋳型とするDNA依存DNAポリメラーゼ活性を合わせ持つ逆転写酵素に、RNAポリメラーゼ活性を有する酵素を添加するだけでなく、必要に応じてRNaseH活性を有する酵素をさらに添加して補足すること等も可能である。前記逆転写酵素には、汎用性からいってAMV逆転写酵素、M−MLV逆転写酵素、およびこれらの誘導体が特に好ましい。
【0020】
前記第一のプライマーおよび第二のプライマー(第一のプライマーあるいは第二のプライマーは5’末端にプロモーター配列を有する)の存在下で逆転写反応を実施すると、第二のプライマーがSTC1 mRNA内の特定塩基配列に結合しRNA依存DNAポリメラーゼ活性を持つ酵素によりcDNA合成が行われる。得られたRNA−DNAハイブリッドはRNaseH活性を有する酵素によってRNA部分が分解され、解離することによって第一のプライマーが前記cDNAに結合する。このとき、例えば染色体DNAのような2本鎖DNAが存在しても前記第一および第二のプライマーは本発明記載の条件で2本鎖DNAに結合できないため、前記2本鎖DNAに対してプロモーター配列の付加は起こらない。
【0021】
引き続いて、DNA依存DNAポリメラーゼ活性を持つ酵素により特定塩基配列由来で5’末端にプロモーター配列を有する2本鎖DNAが生成される。該2本鎖DNAは、プロモーター配列下流に特定塩基配列を含み、RNAポリメラーゼ活性を持つ酵素により特定塩基配列に由来するRNA転写産物を生産する。該RNA転写産物は、前記第一および第二のプライマーによる前記2本鎖DNA合成のための鋳型となって、一連の反応が連鎖的に進行し、前記RNA転写産物が増幅されていく。
【0022】
このような連鎖反応を進行させるために、前記各酵素に必須な既知の要素として、少なくとも、緩衝剤、マグネシウム塩、カリウム塩、ヌクレオシド−三リン酸、リボヌクレオシド−三リン酸を含むことはいうまでもない。また、反応効率を調節するための添加剤として、ジメチルスルホキシド(DMSO)、ジチオスレイトール(DTT)、ウシ血清アルブミン(BSA)、糖などを添加することも可能である。
【0023】
たとえば、AMV逆転写酵素およびT7 RNAポリメラーゼを用いる場合は35℃〜65℃の範囲で反応温度を設定することが好ましく、40℃〜45℃の範囲で設定することが特に好ましい。前記RNA増幅工程は一定温度で進行し、逆転写酵素およびRNAポリメラーゼが活性を示す任意の温度に反応温度を設定することが可能である。
【0024】
増幅されたRNA転写産物量は、既知の核酸測定法により測定することが可能である。このような測定法としては、電気泳動や液体クロマトグラフィーを用いた方法、検出可能な標識(例えば、色素や酵素など)で標識された核酸プローブによるハイブリダイゼイション法などが利用できる。しかし、これらはBF分離が必要で操作が多工程であり、また増幅産物を系外に取り出して分析するため二次汚染の原因となる増幅産物の環境への飛散の危険性が大きい。これらの課題を克服するためには標的核酸と相補結合することによって蛍光特性が変化するように設計された核酸プローブを用いることが好ましい。さらに好適な方法として、インターカレーター性蛍光色素で標識された核酸プローブで、かつ標的核酸と相補的2本鎖を形成するとインターカレーター性蛍光色素部分が前記相補的2本鎖部分にインターカレートすることによって蛍光特性が変化するように設計された核酸プローブの存在下、前記核酸増幅工程を実施し、蛍光特性の変化を測定する方法があげられる(特許文献6および非特許文献9参照)。
【0025】
前記インターカレーター性蛍光色素としては特に限定されないが汎用されているオキサゾールイエロー、チアゾールオレンジ、エチジウムブロマイド、およびこれらの誘導体などが利用できる。前記蛍光特性の変化としては蛍光強度の変化があげられる。たとえばオキサゾールイエローの場合、2本鎖DNAにインターカレートすることによって510nmの蛍光(励起波長490nm)が顕著に増加することが既知である。前記インターカレーター性蛍光色素標識核酸プローブは、前記RNA転写産物に対して十分に相補的なオリゴヌクレオチドで、末端あるいはリン酸ジエステル部あるいは塩基部分に適当なリンカーを介してインターカレーター性蛍光色素が結合され、さらに、3’末端−OHからの伸長を防止する目的で該3’末端−OHが適当な修飾をなされている構造を有する(特許文献7および非特許文献10参照)。
【0026】
オリゴヌクレオチドへのインターカレーター性蛍光色素の標識は、既知の方法でオリゴヌクレオチドに官能基を導入し、インターカレーター性蛍光色素を結合させることが可能である(特許文献8および非特許文献10参照)。また、前記官能基の導入方法としては、汎用されているLabel−ON Reagents(Clontech社製)等を用いることも可能である。
【0027】
本発明の一態様として、試料に、少なくとも、5’末端にT7プロモーター配列を有する第一のプライマー(配列番号1に示す配列の連続した15塩基を含む)、第二のプライマー(配列番号2に示す連続した15塩基を含む)、インターカレーター性蛍光色素標識核酸プローブ(配列番号3に示す配列の連続した15塩基を含む)、切断用オリゴヌクレオチド(配列番号13に示された配列の連続した15塩基を含み、かつ特定塩基配列の5’末端と重複して隣接する領域に対して相補的な配列を有する)、AMV逆転写酵素、T7RNAポリメラーゼ、緩衝剤、マグネシウム塩、カリウム塩、ヌクレオシド−三リン酸、リボヌクレオシド−三リン酸、ジメチルスルホキシド(DMSO)を含む増幅試薬を添加し、反応温度35〜65℃(好ましくは40〜45℃)の一定温度で反応させると同時に反応液の蛍光強度を経時的に測定する方法を提供する。
【0028】
前記態様において、蛍光強度の増幅曲線は、初期RNA量の対数値に比例した時間のずれを示すことから、既知濃度の標準RNAを用いて前記時間を指標とした検量線を作成することによって未知試料の初期RNA量を定量することも可能である。さらに、蛍光強度を経時的に測定することから有意な蛍光増加が認められた任意の時間で測定を終了することが可能であり、核酸増幅および測定を通例1時間以内、最適な系では30分以内に測定結果を得ることが可能である。
【0029】
また、前記測定試薬に含まれる全ての試料を単一の容器に封入可能な点は特筆すべきである。即ち、一定量の試料をかかる単一容器に分注するという操作さえ実施すれば、その後は自動的にSTC1 mRNAを増幅し検出することができる。この容器は、例えば蛍光色素が発する信号を外部から測定可能なように、少なくともその一部分が透明な材料で構成されてさえいれば良く、試料を分注した後に密閉することが可能なものはコンタミネーションの防止のうえで特に好ましい。
【0030】
前記態様のRNA増幅・測定方法は、一段階、一定温度で実施可能であるため、RT−PCRに比べて簡便で自動化に適した方法であるといえる。しかし、一方でRT−PCRのような熱変性およびアニールを実施せず、35〜65℃という比較的低温の一定温度で反応させるため、プライマーダイマーなどの非特異増幅産物や標的RNAの高次構造の影響を受けやすく、測定系を構築するにはRT−PCRの場合に比べてきわめて綿密な設計が必要であり、前記RNA増幅・測定方法を用いた迅速、簡便、一定温度かつ一段階のSTC1 mRNA測定は未だに実現されていなかった。本発明によりSTC1 mRNAの高特異性、高感度、迅速、簡便、一定温度かつ一段階の測定が初めて可能となった。
【0031】
本発明は、白血病、乳癌およびその他の癌の早期診断、化学療法等の治療効果モニタリング、微小残存病変診断、予後予測および治療方針決定のための指標として適用することが可能である。また、ワーナー症候群などの遺伝病、骨代謝異常、脳梗塞などのSTC1が関連する疾病においても、研究、診断、治療経過観察などの目的で適用可能であることはいうまでもない。
【発明の効果】
【0032】
本発明により、STC1 mRNAを一定温度かつ一段階で、簡便、迅速、高感度に測定することが可能となった。したがって、本発明は、白血病、乳癌、その他の癌の早期診断、化学療法などの治療効果モニタリング、微小残存病変診断、予後の予測などに適用可能であり、治療方針の決定の指標としても有用である。本発明は、一段階かつ密閉容器内で実施することが可能であるため、二次汚染の原因となる増幅産物による環境の汚染の危険性を最小限にすることが可能である。また、一段階、簡便かつ迅速であることから、用手法の場合でも多数の検体処理が可能であり、再現性を悪化させる要因である煩雑操作を最小限にすることができる。さらに、本発明のRNA増幅法はRNAのみを増幅することから、RT−PCRのように2本鎖DNAを完全に除去する工程なしに、厳密にmRNAを増幅、測定することが可能である。すなわち、本発明の方法は高感度かつ迅速な発現解析に最適である。また、反応の開始から終了まで完全に一定温度かつ一段階で実施できることから、PCRのようなサーマルサイクリング機構を設ける必要がなく、自動化が容易である。
【実施例】
【0033】
以下、本発明を実施例により詳細に説明するが、本発明はこれら実施例により限定されるものではない。
【0034】
実施例1
STC1 RNAは、SP6ファージRNAポリメラーゼ・プロモーター下流にSTC1 cDNA(塩基番号242〜1028を含む、塩基番号はNational Center Biotechnology Information accession No.BC029244に従った)を有する2本鎖DNAを鋳型としてインビトロ転写を実施し、引き続いてDNaseI処理により前記2本鎖DNAを完全消化した後RNAを精製して調製した。該RNAは260nmにおける吸光度を測定して定量した。
【0035】
以下の実施例では該RNAを測定対象としているが、本発明の測定対象であるSTC1 mRNAの測定に十分適用可能であることはいうまでもない。
【0036】
実施例2
インターカレーター性蛍光色素で標識されたオリゴヌクレオチドプローブを作製した。配列番号10および11に記載の配列の5’末端から13番目の塩基(配列番号10においてはC、配列番号11においてはT)の位置にLabel−ON Reagents(Clontech社製)を用いてアミノ基を導入し、さらに3’末端をビオチンで修飾した。前記アミノ基に非特許文献10に記載の方法でオキサゾールイエローを結合させた(図1B)。さらに、非特許文献10に記載の方法で、配列番号11に記載の配列の5’末端から10番目のCと11番目のAの間のリン酸ジエステル部分にリンカーを介してオキサゾールイエローを結合させたオキサゾールイエロー標識核酸プローブを調製した(図1A)。
【0037】
実施例3
本願発明の方法を用いて、種々の初期コピー数のSTC1 RNAの検出を行った。
【0038】
(1)前記STC1 RNA(塩基番号242〜1028を含む)をRNA希釈液(10mM Tris・HCl (pH8.0)、1mM EDTA、0.25U/μl リボヌクレアーゼ・インヒビター、5mM DTT)を用いて、50、100、1000コピー/5μlとなるようそれぞれ希釈し、RNA試料として用いた。陰性標準(0コピー)はRNA希釈液を用いた。
【0039】
(2)以下の組成の反応液20μlを0.5ml容量PCR用チューブ(Gene Amp Thin−Walled Reaction Tubes、パーキンエルマー製)に分注し、これに前記RNA試料5μlを添加した。
反応液の組成:濃度は酵素液添加後(30μl中)の最終濃度
60mM Tris・HCl (pH8.6)
17mM 塩化マグネシウム
100mM 塩化カリウム
1mM DTT
各0.25mM dATP、dCTP、dGTP、dTTP
各3mM ATP、CTP、UTP
2.25mM GTP
3.6mM ITP
1μMの第一のプライマー(配列番号5):第一のプライマーは、配列番号記載の塩基配列の5’末端にT7RNAポリメラーゼ・プロモーター配列(配列番号17)が付加されてなる
1μM 第二のプライマー(配列番号8)
25nM インターカレーター性蛍光色素標識核酸プローブ(配列番号11):該核酸プローブは実施例2においてLabel−ON Reagentsを用いて調製したもの
0.16μM 切断用オリゴヌクレオチド(配列番号15):該オリゴヌクレオチドの3’末端−OHはアミノ基で修飾
6U/30μl リボヌクレアーゼ・インヒビター(タカラバイオ社製)
13% DMSO
(3)上記の反応液を、43℃で5分間保温後、以下の組成で、予め43℃で2分間保温した酵素液5μlを添加した。
酵素液の組成:反応時(30μl中)の最終濃度
2% ソルビトール
8U/30μl AMV逆転写酵素 (タカラバイオ社製)
142U/30μl T7 RNAポリメラーゼ (GIBCO社製)
3.6μg/30μl 牛血清アルブミン
(4)引き続きPCRチューブを直接測定可能な温調機能付き蛍光分光光度計を用い、43℃で反応させると同時に反応溶液の蛍光強度(励起波長470nm、蛍光波長520nm)を経時的に測定した。酵素添加時を0分として、反応液の蛍光強度比(所定時間の蛍光強度値÷バックグランドの蛍光強度値)の経時変化を図2に示した。なお、バックグラウンドの蛍光強度値は各サンプルの測定開始時から90、120、150秒後の蛍光強度値の平均値とした。図2の結果では、STC1 RNAの初期濃度に依存した蛍光プロファイルが得られ、50コピー/テストのSTC1 RNAの場合で約12分から蛍光増加が認められた。以上のことは、本発明の方法によればSTC1 RNAを高感度かつ迅速に定量可能であることを示している。
【0040】
実施例4
本願発明の方法において、種々の組合わせの第一のプライマー、第二のプライマー、インターカレーター性蛍光色素標識核酸プローブ、切断用オリゴヌクレオチドを用いて、STC1 RNAの測定を行った。
【0041】
(1)前記STC1 RNAをRNA希釈液(10mM Tris・HCl (pH8.0)、1mM EDTA、0.25U/μl リボヌクレアーゼ・インヒビター、5.0mM DTT)を用いて10コピー/5μlとなるよう希釈し、RNA試料として用いた。
【0042】
(2)以下の組成の反応液20μlを0.5ml容量PCR用チューブ(Gene Amp Thin−Walled Reaction Tubes、パーキンエルマー製)に分注し、これに前記RNA試料5μlを添加した。
反応液の組成:濃度は酵素液添加後(30μl中)の最終濃度
60mM Tris・HCl (pH8.6)
17mM 塩化マグネシウム
100mM 塩化カリウム
1mM DTT
各0.25mM dATP、dCTP、dGTP、dTTP
各3mM ATP、CTP、UTP
2.25mM GTP
3.6mM ITP
1μM 第一のプライマー(配列番号は表1に記載):第一のプライマーは、配列番号記載の塩基配列の5’末端にT7RNAポリメラーゼ・プロモーター配列(配列番号17)が付加されてなる
1μM 第二のプライマー(配列番号は表1に記載)
25nM インターカレーター性蛍光色素標識核酸プローブ(配列番号は表1に記載):該核酸プローブは実施例2において調製したもの
0.16μM 切断用オリゴヌクレオチド(配列番号は表1に記載):該オリゴヌクレオチドの3’末端−OHはアミノ基で修飾
6U/30μl リボヌクレアーゼ・インヒビター(タカラバイオ社製)
13% DMSO。
【0043】
(3)上記の反応液を、43℃で5分間保温後、以下の組成で、予め43℃で2分間保温した酵素液5μlを添加した。
酵素液の組成:反応時(30μl中)の最終濃度
2% ソルビトール
8U/30μl AMV逆転写酵素 (タカラバイオ社製)
142U/30μl T7 RNAポリメラーゼ (GIBCO製)
3.6μg/30μl 牛血清アルブミン。
【0044】
(4)引き続きPCRチューブを直接測定可能な温調機能付き蛍光分光光度計を用い、43℃で反応させると同時に反応溶液の蛍光強度(励起波長470nm、蛍光波長520nm)を経時的に測定した。酵素添加時を0分として、反応液の蛍光強度比(所定時間の蛍光強度値÷バックグランドの蛍光強度値)が1.2を超えた場合を(+)判定とし、そのときの時間を検出時間とした結果を表1に示した。
【0045】
表1に記載の第一のプライマー、第二のプライマー、インターカレーター性蛍光色素標識核酸プローブ、切断用オリゴヌクレオチドの組み合わせを用いた場合、すべての組み合わせで10コピー/テストのSTC1 RNAが20分以内に検出された。すなわち、第一のプライマーとして配列番号4〜6より選ばれた配列、第二のプライマーとして配列番号7〜9より選ばれた配列、インターカレーター性蛍光色素標識核酸プローブとして配列番号10〜11より選ばれた配列、および切断用オリゴヌクレオチドとして配列番号14〜16より選ばれた配列からなる組合わせを用いた場合、いずれもSTC1 RNAが迅速に検出可能であった。ここで、配列番号4〜6はそれぞれ配列番号1の部分配列、配列番号7〜9はそれぞれ配列番号2の部分配列、配列番号10〜11はそれぞれ配列番号3の部分配列、配列番号14〜16のそれぞれは配列番号13の部分配列である。よって、配列番号1、配列番号2、配列番号3、および配列番号13に記載の配列の範囲内で設定されたオリゴヌクレオチドならば本発明において同一の機能および効果を有することが示された。以上から、本発明に記載の第一のプライマー、第二のプライマー、インターカレーター性蛍光色素標識核酸プローブを用いたRNA増幅・測定法により、STC1 RNAが迅速に検出可能であることが示された。
【0046】
【表1】

上表の組合わせのオリゴヌクレオチドを用い、10コピー/テストのSTC1 RNAをサンプルとして前記RNA増幅・蛍光測定を実施した。蛍光強度比1.2を超えたものを(+)と判定し、そのときの時間を検出時間とした。
【0047】
実施例5
本願発明の方法を用いて、STC1 RNAの定量を行った。
【0048】
(1)前記STC1 RNAをRNA希釈液(10mM Tris・HCl (pH8.0)、1mM EDTA、0.25U/μl リボヌクレアーゼ・インヒビター、5.0mM DTT)を用いて10、10、10、10、10コピー/5μlとなるよう希釈し、検量線用標準RNAとして用いた。陰性標準(NEG)は希釈液を用いた。同様に、サンプルA(10コピー/5μl)、B(10コピー/5μl)、C(10コピー/5μl)、D(10コピー/5μl)、E(10コピー/5μl)を調製した。
【0049】
(2)以下の組成の反応液20μlを0.5ml容量PCR用チューブ(Gene Amp Thin−Walled Reaction Tubes、パーキンエルマー製)に分注し、これに前記標準RNAおよびサンプル5μlをそれぞれ添加した。
反応液の組成:濃度は酵素液添加後(30μl中)の最終濃度
60mM Tris・HCl (pH8.6)
17mM 塩化マグネシウム
100mM 塩化カリウム
1mM DTT
各0.25mM dATP、dCTP、dGTP、dTTP
各3mM ATP、CTP、UTP
2.25mM GTP
3.6mM ITP
1μM 第一のプライマー(配列番号5):第一のプライマーは、配列番号記載の塩基配列の5’末端にT7RNAポリメラーゼ・プロモーター配列(配列番号17)が付加されてなる
1μM 第二のプライマー(配列番号8)
25nMのインターカレーター性蛍光色素標識核酸プローブ(配列番号12):該核酸プローブは実施例2においてリン酸ジエステルにリンカーを介してオキサゾールイエローを結合させたもの
0.16μMの切断用オリゴヌクレオチド(配列番号15):該オリゴヌクレオチドの3’末端−OHはアミノ基で修飾
6U/30μl リボヌクレアーゼ・インヒビター(タカラバイオ社製)
13% DMSO
(3)上記の反応液を、43℃で5分間保温後、以下の組成で、予め43℃で2分間保温した酵素液5μlを添加した。
酵素液の組成:反応時(30μl)の最終濃度
2% ソルビトール
8U/30μl AMV逆転写酵素 (タカラバイオ社製)
142U/30μl T7 RNAポリメラーゼ (GIBCO社製)
3.6μg/30μl 牛血清アルブミン
(4)引き続きPCRチューブを直接測定可能な温調機能付き蛍光分光光度計を用い、43℃で反応させると同時に反応溶液の蛍光強度(励起波長470nm、蛍光波長520nm)を経時的に測定した。酵素添加時を0分として、反応液の蛍光強度比(所定時間の蛍光強度値÷バックグランドの蛍光強度値)の経時変化を図3に示した。
【0050】
図3の結果において、蛍光強度比が1.2に達する時間を検出時間とし、該検出時間と初期コピー数の対数値から作成した検量線を図4に示した。さらに、該検量線およびサンプルA、B、C、D、Eの検出時間から前記サンプルのコピー数を定量した結果を表2に示した。
【0051】
図3の結果では、10コピー/テストが約10分で検出されており、検出時間と初期コピー数の対数値との間に良好な直線性が得られた(図4)。また、表2の結果において、サンプルA、B、C、D、Eの定量結果はSTC1 RNAの添加量に相当する値を示した。以上より本発明の方法により、STC1 RNAを迅速、高感度、かつ特異的に定量可能であることが示された。
【0052】
【表2】

サンプルA(10コピー/5μl)、B(10コピー/5μl)、C(10コピー/5μl)、D(10コピー/5μl)、E(10コピー/5μl)を測定した場合の蛍光プロファイルから得られた検出時間と図4の検量線よりコピー数を算出した結果。
【図面の簡単な説明】
【0053】
【図1】実施例2で作製したインターカレーター性蛍光色素標識核酸プローブの構造。B、B、B、Bは塩基を示す。A)Ishiguroら(非特許文献10)の方法に従いリン酸ジエステル部分にリンカーを介してインターカレーター性蛍光色素(オキサゾールイエロー)を結合させたプローブ。なお、3’末端−OHからの伸長反応を防止するために3’末端−OHはグリコール酸修飾がなされている。B)市販のLabel−ON Reagents(Clontech社製)を用いてアミノ基を導入し、Ishiguroら(非特許文献10)の方法に従ってオキサゾールイエローを結合させたプローブ。この場合、導入位置(図中B部分)のヌクレオシド部分が欠失してアミノ基が導入される。なお、3’末端−OHからの伸長反応を防止するために3’末端−OHはビオチン修飾がなされている。
【図2】実施例3の測定の結果得られた蛍光プロファイル。本発明記載のRNA増幅を行うと同時に経時的に蛍光強度(励起光:470nm、蛍光:520nm)を測定した結果。横軸は反応時間、縦軸は蛍光強度比(反応液の蛍光強度/バックグラウンド蛍光)を示す。図中のコピー数は1テストに使用したSTC1 RNA(塩基番号242〜1028を含む)の初期コピー数(260nmの吸光度より算出)を示す。
【図3】実施例4の測定の結果得られた蛍光プロファイル。本発明記載のRNA増幅を行うと同時に経時的に蛍光強度(励起光:470nm、蛍光:520nm)を測定した結果。横軸は反応時間、縦軸は蛍光強度比(反応液の蛍光強度/バックグラウンド蛍光)を示す。図中凡例の数字は1テストに使用した前記STC1 RNAの初期コピー数(260nmの吸光度より算出)を示す。negaは陰性(希釈液)を示す。
【図4】図3の結果から得られた検量線。図3の結果において、蛍光強度比が1.2に達する時間を検出時間とし、標準RNAの初期コピー数の対数値に対する検出時間をプロットした。図中の式は、1次回帰式と相関係数を示した。本検量線と得られた未知試料の検出時間より未知試料の初期コピー数を算出する。

【特許請求の範囲】
【請求項1】
試料中に存在するスタニオカルシン1 mRNAの測定法であって、
(1)該RNAの特定塩基配列の5’末端から下流の少なくとも一部に相同な第一のプライマー、および前記特定塩基配列の3’末端から上流の少なくとも一部に相補的な第二のプライマー(前記第一および第二のプライマーの少なくとも一方は5’末端にプロモーター配列を有する)により、プロモーター配列と該プロモーター配列下流に前記特定塩基配列を含む2本鎖DNAを生成する工程、
(2)該2本鎖DNAを鋳型としてRNA転写産物を生成する工程、
(3)該RNA転写産物が引き続きDNA合成の鋳型となることで、連鎖的に該RNA転写産物が増幅する工程、
(4)前記RNA転写産物量を測定する工程、
からなることを特徴とするスタニオカルシン1 mRNAの測定方法。
【請求項2】
前記第一のプライマーが配列番号1に示された配列の少なくとも連続した15塩基および前記第二のプライマーが配列番号2に記載の配列の少なくとも連続した15塩基をそれぞれ含む組み合わせからなることを特徴とする請求項1に記載のスタニオカルシン1 mRNAの測定方法。
【請求項3】
前記RNA転写産物量の測定が、インターカレーター性色素で標識された核酸プローブで、かつ標的核酸と相補的2本鎖を形成するとインターカレーター性蛍光色素部分が前記相補的2本鎖部分にインターカレートすることによって蛍光特性が変化するように設計された核酸プローブの蛍光特性の変化を測定することによってなされることを特徴とする請求項1あるいは請求項2に記載のスタニオカルシン1 mRNAの測定方法。
【請求項4】
前記第一のプライマーが配列番号1に示された配列の少なくとも連続した15塩基、および前記第二のプライマーが配列番号2に記載の配列の少なくとも連続した15塩基、および前記インターカレーター性蛍光色素標識核酸プローブが配列番号3に記載の配列あるいは該配列の相補配列の少なくとも連続した15塩基を含むオリゴヌクレオチドの組み合わせからなることを特徴とする請求項3に記載のスタニオカルシン1 mRNAの測定方法。
【請求項5】
第一のプライマーが配列番号1に示された配列の少なくとも連続した15塩基および第二のプライマーが配列番号2で示された配列の少なくとも連続した15塩基(前記第一および第二のプライマーの少なくとも一方は5’末端にプロモーター配列を有する)をそれぞれ含む配列の組み合わせからなるオリゴヌクレオチドを構成要素とすることを特徴とするスタニオカルシン1 mRNAの測定試薬。
【請求項6】
前記第一のプライマーが配列番号1に示された配列の少なくとも連続した15塩基および前記第二のプライマーが配列番号2に記載の配列の少なくとも連続した15塩基(前記第一および第二のプライマーの少なくとも一方は5’末端にプロモーター配列を有する)および前記インターカレーター性蛍光色素標識核酸プローブが配列番号3に記載の配列あるいは該配列の相補配列の少なくとも連続した15塩基をそれぞれ含む配列の組み合わせからなるオリゴヌクレオチドを構成要素とすることを特徴とするスタニオカルシン1 mRNAの測定試薬。
【請求項7】
配列番号1から3に記載の、いずれかの塩基配列あるいは該配列の相補配列の少なくとも連続した15塩基からなることを特徴とするスタニオカルシン1 mRNAまたはその相補鎖に特異的なオリゴヌクレオチド。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2006−223194(P2006−223194A)
【公開日】平成18年8月31日(2006.8.31)
【国際特許分類】
【出願番号】特願2005−41148(P2005−41148)
【出願日】平成17年2月17日(2005.2.17)
【出願人】(000003300)東ソー株式会社 (1,901)
【Fターム(参考)】