説明

ターボ機械のナセルおよび防氷装置、ならびにその方法

【課題】航空エンジンのナセル用の防氷装置を提供すること。
【解決手段】ナセル50は、ナセル50の前縁を画定する吸気リップ56を有し、吸気リップ56の内面64に隣接して配置され部分的に範囲を定められる環状の空隙58をさらに有する。防氷装置は、空隙58内に配置され、断面形状が吸気リップ56の内面64に合致するマニホルド62を含む。マニホルド62の壁65は、マニホルドの壁65を介して吸気リップ56を加熱するために、吸気リップ56の内面64に面し、マニホルド62に空気が伝導される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ターボ機械に関し、より詳細には、少なくともその一部分を複合材料から作製できる、航空エンジンのナセル用の防氷および除氷システムに関する。
【背景技術】
【0002】
高バイパスターボファンエンジンは、亜音速で作動する高性能航空機のために広く使用されている。図1に概略的に示すように、高バイパスターボファンエンジン10は大型のファン12を含む。そのファン12は、推進力を大きくし燃料消費率を低下させるためにエンジン10の正面に配置される。ファン12は、入ってくる空気14を圧縮するように働く。空気14の一部分はコアエンジン(ガスタービン)16に流入する。そのコアエンジン(ガスタービン)16は、空気をさらに圧縮するコンプレッサの低圧段18Aおよび高圧段18Bを含むコンプレッサ部分18と、燃料が圧縮空気と混合され燃焼される燃焼室20と、高圧タービン22Aが燃焼ガスからエネルギーを抽出してコンプレッサ部分18の高圧段18Bを駆動し、低圧タービン22Bが燃焼ガスからエネルギーを抽出してファン12およびコンプレッサ部分18の低圧段18Aを駆動するタービン部分22とを含む。ファン12に入る空気の大部分は、エンジン10の後方にバイパスされ、さらなるエンジン推進力を生成する。バイパス空気は環状のバイパスダクト24を通り、そのバイパスダクト24は、ファン12およびそのファンブレード26のすぐ後ろに配置される、出口案内翼28(OGV、outlet guide vane)とも呼ばれる、1つまたは複数列の静翼を含む。ファンブレード26は、ファンカウルまたはナセル30に囲繞され、そのファンカウルまたはナセル30は、ターボファンエンジン10への吸気ダクト32、ならびにバイパスダクト24から出るバイパス空気のためのファンノズル34を画定する。
【0003】
ナセル30は、構造上の重要な構成要素であり、その設計の考慮すべき点は、空気力学的基準、ならびに異物による損傷(FOD、foreign object damage)に耐える能力を含む。このような理由で、ナセル30を作製するときには、適切な構造、材料、および組立て方法を選択することが重要である。様々な材料および構成が考えられており、金属材料、特にアルミニウム合金が広く用いられている。大幅に重量を削減するという利点をもたらすので、グラファイト強化エポキシ樹脂などの複合材料も考えられている。しかし、空気力学的および構造的基準を満たすためには、複合材料から形成されたナセルはある種の課題に直面する。例えば、エンジン効率を向上し燃料消費率(SFC、specific fuel consumption)を改善するためには、翼、ナセル、および他の表面を覆う層流が望ましい。ナセル上で層流を実現するには、その外面で、吸気リップ36から、ナセル30の最大径44または最低でも吸気リップ36のすぐ後ろの吸気外側バレル断面の長さのところまで、段差および隙間を無くすべきである。複合材およびそれらの作製プロセスは、必要とされる制御された輪郭(contour control)および部品重量を有するこのサイズの単一部片の部品を生産するのに適しているが、複合材料単体では、飛行中のバードストライクを確実に耐え抜くのに必要な衝撃抵抗をもたらすことができていない。
【0004】
航空エンジンナセルに関するさらなる課題は、エンジンが地上にある間、また特に飛行条件下で、ナセル、特に吸気リップ(図1の36)でその前縁が着氷状態になりやすいことである。ナセルの吸気リップ上の氷の蓄積を除去し(除氷)、氷の蓄積を防止する(防氷)ためのよく知られた一手法は、高温空気ブリードシステムの使用によるものである。一例を図1に概略的に示す。図1では、エンジンに供給された抽気流が、コンプレッサ部分18から抽出され配管38を通って吸気リップ36に至り、吸気リップ36において、高温の抽気が吸気リップ36の内面に接触して、リップ36を加熱し、氷の形成を除去/防止する。配管38は、一般にピッコロチューブ40と称されるチューブ構成を含む。このチューブ40は、Dダクト42と称されることもある、ナセル30の環状の空隙に存在する。チューブ40は、Dダクト42を高温の抽気で完全に満たして、吸気リップ36を確実に十分に加熱する。このタイプのシステムは効果的であるが、Dダクト42を満たし、防氷および除氷機能を実行するのに必要な熱エネルギーを供給するために、大量の抽気を必要とする。エンジン10から高温空気が抽出されると、それに応じた悪影響がエンジン特性に及ぼされ、エンジン効率が損なわれる。さらに、図示したタイプの高温空気ブリードシステムは、重量に関する著しい不利益を招くことがある。
【0005】
代替として、いくつかの小型のターボファンおよびターボプロップ航空エンジンは、電気防氷装置、例えば、抵抗タイプのヒータ線を利用する。それらのヒータ線を、吸気リップ36の内面に取り付けるか、または吸気リップ36の内面に接合しかつ/もしくは機械的に取り付けたブーツに埋め込むか、あるいは熱伝導によって吸気リップ36を加熱するようにリップ36に直接埋め込むことができる。しかし、こうしたシステムは、概して、図1に示すタイプの高バイパスターボファンエンジンなど、大型の航空エンジンの除氷および連続する防氷動作のために過大なエネルギーを必要とする。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】米国特許第7629558号公報
【発明の概要】
【課題を解決するための手段】
【0007】
本発明は、航空エンジンのナセル用の防氷および除氷システムならびに方法を提供し、その非限定的な例は、部分的にまたは完全に複合材料から作製したナセルである。
【0008】
本発明の第1の態様によれば、ナセルは、ナセルの前縁を画定する吸気リップと、吸気リップの内面に隣接して配置され部分的に範囲を定められる、ナセル内の環状のダクトとを備える。防氷装置が、ダクト内にあり、マニホルドを備え、そのマニホルドは、断面形状が吸気リップの内面に合致し、吸気リップの内面に面する壁を有する。防氷手段はさらに、マニホルドの壁を介して吸気リップを加熱するために、マニホルドに空気を伝導する手段を備える。
【0009】
本発明の第2の態様によれば、上記で説明した構造は、ナセルの吸気リップ上に氷が蓄積するのを除去および防止するのを可能にする方法を提供する。こうした方法は、吸気リップの内面に隣接し部分的に範囲を定められたナセル内の環状のダクト内にマニホルドを配置することを含む。マニホルドは、断面形状が吸気リップの内面に合致し、吸気リップの内面に面する壁を有し、空気は、マニホルドの壁を介して吸気リップを加熱するためにマニホルドに導かれる。
【0010】
本発明の技術的な影響は、マニホルドを設けながらもエンジンの重量を最小限にすることに寄与する、航空エンジンナセル用の防氷装置を提供する性能である。そのマニホルドは、ナセルのバードストライクおよびFODへの抵抗を促進するように、ナセルを加熱すること、および衝撃強度および延性をもたらすことの2重の役割を果たす。好ましい実施形態では、マニホルドによって与えられる強度および延性は、ナセルを複合材料から構成することを可能にすることができる。
【0011】
本発明の他の態様および利点は、以下の詳細な説明からよりよく理解されるであろう。
【図面の簡単な説明】
【0012】
【図1】高バイパスターボファンエンジンの概略断面図を示す。
【図2】本発明の実施形態による、ターボファンエンジンのナセルの吸気リップの断面を示す詳細図である。
【図3】本発明の別の実施形態による、ターボファンエンジンのナセルの吸気リップの断面を示す詳細図である。
【発明を実施するための形態】
【0013】
図2および図3に本発明の実施形態を示す。それらの実施形態によって、少なくとも航空エンジンナセルの吸気リップ部分が複合材料製となるように製造することができる航空エンジンナセルとの組み合わせで防氷性能が提供される。本発明は、高バイパスターボファンエンジンで使用するのに特に適しており、その高バイパスターボファンエンジンの一例は、図1に示すターボファンエンジン10であるが、他の適用例が予期できることを理解されたい。便宜上、本発明を図1のエンジン10を参照して説明するが、図2および図3に関連して説明する本発明の詳細によって改変される。
【0014】
上記で言及したように、本発明の好ましい態様は、ナセル、または少なくともナセルのうち吸気リップの前縁を形成する部分を複合材料から作ることができることである。好ましい複合材料は、改良したマトリックス材料の温度性能および衝撃抵抗から恩恵を受けることができる連続する繊維強化複合材を含むと考えられる。複合材料の繊維強化構成要素は、所望の繊維構成を有するように既知の繊維材料で作ることができる。例えば、炭素(グラファイト)繊維は、特に適切な強化材料であると考えられているが、炭素繊維に加えて、またはその代わりに、ガラスおよびポリマー(例えば、Kevlar(登録商標)などのアラミド)繊維を含む他の繊維材料を使用することもできる。この繊維構成は、ナセルの厚さを通る、平面を介した熱伝達を促進できる3次元ブレーディングまたはウィービング技術を含む、既知の繊維ウィービングおよびブレーディング技術を用いて作り出すことができる。複合材のマトリックス材料の本質的な役割は、繊維強化材料ならびに複合材全体の構造の構造的な強度および他の物理的特性に寄与することである。マトリックス材料は、熱的に劣化せず、または繊維強化材料に不都合でない温度および条件下で硬化できるべきでもある。これに基づいて、特に適切な樹脂材料は、ポリ(アリール)エーテルエーテルケトン(PEEK)、ポリ(アリール)エーテルケトンケトン(PEKK)、ポリフェニレンサルファイド(PPS)、ポリイミド、およびエポキシ樹脂などの熱可塑性樹脂であると考えられるが、他のマトリックス材料の使用が予期可能である。
【0015】
本発明の別の好ましい態様によれば、少なくともナセルの吸気リップの外側部分は、その表面を横切る層流と干渉することになる段差または隙間を無くすように単一部片として作られる。より具体的には、ナセルは、好ましくは、吸気リップから始まってナセルの(図1に44で示す)最大径を画定する部分まで後方に続く、連続する単一部片の複合材構造を有するように形成される。ナセル(または少なくとも複合材料から形成される部分)を作る適切な方法には、樹脂トランスファー成形(RTM、resin transfer molding)、圧縮成形、オートクレーブ養生、真空支援型樹脂トランスファー成形(VaRTM、vacuum−assisted resin transfer molding)、およびテープ配置および自動プライ配置技術が含まれる。最後に、エンジン吸気、逆推進装置、コアカウル、およびトランスカウルなど、航空エンジンナセルの構成要素、ならびに音響パネルなど、他の航空機構成物には一般的な、軽量のフォームまたはハニカムポリマー材料などのコア材料(図示せず)をナセル50および70の層構造に組み込むことができる。上記で言及した材料を考慮すると、ナセルは、アルミニウム合金または従来技術で従来用いられる他の合金から形成されたナセルよりずっと軽くすることができる。ナセルの厚さは、必要以上に過度の重量を与えることなく、ナセルの構造的な完全性をもたらすのに十分にすべきである。広い範囲の厚さが可能であるが、典型的な範囲は約1.5から約2.5ミリメートルである。
【0016】
上記で言及したように、本発明の特定の態様は、上記で説明したタイプの複合材ナセルと組み合わせた防氷性能を提供することである。図2を参照すると、ナセル50の断面は本発明の第1の実施形態を示している。図1に示す従来技術ナセル30と同様に、ナセル50は、ターボファンエンジンの吸気ダクト52、ならびにバイパス空気がその中を流れるバイパスダクトおよびファンノズル(図2に図示せず)を画定する。やはり図1と同様に、ナセル50は、環状の空隙58を画定するように示されており、その環状の空隙58は、ナセル50の吸気ダクト52および外側バレル54によって径方向に範囲を定められ、ナセル50の吸気リップ56、ならびに吸気リップ56の後方部分で吸気ダクト52および外側バレル54にまたがる隔壁60によって長手方向に範囲を定められている。前に説明したように、エンジンが地上にある間、また特に飛行条件下で、ナセル50、特に吸気リップ56におけるその前縁が、着氷状態になりやすい。Dダクト42が高温抽気で完全に満たされる、図1に関して説明した防氷技術とは対照的に、図2の実施形態は防氷装置を用いる。その防氷装置はマニホルド62を含み、そのマニホルド62は、ナセル50のうち最も着氷を受けやすい部分、すなわち吸気リップ56、ならびに吸気ダクト52および外側バレル54のうち吸気リップ56のすぐ後方の部分をより局所的に加熱するように構成される。マニホルド62は、コンプレッサ部分またはエンジン内の他の適切な高温空気源から抽出した高温抽気などのエンジン抽気を用いて、吸気リップ56を加熱する。その抽気は、図1の配管38と同様にルート決めできる導管48を通して抽出されるように示している。しかし、マニホルド62は、図1で必要な抽気よりずっと少ない抽気を効果的に使用し、それによりエンジン特性およびエンジン効率への影響を低減するように構成される。したがって、導管48は、図1の配管38と同程度に大きい必要がなく、抽気をマニホルド62に伝導する他の手段を使用することもできる。
【0017】
図2に示すように、マニホルド62は、空隙58の形状に対応する環状の形状を有し、吸気リップ56ならびにナセル50の吸気ダクト52および外側バレル54に隣接する部分によって画定される、空隙58の内面64に厳密に合致するU字形の断面を有するように構成される。さらに、マニホルド62は、内部空隙63内で抽気流を可能にするように中空である。図2に示すように、マニホルド62内の空隙63は、断面がU字形であり、マニホルド62の内壁67が吸気リップ56に面する壁65に厳密に合致するので内部体積が最小である。マニホルド62は、内面64に近接して配置され、その結果、マニホルドの壁65と内面64との間の環状の隙間66が小さくなる。隙間66の適切な幅は最大約15ミリメートルであり、好ましい範囲は約2から約6ミリメートルであると考えられる。マニホルド62は、断面が比較的薄く、その壁65および67を、薄い合金、例えば、アルミニウム合金、チタン合金、または別の耐高温腐食合金から形成することができる。マニホルド62を、真空ろう付けおよび/または拡散接合を含む既知のプロセスで作製することができる。
【0018】
内面64に面するマニホルド62の壁65は多数の孔68を含み、それらの孔68は、マニホルドの空隙63を通る高温抽気流が、吸気リップ56の内面64で直接吹かれ、それにより強制対流による吸気リップ56の熱伝達が実現されるのに十分なサイズおよび適切なパターンのものである。孔のパターンは、吸気リップ56の前縁における抽気に集中させることができるが、より好ましくは、空気は吸気リップ56全体にわたって一様に分散される。適切な孔のサイズおよび孔のパターンの密度は、吸気リップ56のサイズおよび構成、ならびに抽気流量および抽気源に応じて変わる。抽気は、吸気リップ56への衝突の後に、排気口、およびナセル50の構造に元々存在する他の開口部を通して外気に逃げることができる。
【0019】
高温抽気のための導管として働く以外に、マニホルド62は直接の熱伝達機能を有する必要がない。したがって、熱伝導率以外の基準に基づいて、マニホルド62のための材料を選択することができる。したがって、マニホルド82を断熱材から作製することもできる。しかし、ナセル50のうち吸気リップ56の部分またはその周りの部分の好ましい複合材構造の点から、マニホルド62のための材料および構造は、好ましくは、衝撃強度および延性を促進することに基づいて選択される。このように衝撃強度および延性を促進することは、バードストライクを含む異物衝撃損傷に抵抗する吸気リップ56の能力を促進するように働く。ナセル50のバードストライクおよびFODへの抵抗を促進すること、およびナセル50を加熱して防氷機能をもたらすことの2重の役割を果たすために、図2に示すマニホルド62は補強要素70を備え、その補強要素70は、マニホルド62の壁65と吸気リップ56の内面64との間の隙間66のそうでなければ開放している空気流通路に配置される。補強要素70は、好ましくは、吸気リップ56を構造的に支持しマニホルド62から間隔をあけて配置するように、隙間66内の適切な位置に存在する。図2に示すように、補強要素70は、1つまたは複数のパネル、ストリップ、またはリボンなど、正弦曲線状の要素の形態であってよいが、マニホルド62を通した吸気リップ56の衝撃強度を促進するために、追加または代替の補強構成要素を使用することもできることを理解されたい。
【0020】
空隙58内で吸気リップ56の内面64に隣接してマニホルド62を取り付けるために、様々な技術を用いることができる。図2から明らかなように、隔壁60を使用して、空隙58内にマニホルド62を位置決めおよび配置することができる。あるいは、またはさらに、スタンドオフ要素または突起などで、マニホルド62を内面64に直接取り付けることができる。
【0021】
図3に、複合材ナセルと組み合わせた防氷性能を提供するための別の実施形態を示す。図2の強制空気対流技術とは対照的に、図3の実施形態は、吸気リップ56との直接の熱伝導に依存している。図2の実施形態と同様に、マニホルド72は、図3では、空隙58の形状と合致する環状の形状を有し、吸気リップ56の内面64、ならびにナセル50の吸気ダクト52および外側バレル54の隣接する部分に厳密に合致するU字形の断面を有するように示される。図2のマニホルド62と同様に、マニホルド72は、内部空隙73内で抽気流を可能にするように中空であり、空隙73は、断面がU字形であり、マニホルド72の壁75および77が吸気リップ56の内面64に厳密に合致するので、体積が最小である。図3の防氷装置およびマニホルド72の他の態様は、図2のマニホルド62に関して説明したものと同一または同様とすることができ、したがって、以下の説明は図2のマニホルド62と図3のマニホルド72の基本的な違いに注目する。
【0022】
図2とは対照的に、吸気リップ56に面するマニホルド72の壁75は、図2の環状の隙間66がマニホルド72と内面64の間に存在しないように、本質的に内面64全体に直接接するように示されている。したがって、吸気リップ56の強制空気加熱のための孔なしでマニホルド72の壁75を作ることができるが、図2と同様に、吸気リップ56と高温抽気が直接接触するのを可能にするように孔を設けることもできることが予期できる。しかし、吸気リップ56の加熱は、主として、マニホルドの壁75を高温抽気によって加熱し、それにより熱伝導によって吸気リップ56が加熱された結果である。そのため、マニホルド72(または少なくともマニホルド72の壁75)のための好ましい材料は、高伝導材料、とりわけアルミニウム合金、チタン合金、および他の耐高温腐食合金を含む金属であり、これらの材料は、マニホルド72および吸気リップ56がバードストライクおよび可能性のある異物による損傷の他の原因に耐える能力を促進することもできる。マニホルド72を、接着剤で吸気リップ56の内面64に取り付けることができ、好ましい接着剤は、マニホルドの壁75と吸気リップ56の間の熱伝達を促進するように、分散した金属および/またはセラミック粒子を含むことによって熱伝導率が強化されたものである。
【0023】
マニホルドの空隙73内の抽気が、マニホルド72中の1つまたは複数の開口部(図示せず)を通して外気に逃げることを可能にすることができ、それらの開口部は、マニホルドの壁75を加熱するためにマニホルド72内の十分な滞留時間を確実にし、さらに、図1の従来技術で必要とされるよりずっと少ない量の抽気しか使用しないように、マニホルド72を通る空気流量を制御するのに十分小さい。したがって、マニホルド72は、エンジン特性およびエンジン効率への影響を低減することが可能である。
【0024】
上記を考慮すると、図2および図3で説明した防氷装置がそれぞれ、図1の従来技術のシステムに対していくつかの異なる利点をもたらすことを理解されたい。例えば、それらのシステムは、比較的小さく、吸気リップ56に厳密に合致できるマニホルド62および72を使用し、それにより、吸気リップ56における防氷性能を実現するのに必要な抽気が減る。マニホルド62および72の構造の軽量化を、それらの構造の材料および作製技術の選択によってさらに促進することができる。マニホルド62および72は、比較的薄い材料から構築し、さらに、吸気リップ56のバードストライクおよびFODへの抵抗を促進するように十分な衝撃強度および延性をもたらすことができ、リップ56を複合材料、より好ましくは、外面にその表面を横切る層流と干渉することになる段差または隙間がない、連続する単一部片複合材構造から形成することができる。
【0025】
本発明を特定の実施形態の点から説明してきたが、当業者が他の形態を採用することもできる。例えば、ターボファンエンジン10およびナセル30の物理的構成は、示したものと異なることもあり、言及したもの以外の材料およびプロセスを用いることもできる。したがって、本発明の範囲は、以下の特許請求の範囲によってのみ限定されるべきである。
【符号の説明】
【0026】
10 エンジン
12 ファン
14 空気
16 ガスタービン
18 部分
18A 段
18B 段
20 燃焼室
22 部分
22A タービン
22B タービン
24 ダクト
26 ブレード
28 静翼
30 ナセル
32 ダクト
34 ノズル
36 リップ
38 配管
40 チューブ
42 Dダクト
44 ナセル
48 導管
50 ナセル
52 ダクト
54 バレル
56 リップ
58 空隙
60 隔壁
62 マニホルド
63 空隙
64 表面
65 壁
66 隙間
67 壁
68 孔
70 要素
72 マニホルド
73 空隙
75 壁
77 壁

【特許請求の範囲】
【請求項1】
航空エンジン(10)に吸気口において据え付けるナセル(50)であって、ナセル(50)の前縁を画定する吸気リップ(56)と、前記吸気リップ(56)の内面(64)に隣接して配置され部分的に範囲を定められる、ナセル(50)内の環状の空隙(58)とを備える、ナセル(50)において、
前記空隙(58)内の防氷装置であって、断面形状が前記吸気リップ(56)の内面(64)、および前記吸気リップ(56)の内面(64)に面する壁(65、75)に合致するマニホルド(62、72)と、前記壁(65、75)を介して前記吸気リップ(56)を加熱するために、空気を前記マニホルド(62、72)に導く手段(48)とを備える防氷装置を特徴とする、ナセル(50)。
【請求項2】
前記マニホルド(62、72)の前記壁(65、75)が、前記壁(65、75)と前記吸気リップ(56)の前記内面(64)との間に隙間(66)を画定するように前記内面(64)から間隔をあけて配置され、前記マニホルド(62、72)が、前記マニホルド(62、72)の前記壁(65、75)に孔(68)を備え、前記孔(68)が、強制対流によって前記吸気リップ(56)を加熱するために、前記マニホルド(62、72)内で前記内面(64)に空気を向けるように適合されることを特徴とする、請求項1記載のナセル(50)。
【請求項3】
前記隙間(66)が、前記壁(65、75)と前記吸気リップ(56)の前記内面(64)との間で一様であることを特徴とする、請求項2記載のナセル(50)。
【請求項4】
前記防氷装置がさらに、前記隙間(66)において、前記吸気リップ(56)を構造的に支持し、前記吸気リップ(56)を前記マニホルド(62、72)から間隔をあけて配置するための補強手段(70)を備えることを特徴とする、請求項2または3記載のナセル(50)。
【請求項5】
前記マニホルド(62、72)の前記壁(65、75)が、前記吸気リップ(56)の前記内面(64)に直接接合され、前記壁(65、75)が、熱伝導によって前記吸気リップ(56)を加熱するように適合されることを特徴とする、請求項1記載のナセル(50)。
【請求項6】
前記伝導手段(48)が、高温の抽気を前記航空エンジン(10)から抽出し、前記高温の抽気を前記マニホルド(62、72)に伝導することを特徴とする、請求項1乃至5のいずれか1項記載のナセル(50)。
【請求項7】
ナセル(50)が、前記航空エンジン(10)に据え付けられ、前記航空エンジン(10)のファン(26)を囲繞することを特徴とする、請求項1乃至6のいずれか1項記載のナセル(50)。
【請求項8】
航空エンジン(10)のナセル(50)の前縁を画定する吸気リップ(56)上の氷の蓄積を除去および防止する方法において、
前記吸気リップ(56)の内面(64)に隣接して配置され部分的に範囲を定められる、前記ナセル(50)内の環状の空隙(58)にマニホルド(62、72)を配置するステップであって、前記マニホルド(62、72)の断面形状が、前記吸気リップ(56)の前記内面(64)、および前記吸気リップ(56)の前記内面(64)に面する壁(65、75)に合致する、ステップと、
前記壁(65、75)を介して前記吸気リップ(56)を加熱するために、空気を前記マニホルド(62、72)に伝導するステップと
を特徴とする、方法。
【請求項9】
前記マニホルド(62、72)の前記壁(65、75)が、前記壁(65、75)と前記吸気リップ(56)の前記内面(64)との間に隙間(66)を画定するように、前記内面(64)から間隔をあけて配置され、前記マニホルド(62、72)が、前記マニホルド(62、72)の前記壁(65、75)に孔(68)を備え、前記マニホルド(62、72)に伝導した空気が、強制対流によって前記吸気リップ(56)を加熱するために、前記孔(68)によって前記吸気リップ(56)の前記内面(64)に向けられることを特徴とする、請求項8記載の方法。
【請求項10】
前記マニホルド(62、72)の前記壁(65、75)を前記吸気リップ(56)の前記内面(64)に接合することをさらに特徴とし、熱伝導によって前記吸気リップ(56)を加熱するために、前記マニホルド(62、72)に伝導した前記空気が前記壁(65、75)を加熱することを特徴とする、請求項8記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2011−137457(P2011−137457A)
【公開日】平成23年7月14日(2011.7.14)
【国際特許分類】
【出願番号】特願2010−283946(P2010−283946)
【出願日】平成22年12月21日(2010.12.21)
【出願人】(310022132)エムアールエイ・システムズ・インコーポレイテッド (11)