説明

デジタル並列周波数蛍光測定のためのシステムおよび方法

改良された蛍光減衰時間測定用のシステムおよび方法を提供する。光子検出器がデジタル的にパルス化された励起信号よりわずかに高速でサンプリングされるデジタルヘテロダイン技術を開示する。結果として生じる相互相関周波数は、例えばフィールドプログラマブルゲートアレイなど、安価な電子回路によって読み取るのに十分低い。信号の位相情報は、対応する光子検出との相関関係を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、分析化学の分野におけるものであり、特に蛍光減衰時間測定および周波数領域蛍光測定に関するものである。
【背景技術】
【0002】
蛍光減衰時間の測定
蛍光とは、放射線の吸収に続いて、溶液中の(または固体もしくは気体の状態の)分子が発した光である。ごく短時間の光の短パルスによる励起によって、サンプルが発する蛍光は、以下の関係によって説明される。
【数1】


式中、Iは時間t=0における蛍光の強度であり、τは強度が元の値から値e−1まで減少するのにかかる時間である。τ値は、「蛍光減衰時間」と呼ばれる。
多成分環境において、蛍光は次の関係によって説明される。
【数2】


式中、プリエクスポーネンシャルファクタと呼ばれる係数α(λ)および減衰時間τは、混合物中の成分iの蛍光減衰を特徴づけるものである。これらのパラメータは、以下のように混合物の成分iが発する蛍光全体の分数として定義される、分数的寄与に関連付けることができる。
【数3】


特定の測定状況において、蛍光の減衰時間は、非指数的関係によって最適に説明される。いずれの実験的ケースでも、蛍光減衰時間を測定する装置は、値(α、τ)および混合物の各成分の蛍光減衰時間を示す他のパラメータを提供する。
【0003】
蛍光減衰時間の周波数領域および時間領域測定
蛍光減衰時間の測定用の計測は、広く2つのグループ、すなわち時間領域法および周波数領域法のうちの1つに属するものとして分類される。
【0004】
時間領域法は、時間相関単一光子計数法(TCSPC)を用いる。蛍光減衰時間の時間領域測定を利用する装置の例としては、米国特許第6,809,816号に記載されている。他の光源(LED、シンクロトロン放射、パルスランプ)も利用できるが、通常、一般的な蛍光寿命を僅かに超える周期で繰り返す短パルスを発するレーザが、励起光源として用いられる。各パルスが到達すると、励起パルスの到達と放出された光子との間にどれだけの時間が過ぎたかを記録する高精密度タイマーが起動する。この手法の精度は、クロックの精度で決まる。時間波高変換器(TAC)またはGHzデジタル時計を利用することができる。
【0005】
TCSPC装置で得られた寿命時間情報を判断するために、そのような到達時間のヒストグラムを構築する。単一指数関数的減衰には、式[1]によって定義される曲線と同様な曲線を得る。減衰時間τは、実験データを理論的な減衰モデルに適合させる最小化手法を用いて決定する。複数の指数関数的減衰には、式[2]によって定義される曲線と同様な曲線を、計器によって構築する。成分の減衰時間は、理論的な減衰モデルを実験データに適合させる最小化手法を用いて決定する。
【0006】
顕微鏡観察を適用する場合には、TCSPC取得電子回路は、走査装置(通常ガルボ制御ミラーまたはピエゾ制御ステージ)に同期し、画像の各画素に対するヒストグラム取得が再開する。周波数領域法は、高価なGHz電子回路およびTACの使用を避けるために開発された。周波数領域法では、励起光源および光検出器の変調が必要となる。周波数領域分光法における励起光および出射光の概略図を示す。出射光102は、図1に示すように励起光104に対して位相シフトして、復調される。変調された励起は、結果として、励起した蛍光体の寿命に依存した位相および変調を伴う変調蛍光となる。
【0007】
周波数領域法において利用される計器は、多重周波数位相蛍光測定器(MPF)または、単に周波数領域蛍光測定器と呼ばれている。蛍光の特性的な減衰時間を決定するのにMPFを用いる場合、励起光源は周波数ωで変調される。位相シフトφおよび変調mを測定する。そのような測定は、単一指数関数的減衰に対する典型的には2回または3回の反復から、複数の指数関数的減衰に対する20〜25回の反復の範囲で変調周波数ωの複数の異なる値で繰り返される。減衰時間τは、実験データを適合させる最小化手法を用いて決定される。
【0008】
第1の最新の周波数領域測定器において、光源は周波数ωで変調され、光検出器は周波数(ω+Δω)で変調される。上記2つの周波数は、位相固定周波数合成器によって与えられる。上記方法は、「ヘテロダイン」としても知られている。出力信号は、和周波数(2ω)と差周波数(Δω)での成分を含む。一般的に1Hzから20のKHzの範囲にある、「相互相関周波数」と呼ばれて、低信号成分Δωは、蛍光の位相シフトおよび復調を決定するのに利用される。
【0009】
周波数Δωの位相および変調から、蛍光の位相および変調を、基準寿命のものに対して算出することができる。寿命は、以下のような位相および変調から推論される。
【数4】


【数5】

【0010】
多重周波数位相蛍光測定器
初期の周波数領域測定器は3つの固定周波数での変調を特徴としており、最高周波数は30MHzであった。複素減衰については解決されなかったが、1ナノ秒の単位の単一指数減衰時間は上記装置で測定することができた。
【0011】
第1の多重周波数位相および変調蛍光測定器では、2つの位相固定合成器はそれぞれ、光源(周波数ω)と光検出器(周波数(ω+Δω))に対して変調を行う。相互相関周波数Δωでの出力信号を測定し、位相シフトおよび復調を決定するのに利用される。この計測器では、操作者は、変調周波数とその数を1MHzから300MHzの範囲で選択する。位相シフトおよび復調は、各周波数に対して連続して測定される。この計測器の実施形態は、例えば、米国特許第4,840,485号および米国特許第5,212,386号に記載されている。
【0012】
励起光の変調周波数は、励起した状態の減衰率に合致する範囲になければならない。例えば、励起した状態の寿命が約1nsである場合、最適な変調周波数は約160MHzでなければならない。
【数6】

【0013】
そのような超高周波の位相および振幅を正確に測定するために、ヘテロダイン原理を用いて最初に高周波を低周波に変換する方法が用いられてきた。結果として生じた低周波の波形は、続いて、正確なデジタル方法を用いることにより測定される。ヘテロダインは、これまで、光変調周波数とはわずかに異なる周波数で検出器の利得を変調することによって行われてきた。例えば、サンプルが150MHzで変調された光によって励起している場合、検出器の利得は150MHzから1000Hz(例として)異なる周波数によって変調される。ヘテロダインのため、検出器から発生した電流は、2つの周波数の和および差(すなわち300,001,000Hzの信号および1000Hzの差)を含む。低域通過フィルタは、高周波成分から1000Hzの低周波を切り離す。低周波電流は、続いて、1周期当たり例えば128回など複数回にわたってサンプリングされる。1000Hzの周波数の位相シフトおよび変調は、高速フーリエ変換(FFT)法を用いて得られたサンプル波形から得られる。フーリエ変換は、2000Hz、3000Hzなどから1周期の半分、すなわち64KHzまでの高周波数も含む。米国特許第5,212,386号は、そのような多重周波数システムの例を記載する。
【0014】
この方法は、市販の多重周波数位相および変調蛍光測定器(MPF)において一般に用いられている。例えば、ISS社(イリノイ州シャンペーン)によって販売されているK2システムおよびクロノス・システムである。これらの計測器は、ポッケルスセルと連動してキセノンアークランプおよび連続波(cw)レーザを利用するか、または、直接変調されるレーザダイオードおよび発光ダイオードを利用するものである。最新のMPFは、例えばモードロック・レーザおよびシンクロトロン放射などのパルス線源によっても作動できる。ただし、それらは光検出器の利得を変調する合成器で位相ロックされる。
【0015】
1989年には、「並列多重周波数」計測器が、米国特許第4,937,457号および米国特許第5,257,202号に記載されている。基本的な周波数ωでパルス線源を利用するこの計測器では、位相シフトおよび変調データを、ベース高調波ωと、高調波2ω、3ωなどから約80倍までの高調波において収集する。
【0016】
例えば、サンプルに当たっている光が150MHzで変調される場合、その光は、300MHz、450MHz、600MHzなどの高調波を含む。利得変調検出器によって混合すると、1000Hz、2000Hz、3000Hzなどの低周波数信号は全ての高調波を表す。フーリエ変換実施後、全ての高調波は並列に測定できる。
【0017】
全ての高調波周波数が並列に測定されるにもかかわらず、並列多重周波数計測器の検出器の利得を変調して得られる混合方式は、非常に効果が低い。事実、検出器の利得をパルス化する動作は、非常に短い期間検出器をONにするのに等しいため、検出器の効率を実質的に低下させる結果となる。米国特許第5,257,202号はこの効果について記載しており、周期の1/16の間、検出器をONにし続け、約16の周波数を並列に得ることを提案している。これは、データ取得の速度を最大にして、検出器をオフにすることから生じる損失を最小化する最適なデューティーサイクルであることが示されている。この方式は、それ以来ずっと、いわゆる並列周波数領域寿命計測器において用いられてきた。
【0018】
並列取得方法の大きな利点は、データ収集のための電子回路を、常にオン状態にするため、ある無線周波数から別の無線周波数へ変更する間、ドリフトが生じないことである。例えば、1つの周波数におけるデータの収集には、周波数が切替えられる際に電子回路が安定するのを待つために、長いデッドタイムが生じる。発熱による電子回路のドリフトは、高周波になるとより大きくなる。この不動作時間は、各周波数における一測定につき1〜2秒になりうる。約16の異なる周波数が得られ、ドリフトを補償するためにサンプルと基準との間を行き来することが必要となるため、有効なデッドタイムは60秒以上になることがある。結果として、全体の測定時間は数分単位になる。
【0019】
代わりに、高い繰返し周波数のレーザの高調波部分を用いて得られる多くの周波数を並列取得する場合、単一周波数計測器が受けるデッドタイムは大きく減少する。というのも、一般的に、2サイクルのデータ取得(1つはサンプル用、もう一方は基準化合物用)のみが用いられるためである。しかしながら、並列取得モードの短所は、検出器で発生しているパルス混合のために、検出器がわずかな時間しかオンならないということである。通常、16の周波数を並列に得るためのデューティーサイクルは、約1/16=6.25%である。したがって、デッドタイムを減らす際に得られるものが、測定の非常に低いデューティーサイクルによって部分的に失われてしまう。
【0020】
直列型も並列型蛍光測定器も、光検出器の利得の変調、すなわち光電子増倍管(PMT)の変調を必要とする。米国特許第6,317,207号に記載されているように、変調は、パルス化される場合と正弦的に変調される場合がある。従来のアナログ周波数領域方法では、PMTは、励起の周波数からわずかにシフトした周波数で駆動され、低速ヘテロダイン相互相関信号を生じる。この装置に関するさらなる製造上の問題としては、高周波信号を投入するために、PMT分圧器にハードウェア変更を行わなければならないことであり、これは大変面倒な場合がある。加えて、PMTの直接的な変調は、これらPMTの総収集効率を低下させ、最大で50%になってしまう。また、アバランシェフォトダイオード(APD)やマイクロチャンネルプレート(MCP)といった検出器は、利得の直接的な変調を引き起こすものではない。外部変調を、ミキサを用いて信号に適用する方法が考案されたが、ダイナミックレンジが大きく減少してしまう。また、アバランシェフォトダイオード(APD)などの検出器は、利得の直接的な変調を引き起こすものではない。
【0021】
蛍光寿命撮像顕微鏡観察
蛍光分光法は、顕微鏡観察において行われ、ハイコントラストを有する画像を提供する。蛍光寿命撮像顕微鏡観察(FLIM)は、重要な情報を様々な利用、特に生物学的利用に対して提供するために使用されてきた。例えば、イオン濃度は、スペクトルをシフトするおよび/または寿命を変えることによって、周囲のイオン濃度の変化に反応する特定の蛍光体を選択すること得ることができる。蛍光体が放出する光子の強度を観察するスペクトルのフィルタリング部は、イオン濃度を定量化する一方法とすることができる。生体サンプルの不均質な性質のため、強度情報は蛍光体の濃度に結び付けられる。あるいは、蛍光放射の指数減衰曲線、すなわち蛍光の寿命が測定されている。例えば、単純な蛍光強度撮像顕微観察では使用できない人間の外皮の一番上の表皮のpH値を判断するのにFLIMが用いられた。FLIMは重要であるにもかかわらず、既存のFLIM装置は、蛍光強度撮像顕微鏡観察システムと一体化しにくい。したがって、蛍光強度撮像顕微鏡観察ほど広く使われていない。
【0022】
分光法のように、既存のFLIM装置は、2つのカテゴリ、すなわち時間領域装置および周波数領域装置に分類される。時間領域装置は、各光子の到着時間に対してより高い分解能を提供するが、より高いコストがかかる。周波数領域装置は、ピコ秒の寿命を分解することは一般にできないが、コストがかからない。FLIMの時間/周波数領域概念は、キュベットにおける蛍光寿命方法から顕微鏡観察技術を付け加えて直接適応するものである。数学的な見地からは、FLIMの各画素のデータは、キュベットにおけるバルク蛍光寿命測定からのデータと少しも変わらない。蛍光寿命画像とは、画像の各画素が空間の特定の領域に対する寿命情報を含む画像である。
【0023】
顕微鏡観察の場合、サンプルの大きさおよび信号強度は最小化される。時間的分離能は、大抵、FLIM装置ではなくサンプルの輝度によって制限される。収集された光子数が数百万であるキュベットの蛍光寿命測定とは異なり、顕微鏡観察FLIMの使用では、しばしば、わずか100〜1000個の光子を測定して、画像の設定画素における寿命を決定する。FLIMの目的では、時間領域装置によって出力された各光子の到着時間の高時間的分離能は、多くの場合必要ではない。例えば、組織分光法用の周波数領域計測がこれまで開発され、血中のオキシヘモグロビンおよびデオキシヘモグロビン濃度の絶対測定用の組織酸素濃度計に用いられてきた。例えば、ISS社(イリノイ州シャンぺーン)販売のOxiplexTSシステムがある。計測器は、約110MHzの1つの単一変調周波数で動作する。本計測器が医療研究に適する一方で、電子回路に利用される電力が現在利用可能なバッテリに対して高すぎ、適当な測定時間の間電力を出力することができないため、持ち運び可能にはできていない(例えば、スポーツ医学的な使用目的)。
【0024】
デジタル周波数領域分光法
上記のアナログ周波数領域蛍光寿命技術に加えて、デジタル周波数領域FLIM装置の実施態様について説明した。アナログ周波数領域法と同様に、デジタル周波数領域FLIM装置において使用するレーザも変調される。しかしながら、デジタル周波数領域FLIM装置では、PMTを変調する代わりに、フリップフロップがキロヘルツ(KHz)光子計数装置に追加された。フリップフロップは、外部に同期およびシフトされたサンプリングクロック(周波数ω+Δω)に配線され、光子がサンプリングクロックの半周期で到着する場合に、相互相関している光子を出力するだけである。このデジタルミキサは安価な回路であり、検出器の利得を変調する必要がない。しかしながら、ミキサ動作は、検出される光子に対応するパルスの入力列に矩形波を乗算することによって得られ、したがって、パルスの半分だけが計数される。入力として矩形波の反対符号以外の同じパルス列を有する2つの混合回路が用いられる場合、光子は全て2つの別々のストリームにて処理し得ることは従来から知られている。
【0025】
相互相関光子は十分低速であるため、KHz光子計数装置が、各周期の間、数回にわたって相互相関光子のサンプリングし、それらの位相および変調を決定することができる。そして、あたかもそれらがアナログ周波数領域装置によって得られたものであるかのように、同じ方法で位相および変調が分析される。この技術は、例えば、ISS社(イリノイ州シャンペーン)が販売するモデルA506およびA508のカードのような、あるデータ取得カードに用いられてきた。
【先行技術文献】
【特許文献】
【0026】
【特許文献1】米国特許第6,809,816号明細書
【特許文献2】米国特許第4,840,485号明細書
【特許文献3】米国特許第5,212,386号明細書
【特許文献4】米国特許第4,937,457号明細書
【特許文献5】米国特許第5,257,202号明細書
【特許文献6】米国特許第6,317,207号明細書
【発明の概要】
【発明が解決しようとする課題】
【0027】
本発明の実施形態は、固体、液体および気体のサンプルにおける発光(蛍光および燐光)の複数の減衰時間を測定および決定する改良した装置、および方法を開示する。実施形態は、分光蛍光計、多重チャネル蛍光寿命撮像共焦点顕微鏡、さらには実質的に、発光の減衰時間の測定に貢献するどんな装置においても、実行することができる。以下では、「蛍光」という語は、文献中で共通して使用されるので「発光」の代わりに使用され、特に明記しない限り、蛍光、燐光および/または発光を意味するものとして広く解釈されなければならない。
【0028】
本発明の実施形態は、サンプルが発する光子の全てを得ることができる並列多周波数位相蛍光測定器を記載するものであり、それによって、高感度および高速データ収集を提供するものである。標準の多周波数位相および変調蛍光測定器とは反対に、光検出器の利得は、外部周波数発生器を用いて変調されない。むしろ、本実施形態では、デジタル的にヘテロダインが行うことによって、利用する電子素子の総数を大きく簡素化する。本発明の実施形態は、利得および/または信号の変調を必要としないので、実質的にどんな光検出器(PMT、MCP、APD、フォトダイオード)でも、等しく利用することができる。
【課題を解決するための手段】
【0029】
本発明は、同期を可能とする異なるハードウェア、および、複数周波数の同時取得のためのデジタル並列原理の実施を可能とする、異なるソフトウェアアルゴリズムを用いることによって、これまでのデータ取得カードに固有の問題を解決する。また、本発明は、一定の先入先出(FIFO)レジスタが飽和するとデータの破損が発生したこれまでのシステムの問題に対処して、解決するものである。本発明は、キュベットおよびレーザ走査型顕微鏡の完全なデジタル並列取得周波数領域蛍光寿命測定の主要条件を満たすものである。本発明の結果、これまで分からなかった新規の予期しない性能が明らかになった。
【0030】
本願に示されるデジタル並列取得方式は、並列取得において用いられる混合方式のデジタルバージョン、および、利点として100%のデューティーサイクルを有するサンプルを提供する。加えて、本発明の実施形態では、デジタル電子回路のみを用いるため切換時間がない。また、サンプルと基準の間を反復する必要がない。これらの改善の結果として、16の周波数を収集するデータ取得の合計時間が、数百秒から約1秒以下に短縮される。本発明の実施形態において使用するデジタル電子回路は非常に安定しているので、測定の精度が上がり、電子ノイズは減少する。
【0031】
本開示の発明によるデジタル並列取得方法は、大変安価なデジタル電子回路にて実施することができる。当該方法は工場校正の必要がなく、高周波放射がない。さらに、この方法は非常に超低電力しか用いず、生医学的、生物工学的、および臨床的用途に用いられる携帯機器の技術を実施する上で重要な利点である。デジタル周波数取得の原理は前に記載したが、これまで、この方法は並列周波数領域データ取得の分野には適用されていなかった。
【0032】
本発明は、並列デジタル周波数領域測定器に必要とされる全ての論理演算を行う回路を提供する。具体的には、本発明の実施形態は、本質的に変調されるレーザと同期することができるか、またはレーザダイオードまたはLEDを振幅変調するために用いる周波数信号を生成することができる。前記信号は、連続波レーザを変調するために用いる電気光学変調器(ポッケルスセル)または音響光学変調器を逆に変調することもできる。いつデータが有効なのか判断するのに必要な情報はデータストリーム自体にあるため、同期が常に適切に検出される。この回路は、2本の独立チャンネルまたは4本のチャンネルを用いて作動することができる。内部回路は、FIFOが飽和できたことを感知して、時間情報を妨げることのなく入力データストリームを中断する。並列取得のために、本発明の実施形態は、最大で16までの高調波周波数を用いるが、これは使用する特定のチップによって制限される(320のMHzまで)。実施形態では、より低い反復率(20MHzの代わりに10MHz)を用いることにより、32の周波数を達成することができる。より高速なチップを利用することができるので、最も高い周波数の2倍がこれらのチップを用いて達成できる。しかしながら、320のMHzまでの現用の実施態様が大抵の使用には適している。本発明のデジタル回路の実施形態の平均算出原理を用いることで、検出器の非常に高いレベルのジッターを扱うことができ、光子のタイミングを決定するために用いる窓の幅よりも、収集される総光子数のみに制限される寿命精度に到達することができる。
【0033】
本発明は、デジタル電子回路の挙動を深く理解することにより生じる分野において著しい進歩をもたらす。結果として、超低電力で動作する非常に安定した回路を提供する。本発明の実施形態は携帯機器に用いることができ、センサや撮像などにおいて様々に応用できる。
【0034】
本発明の実施形態は、すでに周知の周波数領域計測器より小さくてより安価な計測器用の、携帯可能な組織分光法を構築するために用いることができる。さらに、1つの変調周波数の代わりに、本発明による複数の変調周波数を使用することで、幼児への使用や、一般に、制限された領域の血行力学的なパラメータの測定にとって非常に興味のある、より小さいセンサを設計することが可能となる。
【図面の簡単な説明】
【0035】
本発明は添付の図面の図に示されるが、これらの図は一例であり、これらに制限されるものではない。また、図中、同様の参照符号は、同様のまたは対応する部材に付される。
【0036】
【図1】従来技術において公知である、出射光に対する励起光の位相シフトを示す波形図である。
【図2】本発明の説明的実施形態に係るFLIM使用における光電子増倍管(PMT)検出器を用いた二重チャンネル蛍光寿命撮像顕微鏡観察(FLIM)ユニットの概略図である。
【図3】本発明の説明的実施形態に係るFLIM使用における単一光子計数アバランシェフォトダイオード(SPAD)検出器を用いた二重チャンネルFLIMユニットの概略図である。
【図4】本発明の説明的実施例に係る並列多重周波数位相蛍光測定器の概略図である。
【図5A】本発明の説明的実施形態に係る位相対周波数データを示すウェーバー・プロットである。
【図5B】本発明の説明的実施形態に係る位相対周波数データを示す数値データ表である。
【図6】本発明の説明的実施形態に係る多重チャネルFLIM装置の概略図である。
【図7】本発明の説明的実施形態に係る蛍光変動相関分光法(FCS)用いて生成される自己相関プロットである。
【図8】本発明の実施形態に係る、データ転送プロセスおよびFLIM装置で測定されるパラメータの決定を示すプロセスフローチャートである。
【発明を実施するための形態】
【0037】
デジタルヘテロダインの際、相互相関周波数fccは、収集したデータを徹底的に調べるために利用されるサンプリング周波数fと光源の励起周波数fexcとの差である。すなわち、
【数7】

【0038】
ccがサンプリング周波数の整数分数である値を有することは都合がよい。つまり、図示する実施態様において、下式となる。
【数8】

【0039】
その結果、下式となる。
【数9】

【0040】
すなわち、励起光fexc波形の信号およびサンプリング周波数波形の信号が時間t=0で同調する場合、それらは、サンプリング周波数波形の256の周期後に同位相に戻る。この時は下式にも等しくなる。
【数10】

【0041】
換言すれば、設定サンプリング周波数fならば、相互相関周波数fccの逆数は、サンプリング窓が励起パルスの全255の波形をスライドする時間である。これらは、サンプルの発光応答の波形の数に対応する。
【0042】
サンプリング窓は、サンプルが放出した光子すべてを数えるために、すなわち100%のデューティーサイクルを有し、測定が正確に行われることを保証するために、一定の要件が必要となる。ある実施形態では、8つのサンプリング窓が生成される(各々のパルス幅はΔt)。各サンプリング窓を、ひとつ前ものに対して以下の度数分位相シフトさせる。
【数11】

【0043】
カウンタの標識付け作業を行うために、つまり、光子の到着時間に対応するサンプリング窓番号を入射する光子に付加するために、サンプリング窓の4倍に等しい高速クロック、または、
【数12】


も生成される。光子到達を記録した窓を励起パルスに関連させるために、励起パルスに対するその位相を知る必要がある。上記作業は、カウンタを起動させる相互相関周波数信号によって行われる。それによって、サンプリング窓と励起クロック周波数の間に相対的な位相差を測定する。光子数ごとに、回路は、到達窓wαおよび相互相関カウンタ値pccを特定する値を出力する。これらのパラメータは、次のように位相指数pに組み込まれる。
【数13】

【0044】
式中、nは利用される窓の数である。位相指数を使用して検出される各光子の位相指数のヒストグラムである、相互相関位相ヒストグラムH(p)を生成する。
【0045】
各画素における強度画像は、以下によって与えられる。
【数14】


この時点で、他のパラメータを容易に算出し、表示することができる。
【0046】
図2は、本発明の実施形態に係るFLIM使用におけるPMT検出器を用いた二重チャンネルFLIMユニット200の概略図である。図2において、FastFLIMユニットは、2つの別々の光電子増倍管(PMT)を用いる。それぞれの検出器からの信号は、チャンネルCH1 201およびCH2 202に入り、増幅器204、206および定比率弁別器208、210による信号調整(増幅および書式設定)の後、この信号は、フィールドプログラマブルゲートアレイ(FPGA)モジュール212に入る。FPGAモジュール212は、また、フレームクロック214および外部クロック216からの入力も受け取り、USB接続218を介して出力を供給する。
【0047】
図3は、本発明の実施形態に係るFLIM応用の単一光子計数アバランシェフォトダイオード(SPAD)検出器を用いた二重チャンネルFLIMユニット300の概略図である。図3において、FasFLIMユニット300は、2つの別々の単一の光子計数アバランシェフォトダイオード、SPAD(図示せず)を用いる。それぞれのSPADからの信号は、FPGAモジュール304のチャンネルCH1 301およびCH2 302へ入力として供給される。FPGAモジュール304は、フレームクロック306および外部クロック308からの入力を受け取り、USB接続310を介して出力を供給する。
【0048】
図2および図3に関して記載されている両実施形態において、フレームクロック214、306は、光源を変調するために設けられている。データは、ユニバーサルシリアルバス(USB)ポート・プロトコルを用いてコンピュータへ転送される。
【0049】
以下の例では、本発明の実施形態に係る2チャンネル計測器が記載されている。2チャンネル・デジタル並列蛍光測定器電子回路は、FPGAチップモデル、スパルタン3E FPGA、品番XC3S100E−TQ144、カリフォルニア州サンノゼのザイリンクス社製上の走査同調によって実装される。このチップは、低コスト、小型、およびデジタルクロック管理(DCM)専用回路の理由により選択された。DCMは分数周波数調整を行うことができる高品質デジタルクロックを提供する。但し、一般に、十分に高速なクロッキング性能および周波数をシフトする能力を有するいずれの回路を用いることもできる。測定の結果を外部へ送るために、FPGAチップは、カリフォルニア州サンノゼのサイプレスセミコンダクタ社製のUSBチップモデルCY7C60813Aに接続される。この2つのチップの組合せは、アリゾナ州フェニックスのアヴネットエレクトロニクスマーケティング社によってパッケージ化されて、低コスト汎用評価キットとして販売されている。
【0050】
FPGAは、2つのクロックマネージャを含む。20MHzのクロック信号が入力として付加されると、この入力に分数n/mを乗算することによって2つのクロックが生成される。ここで、n、mは1から32の整数である。この実施例では、上述の式[7]の条件を満たすために、n=n=32、m=17およびm=15の値が用いられる。サンプリングクロックの4倍のクロックを生成するために、周波数をさらに4で割る。要するに、下式の通りである。
【数15】

【0051】
したがって、相互相関周波数は下式のようになる。
【数16】

【0052】
一例として、ある実施態様としては他の周波数を利用することもできるが、周波数fexc=20MHzが用いられ、それにより、f=20.07843MHzとなる。したがって、相互相関周波数は、78.43KHzに等しい。1/78.43=12.75μsになる時間において、サンプリング周波数波形は、励起信号の255の波形を包含する。fexc=20MHzを用いて、高速クロックを、f=80.313MHzで生成する。サンプリング周波数は、f=20.07843MHzに等しく、相互相関周波数はfcc=78.43KHzに等しい。
【0053】
一続きの狭パルスは、光子流を運ぶ同一信号と結びつけられる。各パルスには相補パルスがあるため、光子は消失しない。原理的に、これらのパルスは非常に狭くすることができる。しかしながら、この実施例で用いられる特定の電子チップのため、パルスは約2nsより狭くすることができない。
【0054】
どれくらいの高調波を収集できるかを評価するために、約33nsの周期に対応する約30MHzのレーザ反復率を考慮する。この周期が約2nsの領域に分割される場合、光子を収集できる約16個の窓が設けられる。
【0055】
これら16個の窓は15個の高調波を発生できる。したがって、デジタル並列蛍光測定器は、30MHzの高調波信号から15個の高調波、すなわち300MHzまでの高調波を全て測定する。これらの周波数は、分光蛍光計および顕微鏡(FLIM)の両方において、大部分の寿命測定に適切である。事実、0.5nsの寿命は、300MHzでほぼ45度の位相シフトを生じる。
【0056】
本発明によるデジタル方法を用いた位相測定の精度は非常に高い。実施形態では、位相を約0.1度の精度で測定することができる。この精度は、たった数ピコ秒の誤差と言い換えられる。そのような精度が約2nsの窓によって得られることは注目に値する。これは、異なる窓における多くの光子の平均算出に起因する。1つの単一光子の時間遅延の測定に対して、寿命軸の精度は、依然として2ns、すなわち窓の幅である。
【0057】
本発明の異なる実施例および実施形態は、蛍光測定および撮像の分野に革命的変化をもたらす可能性を有する、並列デジタル取得と非常に低コストのデジタル回路を用いる原則の実施を提供する。
【0058】
本発明の実施態様にて解決することができる具体的な問題とは、データ取得の拡散を制限するデータを出力する際に用いられるFIFO要求側の飽和である。実施例の動作を考える場合、この特有の制限をよく理解していなければならない。説明のために、特別な実施例を、16個の窓および20MHzのレーザ反復率によって操作しているものと仮定する。この条件では、各窓幅は50ns/16=3.125nsとなる。回路が光子の検出によってレベル1に設定されるため、1つの窓当たり1つの光子だけを検出することができる。しかし、第2の窓が3.125ns後にアクティブになり、第2の光子が到着している場合、それを記録することができる。しかしながら、検出器のパルス幅が10nsを超えるため、最大計数率は実際のところ回路によって制限されないが、検出器が制限される。光子が検出されるたびに、または、データイネーブルラインの移行が検出されるたびに、周期の16個の位相に記録されたデータが、データ読み込みレジスタ(FIFO)へ転送される。読み込みの粒度は非常に小さく、デッドタイムがある。
【0059】
しかしながら、FIFOの出力は、USBチップによって可能となる最大周波数で読み込めるに過ぎない。USB転送は高速だが、データ転送要求を処理するために遅延時間が生じる。典型的なコンピュータおよび操作システムにおけるこの遅れは、約3msである。3msの時間間隔の間にFIFOが一杯になる場合、データの一部が消失する。データよりもデータの同期が重要なので、FIFOの容量が80%に達すると、データインは停止するが、データイネーブル入力ラインは停止しない。FIFOは8192個の入力に相当する容量を有し、そのうち、約6400の場所を用いる。3msの間に、6400以上の光子が検出されると、回路は飽和する。これは、2ms間において約2MHzの持続率に等しい。
【0060】
この限界値は、より大きいFIFOを用いれば、簡単に取り除くことができるが、顕微鏡観察を利用する大抵の場合は、この限界値に達することはない。この限界値に達する場合、レーザは飽和を避けるために減衰される。この方式を用いて、本実施形態は、検出器識別器で起きる光子多重衝突により制限される。カードそれ自体は衝突を強めてはいないが、カードの出力は、徐々にというよりむしろ突然飽和に達する。
【0061】
他の実施例では、カリフォルニア州サンノゼのザイリンクス社によるザイリンクス3の基板を用いて一連の回路を製作し、基本的な並列取得原理を異なる使用方法で実施した。この実施例では、FIFOのライン数は16である。2つの独立データチャネルに対する16個の窓の実施態様において、8つのラインを用いて光子が検出された時の窓番号を決定し、2つのチャンネルのうちどちらが光子を検出したか決定する。1つのラインがデータイネーブルフラグに用いられ、7つのラインが光子が検出されたマクロ・クロック・サイクルを決定するために用いられる。
【0062】
他の実施態様は、ザイリンクス3の基板を用いて4つの同時データ取得チャネルに用いられる。しかしながら、FIFOのライン数が制限されているため、2つの光子が1つ以上のチャンネルにちょうど同時に到着した場合、光子は記録されるが、その光子に対するタイミングを決定することができない。こうした事象はまれであり、ソフトウェアはこれらの特定の事象を無視するように判断するため、これは通常問題にはならない。
【0063】
ザイリンクス3の基板を用いた異なる実施態様では、レーザダイオードまたはLEDの強度を変調するのに用いられる基本的なクロック周波数において、狭パルスが出力された。本質的にパルス化されるレーザ光源では、カード内部動作が外部レーザ光源と同期できるように、信号は基板の外部のクロック入力に接続されている。
【0064】
ザイリンクス3の基板を用いた16個の窓に対する最大クロック周波数は約20MHzであると判明し、320MHzまでの高調波を提供する。より高い周波数が用いられる場合、チップが正しく働かないようである。この限界値は、本発明のシステムおよび方法の不良に起因するというよりもむしろ、アブネット社の基板において用いられるチップの内部的な限界に起因するものである。
【0065】
本発明の並列多周波数位相蛍光測定器の実施形態を、図4を参照して説明する。計測器400は、溶液または固体サンプル402中の蛍光の減衰時間を決定するために利用される。本実施形態では、光源404はレーザダイオードである。基準信号406は、この実施態様では、FastFLIMユニット408に提供される。内部クロックも利用できるため、基準信号406は絶対に必要ということはない。光検出器410としては、光電子増倍管(たとえば、日本の浜松ホトニクス社のR928型)、マイクロチャンネルプレート検出器(たとえば、日本の浜松ホトニクス社のR3809U型)、または、アバランシェフォトダイオード(たとえば、カナダのEG&Gパーキンエルマー社のSPCM−AQRシリーズ)を用いることができる。光検出器の分圧器回路は、特に変更する必要がない。コンピュータは、例えばUSBコネクタ414を介して、FastFLIM408に接続されている。
【0066】
図5Aおよび図5Bは、デジタル並列取得原理を用いた測定例を示すグラフおよび表を示す。この実施例では、300MHzまでの周波数を測定できるように、蛍光励起源は20MHzで動作するレーザである。サンプルは、pH10のフルオレセイン溶液である。フルオレセインの周波数に対する位相および変調(ウェーバー・プロット502)を図5Aに示す。数値的データを図5Bに示す。励起源は、473nmで放出するレーザダイオードであった。このサンプルに対して、4nsの寿命が報告された。この実施例では、全てのデータ取得には約1sかかった。
【0067】
位相および変調曲線が一致したのは、4.00+/−0.01nsの寿命の値である。pH10のフルオレセインの予想寿命は、4.00nsである。
【0068】
FLIM測定に関する本発明の実施態様を、図6を参照して説明する。FLIMの応用には、2チャンネルまたは多重チャネルの実装が可能である。光検出器602からの信号は、光源607を変調し、先の実施例にて説明したように、コンピュータ609と通信するFastFLIM電子回路604に供給される。
【0069】
共焦点顕微鏡603のスキャン動作と同期できる回路を適切に実施するために、顕微鏡のデータ取得を始めなければならない瞬間を正確に知らせるスキャナ電子回路606からのフレーム信号605を、FastFLIMユニット604に送る。この実施態様において、カードは常にデータを収集しており、顕微鏡のデータ有効ラインに直接接続されるデータストリームにフラグが追加される。顕微鏡603がいかなる種類の信号を生成していても、この方法を用いて、データストリームは信号を記録する。
【0070】
いつデータが有効なのかを決定するプログラムは、顕微鏡603の有効なデータの同じ論理に従うものでなければならない。この信号は、単にフレームの初めの1つのパルスであるか、変化してから全フレームにわたって変わらない信号でありうる。この信号をデータイネーブルラインと言う。光子がない場合、この信号が、20MHzの範囲内の電子回路のクロックの各周期にて記録されることによって、顕微鏡に通常用いられる範囲の画素滞留時間(1〜200μs)に、十分な同期精度を与える。
【0071】
データ分析は、各画素の減衰時間の決定によって、またはフェーザプロット法を用いて行われる。
【0072】
強度撮像に加えて、蛍光変動相関分光法(FCS)は、一般的な蛍光顕微鏡に行われるもう一つの測定である。本発明のFastFLIM回路は、FCS測定に用いることもできる。FCSを行うための準備はFLIMと同様である。相互相関クロックfccは光子到着時間を記録するために用いる。図7は、10nMフルオレセイン溶液の自己相関プロット700である。曲線702は、フルオレセインの周知の拡散定数と一致する。
【0073】
同じ電子回路が、本発明の説明的実施形態にかかるFLIMおよびFCS測定を行うことができると強調することは注目に値する。
【0074】
図8は、データ転送のプロセスおよび測定されたパラメータの決定を示すフローチャートである。例えば図2および3に関して記載されているFPGAモジュールのようなFPGAモジュール802は、フレームクロック804および励起周波数806を受信する。FPGAモジュール802は、例えばUSBポートを介してデータをコンピュータ808へ転送する。コンピュータ808は、FIFO810およびFIFOデコーダ812を介して複数のチャンネル814にデータを出力する。複数のチャンネル814に関するデータは、相互相関(816)して画素マトリックス818を生成する。画素マトリックス818は位相ヒストグラム820を生成するのに用いられる。高速フーリエ変換(FFT)822は位相ヒストグラム820に適用され、各画素の値のマトリクス824を生成する。プロセスの最後に、画像の画素ごとに、平均定常状態強度DC、変調の値AC、および蛍光の位相シフトφが与えられる。
【0075】
これらの3つの値は、レーザの基礎反復率の高調波それぞれに与えられる。すなわち、20MHzを用いる場合、40MHz、60MHz、80MHz、…320MHzにおける値が与えられる。他の数量もリアルタイムに表示することができる。例えば、変調m=AC/DCをリアルタイムに表示することができ、位相を用いて算出される減衰時間をリアルタイムに表示することができ、さらに、変調を用いて算出される減衰時間をリアルタイムに表示することができる。本発明に係る並列多重周波数位相蛍光測定器プロセスは、図8を参照して記載されている一般的なプロセスの一例である。
【0076】
本発明は、好ましい実施例に関連して図と共に説明されたが、多数の変形および変更があることは当業者に明らかであり、この変形および変更が本発明の精神と範囲から逸脱することなく行われてもよい。したがって、そのような変形および変更は本発明の範囲に含まれることを意図されるものであるため、本発明は、上記した方法または構成の正確な詳細に限られるものではない。

【特許請求の範囲】
【請求項1】
サンプル上で並列多周波数位相蛍光測定を行う方法であって、
前記サンプルに、所定の励起周波数でパルス光信号を照射するステップと、
前記励起周波数との差が検出器の最大計数周波数未満である相互相関周波数に等しくなるよう選択された所定のサンプリングレートにて、前記サンプルが発した光を前記検出器によってデジタル的にサンプリングするステップと、
を含む方法。
【請求項2】
前記サンプリングレートは、外部と同期して、前記励起周波数に対してシフトされる、請求項1記載の方法。
【請求項3】
前記相互相関周波数は、前記サンプリング周波数の整数分数である、請求項1記載の方法。
【請求項4】
前記相互相関サンプリング周波数は、前記励起周波数の256/255倍である、請求項3記載の方法。
【請求項5】
前記パルス光は、本質的に変調されたレーザによって出力される、請求項1記載の方法。
【請求項6】
前記パルス光を、
周波数信号を生成するステップと、
レーザダイオードおよび発光ダイオードからなる群から選択される発光体を、前記周波数信号によって振幅変調するステップ、
によって出力する、請求項1記載の方法。
【請求項7】
前記パルス光を、
周波数信号を生成するステップと、
電気光学変調器または音響光学変調器を前記周波数信号によって振幅変調し、第1の変調信号を生成するステップと、
連続波レーザを、前記第1の変調信号によって変調するステップと、
によって出力する、請求項1記載の方法。
【請求項8】
前記検出器は、キロヘルツ光子計数装置を備える、請求項2記載の方法。
【請求項9】
前記サンプリングするステップは、前記検出器の利得を変調せずにデジタルヘテロダインするステップを含む、請求項1記載の方法。
【請求項10】
前記励起周波数は、複数の高調波周波数を備える、請求項1記載の方法。
【請求項11】
前記相互相関周波数の逆数は、サンプリング窓が前記パルス光の各波形をサンプリングする時間である、請求項1記載の方法。
【請求項12】
それぞれがパルス幅[delta−t]を有し、前記サンプリング周波数を360*delta−t倍した度数分だけ、ひとつ前の窓に対して位相シフトさせた、複数のサンプリング窓を生成するステップと、
前記サンプリング周波数の4倍に等しい高速クロックを供給するステップと、
光子が検出されたサンプリング窓を前記パルス光のパルスと関連させることによって、当該パルスに対する検出光子の位相を決定するステップと、
を更に含む、請求項1記載の方法。
【請求項13】
前記位相を決定するステップは、
前記相互相関周波数にて前記信号によってカウンタを起動させるステップと、
前記カウンタの対応する計数によって光子が検出された特定のサンプリング窓を特定するステップと、
を含む、請求項12記載の方法。
【請求項14】
光子計数ごとに、前記特定のサンプリング窓および対応する相互相関カウンタ値[Pcc]を特定する第1の値[Wa]を供給するステップと、
下式にしたがって、前記第1の値および前記対応する相互相関カウンタ値を組み合わせることによって位相指数[P]を生成するステップと、
を更に含む、請求項13記載の方法。
P=255−[(Pcc+256*Wa/Nw)mod256]、
ここでNwは前記複数のサンプリング窓の数
【請求項15】
検出された光子ごとに、前記位相指数Pの相互相関位相ヒストグラムH(P)を生成するステップを更に含む、請求項14記載の方法。
【請求項16】
各光子の前記ヒストグラムH(P)の和である、出力装置の各画素の強度画像[I]を、前記出力装置に供給するステップを更に含む、請求項14記載の方法。
【請求項17】
データをコンピュータへ転送する前記検出器と通信する先入先出(FIFO)データ読み込みレジスタであって、該データ読み込みレジスタは複数の入力ライン、複数の出力ライン、および少なくとも一つのデータイネーブルラインを備えるステップと、
前記データ読み込みレジスタがその容量の約80%に達する場合、前記データイネーブルラインへの入力を維持する一方で、前記入力ラインへの入力を停止することによって前記データ読み込みレジスタの飽和を防ぐステップと、
を更に含む、請求項1記載の方法。
【請求項18】
前記レジスタ飽和の前記出力ライン上で、前記レジスタの飽和を防ぐために、前記パルス光信号を減衰させるステップを更に含む、請求項17記載の方法。
【請求項19】
前記サンプルに、所定の励起周波数でパルス光信号を照射する発光体と、
前記励起周波数との差が検出器の最大計数周波数未満である相互相関周波数に等しくなるよう選択された所定のサンプリングレートにて、前記サンプルが発した光を検出する検出器と、
を備える高速蛍光寿命撮像装置。
【請求項20】
それぞれパルス幅[delta−t]を有し、前記サンプリングレートを360*delta−t倍した度数分だけ、ひとつ前の窓に対して位相シフトさせた、複数のサンプリング窓を生成するように構成されたフィールドプログラマブルゲートアレイ[FPGA]モジュールを更に備え、
前記FPGAモジュールは、光子が検出されたサンプリング窓を前記パルス光のパルスと関連させることによって、当該パルスに対する検出光子の位相を決定するように構成された、請求項19記載の装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公表番号】特表2013−518284(P2013−518284A)
【公表日】平成25年5月20日(2013.5.20)
【国際特許分類】
【出願番号】特願2012−551169(P2012−551169)
【出願日】平成22年12月30日(2010.12.30)
【国際出願番号】PCT/US2010/062462
【国際公開番号】WO2011/093981
【国際公開日】平成23年8月4日(2011.8.4)
【出願人】(512186081)アイ.エス.エス (ユーエスエー)、インコーポレイテッド (1)
【Fターム(参考)】