説明

ハードコート用材料および積層体

【課題】硬化後の塗膜の硬度が高く、傷つきにくい硬化物であり、3次元形状を有する構造体へ塗布した後の塗膜ひび割れ及び剥がれが生じにくい硬化物を与えることができるハードコート材用樹脂組成物およびハードコート層付き積層体を提供することにある。
【解決手段】下記式(1):
【化1】


[式中、Rは炭素数2〜8のアルキレン基、Rは水素原子またはメチル基、mは正の整数である]
で示される繰り返し単位を有するビニル系重合体を含有する材料を3次元形状構造体へ塗布することを特徴とするハードコート用材料。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、耐摩耗性、耐擦傷性、基材密着性に優れたコーティング層を形成するハードコート用材料、およびハードコート硬化膜を有する積層体に関する。
【背景技術】
【0002】
携帯電話、OA機器、家庭用電化製品、自動車用内・外装部品、家具用外装部材等の傷つき防止のために、耐擦傷性を付与する目的でこれら透明プラスチック基材表面にハードコート層が形成される場合がある。
【0003】
ハードコート層を形成する方法として、例えば、透明プラスチック基材表面に多官能アクリレート系の紫外線硬化型透明樹脂をコーティングする方法が挙げられる。しかしながら、多官能アクリレートモノマーを主成分とする硬化性樹脂の場合、プラスチック基材表面の耐引っかき性や耐擦傷性は改善されるものの硬化時の体積収縮が大きくなるので、ハードコート層と基材の剥離やハードコート層のひび割れが発生する場合がある。
【0004】
OA機器、携帯電話、家庭用電化製品、自動車用内・外装部品、家具用外装部材の多くは立体形状を有しており、このような3次元形状を有する構造体の基材へ紫外線硬化型透明樹脂をコーティングする場合、硬化後の体積収縮率が大きいハードコート材を用いると構造体のコーナー部でひび割れが発生する場合が見られた。
【0005】
そこでハードコート層の問題点を改善する為に種々の検討がなされている。プラスチック基材にハードコート層を形成する方法として、例えば、以下のようなものが挙げられる。特許文献1には、コーティング材料にウレタンアクリレート系材料を用い、製品表面に傷が付いた場合には、その傷を自ら修復する自己修復させる方法が開示されている。特許文献2には、ポリマー主鎖のユニット中に(メタ)アクリロイル基を側鎖として有する化合物を用い、体積収縮率の低減及び耐擦傷性を向上させるために無機微粒子を配合させた光硬化性キャスト液組成物が開示されている。
【0006】
しかし、軟質のウレタンアクリレート系材料を用いた場合、表面硬度が低下するため、耐擦傷性が低下したりする場合が見られたり、また無機微粒子を配合させると材料コストが高くなるなど、材料の改善が求められていた。
【0007】
【特許文献1】特開2005−162908号公報
【特許文献2】特開2006−282909号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
上述した状況の下、本発明が解決すべき課題は、硬化後の塗膜の硬度が高く、傷つきにくい硬化物であり、3次元形状を有する構造体へ塗布した後の塗膜ひび割れ及び剥がれが生じにくい硬化物を与えることができるハードコート用材料およびハードコート層付き積層体を提供することにある。
【課題を解決するための手段】
【0009】
ラジカル重合性(アニオン重合性)の(メタ)アクリロイル基とカチオン重合性のビニルエーテル基とを分子内に併せ持つユニークな構造の単量体として、アクリル酸2−ビニロキシエチル(VEA)、メタクリル酸2−ビニロキシエチル(VEM)、アクリル酸2−(2−ビニロキシエトキシ)エチル(VEEA)、メタクリル酸2−(2−ビニロキシエトキシ)エチル(VEEM)などの異種重合性単量体が知られている。これらの異種重合性単量体は、重合方法を選択することにより、(メタ)アクリロイル基またはビニルエーテル基をペンダントに持つユニークな重合体を与えることができる。例えば、ラジカル重合(アニオン重合)を行えば、(メタ)アクリロイル基が選択的に重合反応を行い、熱・紫外線・電子線硬化性重合体として、側鎖にカチオン重合可能な二重結合を有するビニルエーテル基ペンダント型重合体が得られる。他方、カチオン重合を行えば、ビニルエーテル基が選択的に重合反応を行い、熱・紫外線・電子線硬化性重合体として、側鎖にラジカル重合(アニオン重合)可能な二重結合を有する(メタ)アクリロイル基ペンダント型重合体が得られる。
【0010】
本発明者らは、種々検討の結果、このような側鎖にラジカル重合可能な二重結合を有する(メタ)アクリロイル基ペンダント型重合体または共重合体を用いれば、硬化後の塗膜の硬度が高く、傷つきにくい硬化物であり、塗膜ひび割れ及び剥がれが生じにくいハードコート層付き積層体が得られることを見出して、本発明を完成した。
【0011】
すなわち、本発明は、下記式(1):
【0012】
【化1】

【0013】
[式中、Rは炭素数2〜8のアルキレン基、Rは水素原子またはメチル基、mは正の整数である]
で示される繰り返し単位を有するビニル系重合体を含有する3次元形状構造体へのハードコート用材料である。
【0014】
また、本発明は、ハードコート用材料を硬化させて得られる層が形成されてなる積層体を提供するものでもある。
【発明の効果】
【0015】
本発明によれば、ハードコート用材料に含有される(メタ)アクリロイル基ペンダント型重合体を用いると硬化後の塗膜の硬度が高く、傷つきにくい硬化物であり、また、ビニル系重合体を用いているので、ビニル系単量体を用いた場合と比較すると塗膜ひび割れ及び剥がれが生じにくく、硬化後の反りが小さい積層体を与えることができる。
【発明を実施するための最良の形態】
【0016】
≪ハードコート用材料≫
本発明のハードコート用材料は、下記式(1):
【0017】
【化1】

【0018】
[式中、Rは炭素数2〜8のアルキレン基、Rは水素原子またはメチル基、mは正の整数である]
で示される繰り返し単位を有するビニル系重合体を含有する3次元形状構造体へのハードコート用材料。
【0019】
<ビニル系重合体>
本発明のハードコート用材料において、上記式(1)で示されるビニル系重合体の配合量は、組成物の合計量に対して、好ましくは10〜100質量%、より好ましくは20〜100質量%、さらに好ましくは30〜100質量%である。ビニル系重合体の配合量が10質量%未満であると、架橋密度が低下するので硬化速度の低下や硬化物の塗膜強度が不充分になることがある。
【0020】
上記式(1)で示されるビニル系重合体は、低分子量成分が増加するとハードコート層の強度が低下することがある。ビニル系重合体の数平均分子量(Mn)は、好ましくは1,000以上、より好ましくは2,000〜200,000、さらに好ましくは3,000〜50,000の範囲内である。ビニル系重合体の数平均分子量(Mn)が1,000未満であると、硬化速度の低下や硬化物の強度低下を生じることがある。また200,000を超えると基材との濡れ性が低下することや、また、ハードコート材樹脂組成部を調整する際に混合時間が長くなる等の作業性が低下する場合がある。ここで、数平均分子量(Mn)および分子量分布(Mw/Mn)は、THFを移動相とし、温度40℃、流速0.3mL/minの条件下で、東ソー株式会社製のカラム TSK−gel SuperHM−H 2本、TSK−gel SuperH2000 1本を用い、東ソー株式会社製のゲル浸透クロマトグラフィー(GPC)装置 HLC−8220GPCにより求め、標準ポリスチレン換算した値である。
【0021】
上記式(1)で示されるビニル系重合体は、固体状の単量体含有量が多い重合体の場合を除き、液状粘性体として得ることができる。液状粘性体であれば、有機溶剤や(メタ)アクリレート系単量体との溶解性が良いので、ハードコート用樹脂組成物を調整する際に作業効率の向上化が図れる。粘度が低いと作業性が良く、また、積層体を作成する際に、基材との濡れ性は向上するが、ビニル系重合体の数平均分子量(Mn)が小さい場合があり、ハードコート層の強度が低下することがある。好ましい本発明のビニル系重合体の粘度は、好ましくは0.1〜2000Pa・s、より好ましくは1〜1000Pa・s、さらに好ましくは2〜500Pa・sである。ここで、粘度は、温度25℃の条件下で、RB80型粘度計(型式「RB80L」:東機産業(株)を用いて算出した値である。
【0022】
上記式(1)において、Rで表される炭素数2〜8のアルキレン基としては、例えば、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、シクロヘキシレン基、1,4−ジメチルシクロヘキサン−α,α’−ジイル基、1,3−ジメチルシクロヘキサン−α,α’−ジイル基、1,2−ジメチルシクロヘキサン−α,α’−ジイル基、1,4−ジメチルフェニル−α,α’−ジイル基、1,3−ジメチルフェニル−α,α’−ジイル基、1,2−ジメチルフェニル−α,α’−ジイル基などが挙げられる。Rで表される置換基は、上記式(1)中にm個存在するが、同一であっても異なっていてもよい。
【0023】
上記式(1)において、mは正の整数、好ましくは1〜20の整数、より好ましくは1〜10の整数、さらに好ましくは1〜5の整数であり、nは正の整数、好ましくは50〜400の整数、より好ましくは100〜300の整数、さらに好ましくは150〜250の整数である。
【0024】
<ビニル系重合体の調製>
上記式(1)で示されるビニル系重合体は、下記式(2):
【0025】
【化2】

【0026】
[式中、R、Rおよびmは上記式(1)と同意義である]
で示される異種重合性単量体を、従来から知られているカチオン重合により調整することが可能であり、又、特開2006−241189号明細書に記載された方法でリビングカチオン重合することにより、容易に調製することもできる。このとき、上記式(2)で示される異種重合性単量体は、単独で用いても2種以上を併用してもよい。後者の場合、得られる共重合体は、ランダム共重合体、交互共重合体、周期的共重合体、ブロック共重合体またはその組合せのいずれであってもよい。また、グラフト共重合体であってもよい。
【0027】
上記式(2)で示される異種重合性単量体の具体例としては、例えば、(メタ)アクリル酸2−ビニロキシエチル、(メタ)アクリル酸3−ビニロキシプロピル、(メタ)アクリル酸2−ビニロキシプロピル、(メタ)アクリル酸1−ビニロキシプロピル、(メタ)アクリル酸1−メチル−2−ビニロキシエチル、(メタ)アクリル酸4−ビニロキシブチル、(メタ)アクリル酸3−ビニロキシブチル、(メタ)アクリル酸2−ビニロキシブチル、(メタ)アクリル酸1−メチル−3−ビニロキシプロピル、(メタ)アクリル酸2−メチル−3−ビニロキシプロピル、(メタ)アクリル酸1−メチル−2−ビニロキシプロピル、(メタ)アクリル酸1,1−ジメチル−2−ビニロキシエチル、(メタ)アクリル酸6−ビニロキシヘキシル、(メタ)アクリル酸4−ビニロキシシクロヘキシル、(メタ)アクリル酸4−ビニロキシメチルシクロヘキシルメチル、(メタ)アクリル酸3−ビニロキシメチルシクロヘキシルメチル、(メタ)アクリル酸2−ビニロキシメチルシクロヘキシルメチル、(メタ)アクリル酸4−ビニロキシメチルフェニルメチル、(メタ)アクリル酸3−ビニロキシメチルフェニルメチル、(メタ)アクリル酸2−ビニロキシメチルフェニルメチル、(メタ)アクリル酸2−(2−ビニロキシエトキシ)エチル、(メタ)アクリル酸2−(2−ビニロキシイソプロポキシ)エチル、(メタ)アクリル酸2−(2−ビニロキシエトキシ)プロピル、(メタ)アクリル酸2−(2−ビニロキシイソプロポキシ)プロピル、(メタ)アクリル酸2−(2−ビニロキシエトキシ)イソプロピル、(メタ)アクリル酸2−(2−ビニロキシイソプロポキシ)イソプロピル、(メタ)アクリル酸2−{2−(2−ビニロキシエトキシ)エトキシ}エチル、(メタ)アクリル酸2−{2−(2−ビニロキシイソプロポキシ)エトキシ}エチル、(メタ)アクリル酸2−{2−(2−ビニロキシイソプロポキシ)イソプロポキシ}エチル、(メタ)アクリル酸2−{2−(2−ビニロキシエトキシ)エトキシ}プロピル、(メタ)アクリル酸2−{2−(2−ビニロキシエトキシ)イソプロポキシ}プロピル、(メタ)アクリル酸2−{2−(2−ビニロキシイソプロポキシ)エトキシ}プロピル、(メタ)アクリル酸2−{2−(2−ビニロキシイソプロポキシ)イソプロポキシ}プロピル、(メタ)アクリル酸2−{2−(2−ビニロキシエトキシ)エトキシ}イソプロピル、(メタ)アクリル酸2−{2−(2−ビニロキシエトキシ)イソプロポキシ}イソプロピル、(メタ)アクリル酸2−{2−(2−ビニロキシイソプロポキシ)エトキシ}イソプロピル、(メタ)アクリル酸2−{2−(2−ビニロキシイソプロポキシ)イソプロポキシ}イソプロピル、(メタ)アクリル酸2−[2−{2−(2−ビニロキシエトキシ)エトキシ}エトキシ]エチル、(メタ)アクリル酸2−[2−{2−(2−ビニロキシイソプロポキシ)エトキシ}エトキシ]エチル、(メタ)アクリル酸2−(2−[2−{2−(2−ビニロキシエトキシ)エトキシ}エトキシ]エトキシ)エチル;などが挙げられる。これらの異種重合性単量体のうち、(メタ)アクリル酸2−ビニロキシエチル、(メタ)アクリル酸3−ビニロキシエチル、(メタ)アクリル酸2−ビニロキシプロピル、(メタ)アクリル酸1−メチル−2−ビニロキシエチル、(メタ)アクリル酸4−ビニロキシブチル、(メタ)アクリル酸6−ビニロキシヘキシル、(メタ)アクリル酸4−ビニロキシシクロヘキシル、(メタ)アクリル酸4−ビニロキシメチルシクロヘキシルメチル、(メタ)アクリル酸2−(2−ビニロキシエトキシ)エチル、(メタ)アクリル酸2−(2−ビニロキシイソプロポキシ)プロピル、(メタ)アクリル酸2−{2−(2−ビニロキシエトキシ)エトキシ}エチルが好適である。
【0028】
上記式(2)で示される異種重合性単量体は、従来公知の方法を用いて、製造することができる。例えば、上記式(2)において、Rがエチレン基、mが1である場合、(メタ)アクリル酸の金属塩と、2−ハロゲノエチルビニルエーテルとを縮合させるか、(メタ)アクリル酸メチルと、2−ヒドロキシエチルビニルエーテルとをエステル交換させるか、あるいは、(メタ)アクリル酸ハライドと、2−ヒドロキシエチルビニルエーテルとを縮合させることにより、製造することができる。また、上記式(2)において、Rがエチレン基、mが2である場合、(メタ)アクリル酸の金属塩と、2−(2−ハロゲノエトキシ)エチルビニルエーテルとを縮合させるか、(メタ)アクリル酸メチルと、2−(2−ヒドロキシエトキシ)エチルビニルエーテルとをエステル交換させるか、あるいは、(メタ)アクリル酸ハライドと、2−(2−ヒドロキシエトキシ)エチルビニルエーテルとを縮合させることにより、製造することができる。
【0029】
上記式(1)で示されるビニル系重合体がカチオン重合可能な単量体に由来する構造単位を有する共重合体である場合、かかる共重合体は、上記式(2)で示される異種重合性単量体と、カチオン重合可能な単量体とを、カチオン重合あるいはリビングカチオン重合することにより、容易に調製することができる。このとき、上記式(2)で示される異種重合性単量体は、単独で用いても2種以上を併用してもよい。得られる共重合体は、ランダム共重合体、交互共重合体、周期的共重合体、ブロック共重合体またはその組合せのいずれであってもよい。また、グラフト共重合体であってもよい。
【0030】
カチオン重合可能な単量体としては、例えば、メチルビニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、イソプロピルビニルエーテル、n−ブチルビニルエーテル、イソブチルビニルエーテル、t−ブチルビニルエーテル、2−エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル、オクタデシルビニルエーテル、2−クロロエチルビニルエーテル、4−ヒドロキシブチルビニルエーテルなどのビニルエーテル化合物;スチレン、4−メチルスチレン、3−メチルスチレン、2−メチルスチレン、2,5−ジメチルスチレン、2,4−ジメチルスチレン、2,4,6−トリメチルスチレン、4−t−ブチルスチレン、2−クロロスチレン、3−クロロスチレン、4−クロロスチレン、4−メトキシスチレン、4−クロロメチルスチレンなどのスチレン誘導体;N−ビニルカルバゾール、N−ビニルピロリドンなどのN−ビニル化合物;イソプロペニルスチレン、ケイ皮酸2−ビニロキシエチル、ソルビン酸2−ビニロキシエチルなどのジビニル化合物やトリビニル化合物;などが挙げられる。これらのカチオン重合可能な単量体は、単独で用いても2種以上を併用してもよい。これらのカチオン重合可能な単量体のうち、イソブチルビニルエーテル、シクロヘキシルビニルエーテルなどのビニルエーテル化合物が好適である。
【0031】
上記式(2)で示される異種重合性単量体は、ラジカル重合性またはアニオン重合性の(メタ)アクリロイル基と、カチオン重合性のビニルエーテル基とを同時に有するので、重合方法を選択することにより、(メタ)アクリロイル基またはビニルエーテル基をペンダント基として有する重合体が得られる。本発明では、上記式(2)で示される異種重合性単量体のビニルエーテル基を、単独で、あるいは、カチオン重合可能な単量体と共に、カチオン重合あるいはリビングカチオン重合させることにより、(メタ)アクリルロイル基をペンダント基として有する上記式(1)で示されるビニル系重合体が得られる。
【0032】
上記式(2)で示される異種重合性単量体と、カチオン重合可能な単量体とをカチオン重合あるいはリビングカチオン重合する場合、単量体のモル比(カチオン重合可能な単量体/上記式(2)で示される異種重合性単量体)は、好ましくは0.1〜10、より好ましくは0.5〜5、さらに好ましくは0.8〜2の範囲内である。
【0033】
<ビニル系重合体の二級アミンによる変性>
上記式(1)で示されるビニル系重合体が有する炭素−炭素二重結合の一部に、二級アミンを付加させて、アミン変性ビニル系重合体としてもよい。二級アミンを付加させることにより、上記式(1)で示される繰り返し構造単位を有するビニル系重合体の極性を高めることができる。
上記式(1)で示される繰り返し構造単位を有するビニル系重合体へ付加される前記二級アミンとしては、例えば、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジ−2−エチルヘキシルアミン、ジイソプロピルアミン、ジブチルアミン、メチルオクチルアミン、メチルエチルアミン、メチルプロピルアミン、エチルプロピルアミンなどのアルキルアミンやジアルキルアミン;N−メチルアニリンなどのアリールアミン;ジフェニルアミンなどのジアリールアミン;N−メチルエタノールアミン、N−エチルエタノールアミン、ジエタノールアミン、ジイソプロパノールアミンなどの水酸基含有アミン;ビス(2−クロロエチル)アミン、2−クロロエチル(プロピル)アミンなどのハロゲン化アルキルアミン;ピペリジン、4−メチルピペリジン、1−メチルピペラジン、モルホリン、などの二級環状アミンなどが挙げられる。これらの中でも、ジイソプロピルアミン、ジブチルアミンなどのジアルキルアミン;ジエタノールアミン、ジイソプロパノールアミンなどの水酸基含有ジアルキルアミンが好適である。
【0034】
<ビニル系重合体以外の成分>
本発明の硬化性樹脂組成物は、前記ビニル系重合体に加えて、重合性単量体重合及びまたは開始剤を含んでもよい。重合性単量体を含む場合には、硬化させて得られる硬化物の物性を調節することができるという効果を奏する。
【0035】
重合性単量体としては、上記式(1)で示されるビニル系重合体と共硬化可能なものである限り、特に限定されるものではないが、具体的には、例えば、スチレン、ビニルトルエン、4−t−ブチルスチレン、α−メチルスチレン、4−クロロスチレン、4−メチルスチレン、4−クロロメチルスチレン、ジビニルベンゼンなどのスチレン系単量体;フタル酸ジアリル、イソフタル酸ジアリル、シアヌル酸トリアリル、イソシアヌル酸トリアリルなどのアリルエステル系単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、1−アダマンチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、等の1官能(メタ)アクリレート化合物;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3−メチル−1,5−ペンタンジオールジ(メタ)アクリレート、2−ブチル−2−エチル−1,3−プロパンジオールジ(メタ)アクリレート、ジメチロール−トリシクロデカンジ(メタ)アクリレート、ペンタシクロペンタデカンジメタノールルジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルのジ(メタ)アクリル酸付加物、シクロヘキサンジメタノールジ(メタ)アクリレート、ノルボルナンジメタノールジ(メタ)アクリレート、p−メンタンー1,8−ジオールジ(メタ)アクリレート、p−メンタン−2,8−ジオールジ(メタ)アクリレート、p−メンタン−3,8−ジオールジ(メタ)アクリレート、ビシクロ[2.2.2]−オクタン−1−メチル−4−イソプロピル−5,6−ジメチロールジ(メタ)アクリレート、等の2官能(メタ)アクリレート化合物;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の3官能以上の(メタ)アクリレート化合物、などの(メタ)アクリル酸系誘導体;トリエチレングリコールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ヒドロキシブチルビニルエーテル、ドデシルビニルエーテルなどのビニルエーテル系単量体;トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、アリルグリシジルエーテル、メチロールメラミンのアリルエーテル、グリセリンジアリルエーテルのアジピン酸エステル、アリルアセタール、メチロールグリオキザールウレインのアリルエーテルなどのアリルエーテル系単量体;マレイン酸ジエチル、マレイン酸ジブチルなどのマレイン酸エステル系単量体;フマル酸ジブチル、フマル酸ジオクチルなどのフマル酸エステル系単量体;4−(メタ)アクリロイルオキシメチル−2−メチル−2−エチル−1,3−ジオキソラン、4−(メタ)アクリロイルオキシメチル−2−メチル−2−イソブチル−1,3−ジオキソラン、4−(メタ)アクリロイルオキシメチル−2−シクロヘキシル−1,3−ジオキソラン、4−(メタ)アクリロイルオキシメチル−2,2−ジメチル−1,3−ジオキソラン、などの1,3−ジオキソラン系単量体;(メタ)アクリロイルモルホリン;N−ビニルホルムアミド;N−ビニルピロリドン;などが挙げられる。これらの重合性単量体は、単独で用いても2種以上を併用してもよい。これらの重合性単量体のうち、(メタ)アクリル系エステル化合物が好適で、さらに脂環構造置換基を有する(メタ)アクリル系エステル化合物が好適である。
【0036】
重合性単量体の配合量は、組成物の合計量に対して、好ましくは0〜50質量%、より好ましくは0〜20質量%である。重合性単量体の配合量が50質量%を超えると、硬化収縮が大きくなり、内部歪や硬化物の反りが大きくなることがある。
【0037】
重合開始剤としては、上記式(1)で示されるビニル系重合体がラジカル重合性の(メタ)アクリロイル基を有するので、例えば、加熱により重合開始ラジカルを発生する熱重合開始剤;紫外線の照射により重合開始ラジカルを発生する光重合開始剤;などが挙げられる。これらの重合開始剤は、単独で用いても2種以上を併用してもよい。また、熱重合促進剤、光増感剤、光重合促進剤などをさらに添加することも好ましい。
【0038】
熱重合開始剤としては、例えば、メチルエチルケトンペルオキシド、シクロヘキサノンペルオキシド、メチルシクロヘキサノンペルオキシド、メチルアセトアセテートペルオキシド、アセチルアセテートペルオキシド、1,1−ビス(t−ヘキシルペルオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルペルオキシ)−シクロヘキサン、1,1−ビス(t−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルペルオキシ)−2−メチルシクロヘキサン、1,1−ビス(t−ブチルペルオキシ)−シクロヘキサン、1,1−ビス(t−ブチルペルオキシ)シクロドデカン、1,1−ビス(t−ブチルペルオキシ)ブタン、2,2−ビス(4,4−ジ−t−ブチルペルオキシシクロヘキシル)プロパン、p−メンタンヒドロペルオキシド、ジイソプロピルベンゼンヒドロペルオキシド、1,1,3,3−テトラメチルブチルヒドロペルオキシド、クメンヒドロペルオキシド、t−ヘキシルヒドロペルオキシド、t−ブチルヒドロペルオキシド、α,α’−ビス(t−ブチルペルオキシ)ジイソプロピルベンゼン、ジクミルペルオキシド、2,5−ジメチル−2,5−ビス(t−ブチルペルオキシ)ヘキサン、t−ブチルクミルペルオキシド、ジ−t−ブチルペルオキシド、2,5−ジメチル−2,5−ビス(t−ブチルペルオキシ)ヘキシン−3、イソブチリルペルオキシド、3,5,5−トリメチルヘキサノイルペルオキシド、オクタノイルペルオキシド、ラウロイルペルオキシド、ステアロイルペルオキシド、スクシン酸ペルオキシド、m−トルオイルベンゾイルペルオキシド、ベンゾイルペルオキシド、ジ−n−プロピルペルオキシジカーボネート、ジイソプロピルペルオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)ペルオキシジカーボネート、ジ−2−エトキシエチルペルオキシジカーボネート、ジ−2−エトキシヘキシルペルオキシジカーボネート、ジ−3−メトキシブチルペルオキシジカーボネート、ジ−s−ブチルペルオキシジカーボネート、ジ(3−メチル−3−メトキシブチル)ペルオキシジカーボネート、α,α’−ビス(ネオデカノイルペルオキシ)ジイソプロピルベンゼン、クミルペルオキシネオデカノエート、1,1,3,3−テトラメチルブチルペルオキシネオデカノエート、1−シクロヘキシル−1−メチルエチルペルオキシネオデカノエート、t−ヘキシルペルオキシネオデカノエート、t−ブチルペルオキシネオデカノエート、t−ヘキシルペルオキシピバレート、t−ブチルペルオキシピバレート、1,1,3,3−テトラメチルブチルペルオキシ2−エチルヘキサノエート、2,5−ジメチル−2,5−ビス(2−エチルヘキサノイルペルオキシ)ヘキサノエート、1−シクロヘキシル−1−メチルエチルペルオキシ2−エチルヘキサノエート、t−ヘキシルペルオキシ−2−エチルヘキサノエート、t−ブチルペルオキシ−2−エチルヘキサノエート、t−ヘキシルペルオキシソプロピルモノカーボネート、t−ブチルペルオキシソブチレート、t−ブチルペルオキシマレート、t−ブチルペルオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルペルオキシラウレート、t−ブチルペルオキシソプロピルモノカーボネート、t−ブチルペルオキシ−2−エチルヘキシルモノカーボネート、t−ブチルペルオキシアセテート、t−ブチルペルオキシ−m−トルイルベンゾエート、t−ブチルペルオキシベンゾエート、ビス(t−ブチルペルオキシ)イソフタレート、2,5−ジメチル−2,5−ビス(m−トルイルペルオキシ)ヘキサン、t−ヘキシルペルオキシベンゾエート、2,5−ジメチル−2,5−ビス(ベンゾイルペルオキシ)ヘキサン、t−ブチルペルオキシアリルモノカーボネート、t−ブチルトリメチルシリルペルオキシド、3,3’,4,4’−テトラ(t−ブチルペルオキシカルボニル)ベンゾフェノン、2,3−ジメチル−2,3−ジフェニルブタンなどの有機過酸化物系開始剤;2−フェニルアゾ−4−メトキシ−2,4−ジメチルバレロニトリル、1−[(1−シアノ−1−メチルエチル)アゾ]ホルムアミド、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2、4−ジメチルバレロニトリル)、2,2’−アゾビス(2,4−ジメチル−4−メトキシバレロニトリル)、2,2’−アゾビス(2−メチルプロピオンアミジン)二塩酸塩、2,2’−アゾビス(2−メチル−N−フェニルプロピオンアミジン)二塩酸塩、2,2’−アゾビス[N−(4−クロロフェニル)−2−メチルプロピオンアミジン)]二塩酸塩、2,2’−アゾビス[N−(4−ヒドロフェニル)−2−メチルプロピオンアミジン)]二塩酸塩、2,2’−アゾビス[2−メチル−N−(フェニルメチル)プロピオンアミジン]二塩酸塩、2,2’−アゾビス[2−メチル−N−(2−プロペニル)プロピオンアミジン]二塩酸塩、2,2’−アゾビス[N−(2−ヒドロキシエチル)−2−メチルプロピオンアミジン)]二塩酸塩、2,2’−アゾビス[2−(5−メチル−2−イミダゾリン−2−イル)プロパン)二塩酸塩、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン)二塩酸塩、2,2’−アゾビス[2−(4,5、6,7−テトラヒドロ−1H−1,3−ジアゼピン−2−イル)プロパン)二塩酸塩、2,2’−アゾビス[2−(3,4,5,6−テトラヒドロピリミジン−2−イル)プロパン)二塩酸塩、2,2’−アゾビス[2−(5−ヒドロキシ−3,4,5,6−テトラヒドロピリミジン−2−イル)プロパン)二塩酸塩、2,2’−アゾビス{2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン}二塩酸塩、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]、2,2’−アゾビス{2−メチル−N−[1,1−ビス(ヒドロキシメチル)−2−ヒドロキシエチル]プロピオンアミド}、2,2’−アゾビス{2−メチル−N−[1,1−ビス(ヒドロキシメチル)エチル]プロピオンアミド}、2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド]、2,2’−アゾビス(2−メチルプロピオンアミド)、2,2’−アゾビス(2,4,4−トリメチルペンタン)、2,2’−アゾビス(2−メチルプロパン)、2,2−アゾビス(2−メチルプロピオン酸)ジメチル、4,4’−アゾビス(4−シアノペンタン酸)、2,2’−アゾビス[2−(ヒドロキシメチル)プロピオニトリル]などのアゾ系開始剤;などが挙げられる。これらの熱重合開始剤は、単独で用いても2種以上を併用してもよい。これらの熱重合開始剤のうち、メチルエチルケトンペルオキシド、シクロヘキサノンペルオキシド、クメンヒドロペルオキシド、t−ブチルペルオキシベンゾエート、ベンゾイルペルオキシドなどの金属石鹸および/またはアミン化合物などの触媒作用により効率的にラジカルを発生させることができる化合物や2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)が好適である。
【0039】
光重合開始剤としては、例えば、ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、ベンジルジメチルケタール、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノプロパン−1−オン、2−ベンジルー2−ジメチルアミノ−1−(4−モルホリノフェニル)ブタノン、2−ヒドロキシ−2−メチル−1−[4−(1−メチルビニル)フェニル]プロパノンオリゴマーなどのアセトフェノン類;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテルなどのベンゾイン類;ベンゾフェノン、o−ベンゾイル安息香酸メチル、4−フェニルベンゾフェノン、4−ベンゾイル−4’−メチル−ジフェニルサルファイド、3,3’,4,4’−テトラ(t−ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6−トリメチルベンゾフェノン、4−ベンゾイル−N,N−ジメチル−N−[2−(1−オキソ−2−プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4−ベンゾイルベンジル)トリメチルアンモニウムクロリドなどのベンゾフェノン類;2−イソプロピルチオキサントン、4−イソプロピルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジクロロチオキサントン、1−クロロ−4−プロポキシチオキサントン、2−(3−ジメチルアミノ−2−ヒドロキシ)−3,4−ジメチル−9H−チオキサントン−9−オンメソクロリドなどのチオキサントン類;などが挙げられる。これらの光重合開始剤は、単独で用いても2種以上を併用してもよい。これらの光重合開始剤のうち、アセトフェノン類、ベンゾフェノン類、アシルホスフィンオキシド類が好適であり、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2−メチル2−モルホリノ(4−チオメチルフェニル)プロパン−1−オンが特に好適である。
【0040】
重合開始剤の配合量は、組成物の合計量に対して、好ましくは0.05〜20質量%、より好ましくは0.1〜15質量%、さらに好ましくは0.2〜10質量%である。重合開始剤の配合量が0.05質量%未満であると、組成物が充分に硬化しないことがある。逆に、重合開始剤の配合量が20質量%を超えると、硬化物の物性がさらに向上することはなく、むしろ悪影響を及ぼす上、経済性を損なうことがある。
【0041】
重合開始剤として、熱重合開始剤を用いる場合には、熱重合開始剤の分解温度を低下させるために、熱重合開始剤の分解を促進して有効にラジカルを発生させることができる熱重合促進剤を用いることができる。熱重合促進剤としては、例えば、コバルト、銅、錫、亜鉛、マンガン、鉄、ジルコニウム、クロム、バナジウム、カルシウム、カリウムなどの金属石鹸、1級、2級、3級のアミン化合物、4級アンモニウム塩、チオ尿素化合物、ケトン化合物などが挙げられる。これらの熱重合促進剤は、単独で用いても2種以上を併用してもよい。これらの熱重合促進剤のうち、オクチル酸コバルト、ナフテン酸コバルト、オクチル酸銅、ナフテン酸銅、オクチル酸マンガン、ナフテン酸マンガン、ジメチルアニリン、トリエタールアミン、トリエチルベンジルアンモニウムクロライド、ジ(2−ヒドロキシエチル)p−トルイジン、エチレンチオ尿素、アセチルアセトン、アセト酢酸メチルが好適である。
【0042】
熱重合促進剤の配合量は、組成物の合計量に対して、好ましくは0.001〜20質量%、より好ましくは0.01〜10質量%以上、さらに好ましくは0.05〜5質量%の範囲内である。熱重合促進剤の配合量がこのような範囲内であれば、組成物の硬化性、硬化物の物性、経済性の点で好ましい。
【0043】
重合開始剤として、光重合開始剤を用いる場合には、光励起により生じた励起状態から光重合開始剤に励起エネルギーを移し、光重合開始剤の分解を促進して有効にラジカルを発生させることができる光増感剤を用いることができる。光増感剤としては、例えば、2−クロロチオキサントン、2,4−ジエチルチオキサントン、2,4−ジイソプロピルチオキサントンなどを挙げることができる。これらの光増感剤は、単独で用いても2種以上を併用してもよい。
【0044】
光増感剤の配合量は、組成物の合計量に対して、好ましくは0.05〜20質量%、より好ましくは0.1〜15質量%、さらに好ましくは0.2〜10質量%の範囲内である。光増感剤の配合量がこのような範囲内であれば、組成物の硬化性、硬化物の物性、経済性の点で好ましい。
【0045】
重合開始剤として、光重合開始剤を用いる場合には、光重合開始剤の分解を促進して有効にラジカルを発生させることができる光重合促進剤を用いることができる。光重合促進剤としては、例えば、トリエタノールアミン、メチルジエタノールアミン、トリイソプロパノールアミン、4−ジメチルアミノ安息香酸メチル、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸イソアミル、4−ジメチルアミノ安息香酸−2−n−ブトキシエチル、安息香酸2−ジメチルアミノエチル、N,N−ジメチルパラトルイジン、4,4’−ジメチルアミノベンゾフェノン、4,4’−ジエチルアミノベンゾフェノンなどを挙げることができる。これらの光重合促進剤は、単独で用いても2種以上を併用してもよい。これらの光重合促進剤のうち、トリエタノールアミン、メチルジエタノールアミン、トリイソプロパノールアミンが好適である。
【0046】
光重合促進剤の配合量は、組成物の合計量に対して、好ましくは0.05〜20質量%、より好ましくは0.1〜15質量%、さらに好ましくは0.2〜10質量%の範囲内である。光重合促進剤の配合量がこのような範囲内であれば、組成物の硬化性、硬化物の物性、経済性の点で好ましい。
【0047】
熱重合開始剤、光重合開始剤、熱重合促進剤、光増感剤、光重合促進剤などを組み合わせて配合する場合、その配合量の合計量は、組成物の合計量に対して、好ましくは0.05〜20質量、より好ましくは0.1〜15質量%、さらに好ましくは0.2〜10質量の範囲内である。重合開始剤などの組合せ配合量の合計量がこのような範囲内であれば、組成物の硬化性、硬化物の物性、経済性の点で好ましい。
【0048】
本発明のハードコート用材料は、有機溶剤を使用しても良い。有機溶剤を含有する場合、ハードコート膜とプラスチック基材との密着性を向上させたり、後述する金属酸化物や添加剤などを溶解したり、分散したりしやすくできることが可能になる。
【0049】
使用する有機溶剤としては、例えば、ベンゼン、トルエン、クロロベンゼンなどの芳香族炭化水素;ペンタン、ヘキサン、シクロヘキサン、ヘプタンなどの脂肪族または脂環式炭化水素;四塩化炭素、クロロホルム、二塩化エチレンなどのハロゲン化炭化水素;ニトロメタン、ニトロベンゼンなどのニトロ化合物;ジエチルエーテル、メチルt−ブチルエーテル、テトラヒドロフラン、1,4−ジオキサンなどのエーテル類;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸アミルなどのエステル類;ジメチルホルムアミド、メタノール、エタノール、プロパノールなどのアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類;などを使用することができる。
【0050】
有機溶媒の配合量は、材料の合計量に対して、好ましくは0〜80質量%、より好ましくは0〜50質量%である。溶媒の配合量が80質量%を超えると、組成物中から溶媒を留去させる場合に時間を要したり、硬化物に残存したりすることがある。
【0051】
本発明のハードコート用材料は、好ましくは、前記ビニル系重合体に加えて、金属酸化物からなる微粒子を含有してもよい。金属酸化物からなる微粒子を含有する場合には、硬化後の塗膜の硬度が向上し、より傷つきにくく、低反射性のコーティングが得られるという効果を奏する。
【0052】
微粒子を構成する金属酸化物は、より好ましくは、Si、Ti、Zr、Zn、Sn、In、LaおよびYよりなる群から選択される少なくとも1種の金属元素を含む。微粒子を構成する金属酸化物は、これらの元素を含む単独の酸化物であってもよいし、これらの元素を含む複合酸化物であってもよい。微粒子を構成する金属酸化物の具体例としては、例えば、SiO、SiO、TiO、ZrO、ZnO、SnO、In、La、Y、SiO−Al、SiO−Zr、SiO−Ti、Al−ZrO、TiO−ZrOなどが挙げられる。これらの金属酸化物からなる微粒子は、単独で用いても2種以上を併用してもよい。これらの金属酸化物からなる微粒子のうち、SiO、TiO、ZrO、ZnOが好適である。
【0053】
金属酸化物からなる微粒子の平均粒子径は、好ましくは1〜300nm、より好ましくは1〜50nmである。微粒子の平均粒子径が300nmを超えると、硬化物の透明性が損なわれることがある。なお、微粒子の平均粒子径とは、動的光散乱式粒径分布測定装置を用いて測定することにより求められる体積平均粒子径を意味する。
【0054】
金属酸化物からなる微粒子の配合量は、組成物の合計量に対して、好ましくは0〜80質量%、より好ましくは0〜50質量%である。微粒子の配合量が80質量%を超えると、硬化物が脆くなることがある。
【0055】
本発明のハードコート用材料は、さらに必要に応じて、添加物として、無機充填剤、非反応性樹脂及び又は反応性樹脂(例えば、アクリル系樹脂、ウレタンアクリレート樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂など)、着色顔料、可塑剤、連鎖移動剤、重合禁止剤、紫外線吸収剤、近赤外線吸収剤、光安定剤、酸化防止剤、難燃化剤、艶消し剤、染料、消泡剤、レベリング剤、帯電防止剤、分散剤、スリップ剤、表面改質剤、揺変化剤、揺変助剤などを添加することができる。これらの添加物の存在は、特に本発明の効果に影響を及ぼすものではない。これらの添加物は、単独で用いても2種以上を併用してもよい。
【0056】
添加物の配合量は、添加物の種類や使用目的、組成物の用途や使用方法などに応じて適宜設定すればよく、特に限定されるものではない。例えば、無機充填剤の配合量は、組成物の合計量に対して、好ましくは1〜80質量%、より好ましくは10〜60質量%、さらに好ましくは20〜50質量%の範囲内である。非反応性樹脂、着色顔料、可塑剤または援変化剤の配合量は、組成物の合計量に対して、好ましくは1〜40質量%、より好ましくは5〜30質量%、さらに好ましくは10〜25質量%の範囲内である。重合禁止剤、紫外線吸収剤、酸化防止剤、艶消し剤、染料、消泡剤、レベリング剤、帯電防止剤、分散剤、スリップ剤、表面改質剤または援変助剤の配合量は、組成物の合計量に対して、好ましくは0.0001〜5質量%、より好ましくは0.001〜3質量%、さらに好ましくは0.01〜1質量%の範囲内である。
【0057】
≪ハードコート用材料の製造および積層体≫
本発明のハードコート用材料は、上記式(1)で示されるビニル系重合体、必要に応じて、重合性単量体と重合開始剤、熱重合促進剤、光増感剤、光重合促進剤など、さらには有機溶剤、金属酸化物からなる微粒子、各種の添加物などとを配合し、混合・攪拌することにより得ることができる。
【0058】
本発明のハードコート用材料は、重合開始剤を配合しない場合には、電子線を照射することにより、熱重合開始剤を配合した場合には、加熱により、また、光重合開始剤を配合した場合には、紫外線を照射することにより、硬化させることができる。
【0059】
例えば、加熱による硬化の場合、赤外線、遠赤外線、熱風、高周波加熱などを用いればよい。加熱温度は、基材の種類などに応じて適宜調節すればよく、特に限定されるものではないが、好ましくは80〜200℃、より好ましくは90〜180℃、さらに好ましくは100〜170℃の範囲内である。加熱時間は、塗布面積などに応じて適宜調節すればよく、特に限定されるものではないが、好ましくは1分間〜24時間、より好ましくは10分間〜12時間、さらに好ましくは30分間〜6時間の範囲内である。
【0060】
例えば、紫外線による硬化の場合、波長150〜450nmの範囲内の光を含む光源を用いればよい。このような光源としては、例えば、太陽光線、低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライド灯、ガリウム灯、キセノン灯、カーボンアーク灯などが挙げられる。これらの光源と共に、赤外線、遠赤外線、熱風、高周波加熱などによる熱の併用も可能である。照射積算光量は、好ましくは0.1〜10J/cm、より好ましくは0.15〜8J/cm、さらに好ましくは0.2〜5J/cmの範囲内である。
【0061】
例えば、電子線による硬化の場合、加速電圧が好ましくは10〜500kV、より好ましくは20〜300kV、さらに好ましくは30〜200kVの範囲内である電子線を用いればよい。また、照射量は、好ましくは2〜500kGy、より好ましくは3〜300kGy、さらに好ましくは4〜200kGyの範囲内である。電子線と共に、赤外線、遠赤外線、熱風、高周波加熱などによる熱の併用も可能である。
【0062】
本発明のハードコート用材料を基材に塗布する場合、使用目的に応じて、刷毛塗りなどの手塗りや、スプレー塗装、浸漬法などの従来公知の方法で基材に塗布される。塗布量としては、好ましくは0.2〜100g/m、より好ましくは0.5〜70g/mの範囲内である。また、塗布厚みとしては、好ましくは1〜500μm、より好ましくは2〜200μmの範囲内である。
【0063】
また本発明のハードコート層を形成する方法として、ハードコート材を含有する加飾用フィルムを用いた成形同時加飾法がある。この方法は、少なくともフィルムと加飾層とから構成される加飾用フィルムを射出成形用の金型内に入れて、型閉め後、成形樹脂をキャビティに射出し、成形樹脂を固化した樹脂成形品の表面に加飾用シートを一体化接着させて成形同時加飾成形品を得るものである。
【0064】
上記積層体に使用される基材としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルメタクリレート(PMMA)、ポリアクリレート、ポリビニルアルコール(PVA)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、エチレン−酢酸ビニル共重合体(EVA)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)、トリアセチルセルロース(TAC)、シクロオレフィンポリマー(COP)、ポリカーボネート(PC)、ポリエーテルケトン(PEEK)、ポリアミドイミド(PAI)、ポリイミド(PI)、ポリエーテルアミド(PEI)、ナイロン(NY)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、特許公報2015632、特許公報3178733、特開2001ー151814、特開2007ー7ー607などに開示されている熱可塑性樹脂、などの樹脂成形物およびフィルム;ポリエチレンコート紙、ポリエチレンテレフタレートコート紙などのコート紙、非コート紙などの紙類;木材;ガラス;ステンレス、鉄、アルミニウム、銅、合金などの金属類;などが挙げられる。これらの中でもポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)、ポリメチルメタクリレート(PMMA)、ポリアクリレート、シクロオレフィンポリマー(COP)、ポリカーボネート(PC)、耐熱アクリルが好ましい。
【0065】
上記積層体には、目的に応じて、帯電防止層、粘接着剤層、接着層、易接着層、ひずみ緩和層、防眩(ノングレア)層、光触媒層などの防汚層、反射防止層、紫外線遮蔽層、熱線遮蔽層、電磁波遮蔽層、ガスバリアー性等の種々の機能性コーティング層を各々積層塗工したりしてもよい。なお、本ハードコート層と各層の積層順序は特に限定されるものではなく、積層方法も特に限定されない。
【0066】
本発明のハードコート材は3次元形状構造体へ塗布することを特徴とするものであるが、3次元形状構造体は、単なる平面形状の基材でなければ特に限定されない。但し、平面材料が接合された構造、平面材料がカーブ形状に加工された構造、又、平面材料上に凹凸を有する構造のものは3次元形状構造体とする。3次元形状構造体の他の例としては、四面体、六面体、八面体の様な多面体構造、円柱、球、円錐などが挙げられる。
【0067】
本発明のハードコート用材料は、OA機器、携帯電話等の通信機器、家庭用電化製品、自動車用内・外装部品、家具用外装部材、プラスチックレンズ、化粧品容器、飲料用容器、有機ELディスプレイ等のディスプレイ、家電製品等のタッチパネル、流し台、洗面台、さらにはショーウインドウ、窓ガラス等、などの用途分野に好適に使用される。
【0068】
≪硬化物≫
本発明の硬化物は、ハードコート用材料を硬化させて得られる。ここで、「硬化物」とは、流動性の無い物質を意味する。
【実施例】
【0069】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0070】
まず、ビニル系重合体の数平均分子量(Mn)および分子量分布(Mw/Mn)の測定について説明する。
【0071】
<数平均分子量および分子量分布>
ビニル系重合体の数平均分子量(Mn)および分子量分布(Mw/Mn)は、ゲル浸透クロマトグラフィー(GPC)により、標準ポリスチレン換算で求めた。測定条件は、以下の通りであった。
移動相:THF、温度:40℃、流速:0.3mL/min;
カラム:TSK−gel SuperHM−H 2本
TSK−gel SuperH2000 1本(いずれも東ソー株式会社製);
計測機器:HLC−8220GPC(東ソー株式会社製)。
【0072】
次に、ビニル系重合体の粘度の測定について説明する。
<粘度>
粘度は、RB80型粘度計(型式「RB80L」:東機産業(株)製)を用いて測定した。なお、測定温度は25℃であった。
【0073】
次に、実施例で用いるビニル系重合体の製造例1〜5について説明する。
【0074】
≪製造例1≫
攪拌棒、温度計、滴下ライン、窒素/空気混合ガス導入管を取り付けた4つ口フラスコにトルエン41gを加えた。VEEA50g、酢酸エチル10gとリンタングステン酸10mgの混合溶解物をそれぞれ2時間かけて滴下し室温にて重合を行った。重合終了後はトリエチルアミンを加えて反応を終了した。次いで、エバポレーターで濃縮した後、ビニル系重合体(PVEEA−1)を得た。単量体の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析することにより、99.5%であることが判明した。また、得られたビニル系重合体の数平均分子量(Mn)は2,520、分子量分布(Mw/Mn)は1.75で、粘度は2,540mPa・sであった。
【0075】
≪製造例2≫
攪拌棒、温度計、滴下ライン、窒素/空気混合ガス導入管を取り付けた4つ口フラスコにトルエン80gを加え、15℃へ冷却した。冷却後、VEEA200g、及び酢酸エチル27gとリンタングステン酸13.5mgの混合溶解物をそれぞれ2時間かけて滴下した。滴下終了後、続けて15℃にて重合を行った。重合終了後はトリエチルアミンを加えて反応を終了した。次いで、エバポレーターで濃縮した後、ビニル系重合体(PVEEA−2)を得た。単量体の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析することにより、99.6%であることが判明した。また、得られたビニル系重合体の数平均分子量(Mn)は10,200、分子量分布(Mw/Mn)は2.27であった。
【0076】
≪製造例3≫
攪拌棒、温度計、滴下ライン、窒素/空気混合ガス導入管を取り付けた4つ口フラスコに酢酸エチル80gを加え、50℃へ昇温した。昇温後、VEEA171gとシクロヘキシルビニルエーテル(CHVE)29gの混合物、酢酸エチル26gとリンタングステン酸13mgの混合溶解物をそれぞれ2時間かけて滴下し重合を行った。重合終了後はトリエチルアミンを加えて反応を終了した。次いで、エバポレーターで濃縮した後、ビニル系重合体(P(VEEA/CHVE))を得た。単量体の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析することにより、99.5%であることが判明した。また、得られたビニル系重合体の数平均分子量(Mn)は1,280、分子量分布(Mw/Mn)は1.79で、粘度は1,210mPa・sであった。
【0077】
≪製造例4≫
攪拌棒、温度計、滴下ライン、窒素/空気混合ガス導入管を取り付けた4つ口フラスコに酢酸エチル80gを加え、50℃へ昇温した。昇温後、VEEA158gとメタクリル酸2−(2−ビニロキシエトキシ)エチル(VEEM)42gの混合物、酢酸エチル52gとリンタングステン酸26mgの混合溶解物をそれぞれ2時間かけて滴下し重合を行った。重合終了後はトリエチルアミンを加えて反応を終了した。次いで、エバポレーターで濃縮した後、ビニル系重合体(P(VEEA/VEEM))を得た。単量体の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析することにより、98.5%であることが判明した。また、得られたビニル系重合体の数平均分子量(Mn)は1,920、分子量分布(Mw/Mn)は2.74で、粘度は1,990mPa・sであった。
【0078】
≪製造例5≫
重合反応は、充分に乾燥した三方コック付きガラス容器を用いて、乾燥した窒素雰囲気下で行った。まず、室温で、このガラス容器に、充分に乾燥および精製したトルエン159mLおよび酢酸エチル25mL、1−イソブトキシエチルアセテート0.2モル/Lのトルエン溶液5mLを加えた。さらに、エチルアルミニウムジクロリド0.1モル/Lのトルエン溶液25mLを加えて混合した後、30分間放置して反応開始種を生成させた。次いで、系内を0℃に冷却した後、0℃に予冷したアクリル酸2−(2−ビニロキシエトキシ)エチル(VEEA)0.2モルを加え、さらに、0℃に予冷した四塩化スズ0.05モル/Lのトルエン溶液25mLを加えて反応を開始した。14分間重合を行った後、メタノールを加えて反応を停止させた。反応を終えた混合液中にクロロホルムを加え、水洗により重合開始剤の残渣を除去した。次いで、エバポレーターで濃縮した後、真空乾燥させて、ビニル系重合体(PVEEA−3)を得た。単量体の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析することにより、98%であることが判明した。また、得られたビニル系重合体の数平均分子量(Mn)は14,200、分子量分布(Mw/Mn)は1.10であった。
【0079】
次に、ハードコート用材料を硬化させて得られるハードコート層の耐スクラッチ性の評価方法について説明する。
【0080】
<密着性>
JIS K5600に準じてハードコート層にカッターナイフで1mm×1mmの碁盤目を100マス作成し、ニチバン製セロテープ(登録商標)を圧着後、一気にセロテープを剥離した。剥離後の目視による外観で以下の基準で評価した。
○:剥離した後のマス目において100マスとも剥離が見られない。
×:一部のマス目に剥離が見られた。
【0081】
<耐スクラッチ性>
樹脂層の表面に対して、荷重条件500g/cmの下、スチールウール0000番を10回往復させた後、傷つき度合いを目視により観察し、以下の基準で評価した。
A:変化なし(傷が認められない);
B:数本の傷が認められる;
C:十数本の傷が認められる;
D:数十本の傷が認められる;
E:無数の傷が認められる。
【0082】
次に、基材上にハードコート層を形成した積層体に関する実施例1〜8および比較例1について説明する。
【0083】
≪実施例1≫
製造例1で得られたビニル系重合体(PVEEA−1)100質量部、トルエン40質量部、光重合開始剤2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(商品名「ダロキュア1173」、チバ・スペシャルティ・ケミカルズ株式会社製)5質量部を混合・攪拌して、塗工液を調製した。
【0084】
外径35mm、内径31mm、長さ100mmのアクリル樹脂製パイプ外周面上に、スプレーにより塗工液を塗布した。その後、80℃で2分間加熱乾燥してトルエンを蒸発させ、ハードコート材用樹脂層を形成した。このアクリル樹脂製パイプに塗布したハードコート材用樹脂層を、超高圧水銀ランプを有するUV照射機(アイグラフィックス株式会社製)を用いて、照射積算光量500mJ/cmで紫外線硬化させた。
【0085】
ハードコート層の厚さを測定したところ、20μmであった。硬化後のハードコート層にはクラックは見られなかった。ハードコート層の密着性試験をおこなったところ評価は○であった。結果を表1に示す。
【0086】
≪実施例2≫
ビニル系重合体を製造例2で得られたPVEEA−2に変更したこと以外は、実施例1と同様にしてハードコート層/アクリル樹脂製パイプの積層体を作成した。形成されたハードコート層について行った密着性の評価結果を表1に示す。
【0087】
≪実施例3≫
ビニル系重合体を製造例3で得られたP(VEEA/CHVE)に変更したこと以外は、実施例1と同様にしてハードコート層/アクリル樹脂製パイプの積層体を作成した。形成されたハードコート層について行った密着性の評価結果を表1に示す。
【0088】
≪実施例4≫
ビニル系重合体を製造例4で得られたP(VEEA/VEEM)に変更したこと以外は、実施例1と同様にしてハードコート層/アクリル樹脂製パイプの積層体を作成した。形成されたハードコート層について行った密着性の評価結果を表1に示す。
【0089】
≪実施例5≫
ビニル系重合体を製造例5で得られたPVEEA−3に変更したこと以外は、実施例1と同様にしてハードコート層/アクリル樹脂製パイプの積層体を作成した。形成されたハードコート層について行った密着性の評価結果を表1に示す。
【0090】
≪比較例1≫
ジペンタエリスリトールヘキサアクリレート(商品名「ライトアクリレートDPE−6A」、共栄社化学株式会社製)100質量部、トルエン40質量部、光重合開始剤2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(商品名「ダロキュア1173」、チバ・スペシャルティ・ケミカルズ株式会社製)5質量部を混合・攪拌して、塗工液を調製した。
【0091】
【表1】

【0092】
外径35mm、内径31mm、長さ100mmのアクリル樹脂製パイプ外周面上に、スプレーにより塗工液を塗布した。その後、80℃で2分間加熱乾燥してトルエンを蒸発させ、ハードコート材用樹脂層を形成した。このアクリル樹脂製パイプに塗布したハードコート材用樹脂層を、超高圧水銀ランプを有するUV照射機(アイグラフィックス株式会社製)を用いて、照射積算光量500mJ/cmで紫外線硬化させた。
【0093】
ハードコート層の厚さを測定したところ、20μmであった。硬化後のハードコート層には多数のクラックが発生していた。ハードコート層の密着性試験をおこなったところ評価は○であった。結果を表1に示す。
【0094】
≪実施例6≫
縦横12cm×厚さ1mmのポリカーボネートシート基材を直径100mmの曲率に湾曲させて、その表面に実施例1で調整した塗工液をスプレーにより塗工した。その後、40℃で5分間加熱乾燥してトルエンを蒸発させ、ハードコート材用樹脂層を形成した。この湾曲した基材に塗布したハードコート材用樹脂層を、超高圧水銀ランプを有するUV照射機(アイグラフィックス株式会社製)を用いて、照射積算光量500mJ/cmで紫外線硬化させた。
【0095】
ハードコート層の厚さを測定したところ、20μmであった。硬化後のハードコート層にはクラックが発生していなかった。ハードコート層の密着性試験をおこなったところ評価は○であり、耐スクラッチ性試験での評価はAであった。
【0096】
≪実施例7≫
シート基材をPMMAに変更したこと以外は、実施例6と同様にしてハードコート層/シート基材の積層体を作成した。硬化後のハードコート層にはクラックが発生していなかった。ハードコート層の密着性試験をおこなったところ評価は○であり、耐スクラッチ性試験での評価はAであった。
【0097】
≪実施例8≫
シート基材をABSに変更したこと以外は、実施例6と同様にしてハードコート層/シート基材の積層体を作成した。硬化後のハードコート層にはクラックが発生していなかった。ハードコート層の密着性試験をおこなったところ評価は○であり、耐スクラッチ性試験での評価はAであった。
【0098】
≪比較例2≫
塗工液を比較例1で使用した多官能アクリレートのトルエン溶液に変更したこと以外は、実施例6と同様にしてハードコート層/シート基材の積層体を作成した。硬化後のハードコート層には多数のクラックが発生していた。ハードコート層の密着性試験をおこなったところ評価は○であり、耐スクラッチ性試験での評価はAであった。
【0099】
≪実施例9≫
縦6cm×横9cm×厚さ1.5mmのアクリル樹脂製プラスチックケースの外側に実施例1で調整した塗工液をスプレーにより塗工した。その後、40℃で5分間加熱乾燥してトルエンを蒸発させ、ハードコート材用樹脂層を形成した。このアクリル基材に塗布したハードコート材用樹脂層を、超高圧水銀ランプを有するUV照射機(アイグラフィックス株式会社製)を用いて、照射積算光量500mJ/cmで紫外線硬化させた。
【0100】
ハードコート層の厚さを測定したところ、100μmであった。硬化後のハードコート層にはクラックが発生していなかった。ハードコート層の耐スクラッチ性試験での評価はAであった。
【0101】
≪比較例3≫
塗工液を比較例1で使用した多官能アクリレートのトルエン溶液に変更したこと以外は、実施例9と同様にしてハードコート層/アクリル基材の積層体を作成した。硬化後のハードコート層には多数のクラックが発生していた。ハードコート層の耐スクラッチ性試験での評価はAであった。
【0102】
≪比較例4≫
ハードコート材を塗布していない場合の耐スクラッチ性試験での評価はEであった。
実施例9、比較例3及び4の結果を表2に示した。
【0103】
【表2】

【0104】
結果から明らかなように、上記式(1)で示されるビニル系重合体を含むハードコート用材料を基材上に塗布して、紫外線硬化させて得られた実施例1〜9の積層体(ハードコート層/基材)は、ハードコート層の密着性および耐スクラッチ性に優れており、又、ハードコート層にはクラックは見られなかった。
【0105】
これに対し、上記式(1)で示されるビニル系重合体を用いず多官能アクリレートを含有するハードコート用材料を基材上に塗布して紫外線硬化させて得られた比較例1〜3の積層体(ハードコート層/基材)は、実施例の積層体と同様、密着性や耐スクラッチ性が得られている。しかし、ハードコート層には硬化収縮によりクラックが発生していた。
【0106】
かくして、上記式(1)で示されるビニル系重合体を含むハードコート用材料は、硬化後の塗膜の硬度が高く、傷つきにくい硬化物であり、塗膜のひび割れや剥がれが生じにくい硬化物を与えることがわかる。
【産業上の利用可能性】
【0107】
本発明のハードコート用材料は、硬化後の塗膜の硬度が高く、傷つきにくい硬化物であり、さらに塗膜のひび割れや剥がれが生じにくい硬化物を与えることができる。それゆえ、本発明は、基材にコーティングを施し、紫外線等で硬化させることにより、3次元構造を有する形状上にでもハードコート層を施すことができるため極めて有用であるといえる。

【特許請求の範囲】
【請求項1】
下記式(1):
【化1】


[式中、Rは炭素数2〜8のアルキレン基、Rは水素原子またはメチル基、mは正の整数である]で示される繰り返し単位を有するビニル系重合体を含有することを特徴とする3次元形状構造体へのハードコート用材料。
【請求項2】
請求項1記載のハードコート用材料を硬化させて得られる層が形成されてなる積層体。

【公開番号】特開2008−303310(P2008−303310A)
【公開日】平成20年12月18日(2008.12.18)
【国際特許分類】
【出願番号】特願2007−152514(P2007−152514)
【出願日】平成19年6月8日(2007.6.8)
【出願人】(000004628)株式会社日本触媒 (2,292)
【Fターム(参考)】