説明

ヒートポンプサイクル

【課題】加熱用熱交換器にて送風空気を加熱するヒートポンプサイクルにおいて、加熱用熱交換器における送風空気の加熱能力を充分に向上させる。
【解決手段】第1減圧手段13にて減圧された中間圧冷媒の気液を分離する気液分離手段14と、気液分離手段14にて分離された気相冷媒を、吸入ポート11a側へ導く中間圧冷媒通路15と、中間圧冷媒通路15を開閉する開閉手段16dと、中間圧冷媒通路15を流れる気相冷媒を減圧する減圧手段16dとを備え、加熱用熱交換器12が、冷却用熱交換器23に対して送風空気流れ下流側に配置されるヒートポンプサイクルであって、除湿暖房運転モードとして、開閉手段16dが中間圧冷媒通路15を開き且つ減圧手段16dが中間圧冷媒通路15の気相冷媒を減圧することによって、気液分離手段14にて分離された気相冷媒を吸入ポート11aへ流入させるガスバイパス除湿暖房モードを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ヒートポンプサイクルに関するもので、車両用の冷凍サイクル装置に適用して有効である。
【背景技術】
【0002】
従来、特許文献1に、圧縮機から吐出された高温高圧冷媒を送風空気と熱交換させて放熱させる室内凝縮器(加熱用熱交換器)と、室内凝縮器から流出した冷媒と外気とを熱交換させる室外熱交換器と、室外熱交換器から流出した冷媒を送風空気と熱交換させて蒸発させる室内蒸発器(冷却用熱交換器)とを備えるヒートポンプサイクル(蒸気圧縮式の冷凍サイクル)が開示されている。
【0003】
この特許文献1のヒートポンプサイクルは、車両用空調装置に適用されており、さらに、室内凝縮器が、室内蒸発器に対して空調対象空間である車室内へ送風される送風空気の空気流れ下流側に配置されている。そして、室内蒸発器にて冷媒が蒸発する際の吸熱作用によって冷却(除湿)された送風空気を、室内凝縮器にて圧縮機吐出冷媒を熱源として再加熱することにより、車室内の除湿暖房を実現している。
【0004】
さらに、このヒートポンプサイクルでは、室内凝縮器から流出した冷媒を減圧させて室外熱交換器側へ流出させる高段側減圧手段、および、室外熱交換器から流出した冷媒を減圧させて室内蒸発器側へ流出させる低段側減圧手段を備えており、車室内へ吹き出される送風空気の目標吹出温度の上昇に伴って、高段側減圧手段の絞り開度を減少させるとともに、低段側減圧手段の絞り開度を増加させている。
【0005】
これにより、目標吹出温度の上昇に伴って、室外熱交換器内の冷媒圧力(冷媒温度)を低下させて、室外熱交換器を、冷媒を放熱させる放熱器として機能させる状態から冷媒を蒸発させる蒸発器として機能させる状態へ切り替えている。そして、冷媒の吸熱量を増加させ、室内凝縮器における冷媒の放熱量を増加させることによって、室内凝縮器における送風空気を目標吹出温度まで上昇させる加熱能力を向上させている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特許第3331765号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところが、一般的に、この種のヒートポンプサイクルでは、室内蒸発器の着霜を防止するために、室内蒸発器における冷媒蒸発温度を着霜温度(0℃)より高い所定温度(例えば、1℃)以上に維持しておく必要がある。
【0008】
そのため、特許文献1のヒートポンプサイクルでは、高段側減圧手段の絞り開度が最小弁開度となり、さらに、低段側減圧手段が全開状態となり、室外熱交換器および室内蒸発器の双方を同等の冷媒蒸発圧力で蒸発させる蒸発器として機能させると、室外熱交換器および室内蒸発器の双方における冷媒蒸発温度が所定温度に維持されることになる。
【0009】
その結果、室外熱交換器および室内蒸発器の冷媒蒸発温度が所定温度に到達してしまうと、この状態以上に室外熱交換器および室内蒸発器における冷媒の吸熱量を増加させることができなくなってしまい、室内凝縮器における送風空気の加熱能力を充分に向上させることができなくなってしまう。
【0010】
上記点に鑑み、本発明は、加熱用熱交換器にて送風空気を加熱するヒートポンプサイクルにおいて、加熱用熱交換器における送風空気の加熱能力を充分に向上させることを目的とする。
【課題を解決するための手段】
【0011】
上記目的を達成するため、請求項1に記載の発明では、吸入ポート(11a)から吸入した低圧冷媒を圧縮して吐出ポート(11c)から高圧冷媒を吐出する圧縮機(11)と、圧縮機(11)の吐出ポート(11c)から吐出された高圧冷媒を空調対象空間へ送風される送風空気と熱交換させて、送風空気を加熱する加熱用熱交換器(12)と、加熱用熱交換器(12)から流出した冷媒を減圧させる第1減圧手段(13)と、第1減圧手段(13)にて減圧された中間圧冷媒の気液を分離する気液分離手段(14)と、気液分離手段(14)にて分離された液相冷媒を減圧させる第2減圧手段(17)と、第2減圧手段(17)から流出した冷媒と外気とを熱交換させる室外熱交換器(20)と、室外熱交換器(20)から流出した冷媒を減圧させる第3減圧手段(22)と、第3減圧手段(22)から流出した冷媒と送風空気と熱交換させて、吸入ポート(11a)側へ流出させる冷却用熱交換器(23)と、気液分離手段(14)にて分離された気相冷媒を、吸入ポート(11a)側へ導く中間圧冷媒通路(15)と、中間圧冷媒通路(15)を開閉する開閉手段(16d)と、中間圧冷媒通路(15)を流れる気相冷媒を減圧する減圧手段(16d)とを備え、加熱用熱交換器(12)が、冷却用熱交換器(23)に対して送風空気流れ下流側に配置されるヒートポンプサイクルであって、
冷却用熱交換器(23)にて送風空気を冷却して、冷却された送風空気を加熱用熱交換器(23)にて空調対象空間の温度以上となるまで昇温させる除湿暖房運転モードとして、
開閉手段(16d)が中間圧冷媒通路(15)を開き且つ減圧手段(16d)が気相冷媒を減圧することによって、気相冷媒を吸入ポート(11a)へ流入させるガスバイパス除湿暖房モードを有することを特徴とする。
【0012】
これによれば、除湿暖房運転モードとして、ガスバイパス除湿暖房モードを有しているので、加熱用熱交換器(12)における加熱能力を充分に向上させることができる。
【0013】
つまり、ガスバイパス除湿暖房モードでは、開閉手段(16d)が中間圧冷媒通路(15)を開くので、加熱用熱交換器(12)から流出した冷媒を、第1減圧手段(13)→気液分離手段(14)→第2減圧手段(17)→室外熱交換器(20)→第3減圧手段(22)→冷却用熱交換器(23)の順に流すとともに、気液分離手段(14)にて分離された気相冷媒を中間圧冷媒通路(15)へ流入させて減圧手段(16d)で減圧させる冷媒流路に切り替えることができる。
【0014】
従って、ヒートポンプサイクル全体として、サイクル内の中間圧冷媒を吸入ポート(11a)から圧縮機(11)へ吸入させるガスバイパスサイクルを構成できる。これにより、圧縮機(11)へ吸入させる冷媒流量を増加させて、圧縮機(11)の圧縮仕事量を増加させることができる。その結果、加熱用熱交換器(12)における加熱能力を充分に向上させることができる。
【0015】
なお、請求項に記載された開閉手段とは、単に中間圧冷媒通路(15)の開閉機能を有する開閉弁のみを意味するものではなく、弁開度を調整することによって、中間圧冷媒通路(15)を閉塞させる機能に加えて、中間圧冷媒通路(15)を流通する冷媒の流量を調整する機能を有する流量調整弁等も含む意味である。
【0016】
請求項2に記載の発明では、請求項1に記載のヒートポンプサイクルにおいて、さらに、除湿暖房運転モードとして、
開閉手段(16d)が中間圧冷媒通路(15)を閉じることによって、第1減圧手段(13)から流出した冷媒の全流量を第2減圧手段(17)へ流入させる通常除湿暖房モードを有することを特徴とする。
【0017】
これによれば、ヒートポンプサイクル全体として、加熱用熱交換器(12)から流出した冷媒を、第1減圧手段(13)→室外熱交換器(20)→第3減圧手段(22)→冷却用熱交換器(23)の順に循環させる通常の冷凍サイクルを構成して、空調対象空間の除湿暖房運転を行うこともできる。
【0018】
請求項3に記載の発明では、請求項1または2に記載のヒートポンプサイクルにおいて、ガスバイパス除湿暖房モード時には、空調対象空間へ吹き出される送風空気の目標温度(TAO)の上昇に伴って、中間圧冷媒通路(15)から吸入ポート(11a)側へ流入させる冷媒流量を増加させることを特徴とする。
【0019】
これによれば、ガスバイパス除湿暖房モード時に、送風空気の目標温度(TAO)の上昇に伴って、圧縮機(11)の圧縮仕事量を増加させることができ、加熱用熱交換器(12)における加熱能力を充分かつ適切に向上させることができる。
【0020】
さらに、具体的には、請求項4に記載の発明のように、請求項3に記載のヒートポンプサイクルにおいて、ガスバイパス除湿暖房モード時には、空調対象空間へ吹き出される送風空気の目標温度(TAO)の上昇に伴って、第1減圧手段(13)の絞り開度を増加させてもよい。
【0021】
請求項5に記載の発明では、請求項2に記載のヒートポンプサイクルにおいて、通常除湿暖房モード時には、空調対象空間へ吹き出される送風空気の目標温度(TAO)の上昇に伴って、第1減圧手段(13)における第1減圧量を増加させるとともに、第3減圧手段(22)における第3減圧量を減少させることを特徴とする。
【0022】
これによれば、通常除湿暖房モード時に、送風空気の目標温度(TAO)の上昇に伴って、室外熱交換器(20)を冷媒を放熱させる放熱器として機能させる状態から冷媒を蒸発させる蒸発器として機能させる状態へ切り替えることができる。従って、加熱用熱交換器(12)における冷媒の放熱量を増加させて、加熱用熱交換器(12)における送風空気の加熱能力を向上させることができる。
【0023】
請求項6に記載の発明では、請求項5に記載のヒートポンプサイクルにおいて、ガスバイパス除湿暖房モードは、第3減圧量が最小となっている際に実行されることを特徴とする。
【0024】
これによれば、通常除湿暖房モード時に、加熱用熱交換器(12)における送風空気の加熱能力が不足した際に、ガスバイパス除湿暖房モードへ切り替えて、加熱能力を受分に向上させることができる。
【0025】
請求項7に記載の発明では、請求項1ないし6のいずれか1つに記載のヒートポンプサイクルにおいて、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替手段(16b、16c)を備え、
送風空気を冷却する冷房運転モード時には、
開閉手段(16d)が中間圧冷媒通路(15)を閉じた状態で、冷媒流路切替手段(16b、16c)が、加熱用熱交換器(12)から流出した冷媒を、第1減圧手段(13)→室外熱交換器(20)→第3減圧手段(22)→冷却用熱交換器(23)の順に流す冷媒流路に切り替えることを特徴とする。
【0026】
これによれば、開閉手段(16d)に加えて、冷媒流路切替手段(16b、16c)を備えているので、送風空気を冷却する冷房運転モードを実現することもできる。
【0027】
請求項8に記載の発明では、請求項1ないし7のいずれか1つに記載のヒートポンプサイクルにおいて、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替手段(16b、16c)を備え、
送風空気を加熱する暖房運転モード時には、
開閉手段(16d)が中間圧冷媒通路(15)を閉じた状態で、冷媒流路切替手段(16b、16c)が、加熱用熱交換器(12)から流出した冷媒を、第1減圧手段(13)→気液分離手段(14)→第2減圧手段(17)→室外熱交換器(20)の順に流す冷媒流路に切り替えることを特徴とする。
【0028】
これによれば、開閉手段(16d)に加えて、冷媒流路切替手段(16b、16c)を備えているので、送風空気を加熱する暖房運転モードを実現することもできる。
【0029】
請求項9に記載の発明では、吸入ポート(11a)から吸入した低圧冷媒を圧縮して吐出ポート(11c)から高圧冷媒を吐出するとともに、サイクル内の中間圧冷媒を流入させて圧縮過程の冷媒に合流させる中間圧ポート(11b)を有する圧縮機(11)と、圧縮機(11)の吐出ポート(11c)から吐出された高圧冷媒を空調対象空間へ送風される送風空気と熱交換させて、送風空気を加熱する加熱用熱交換器(12)と、加熱用熱交換器(12)から流出した冷媒を減圧させる第1減圧手段(13)と、第1減圧手段(13)にて減圧された中間圧冷媒の気液を分離する気液分離手段(14)と、気液分離手段(14)にて分離された液相冷媒を減圧させる第2減圧手段(17)と、第2減圧手段(17)から流出した冷媒と外気とを熱交換させる室外熱交換器(20)と、室外熱交換器(20)から流出した冷媒を減圧させる第3減圧手段(22)と、第3減圧手段(22)から流出した冷媒と送風空気と熱交換させて、吸入ポート(11a)側へ流出させる冷却用熱交換器(23)と、気液分離手段(14)にて分離された気相冷媒を、中間圧ポート(11b)へ導く中間圧冷媒通路(15)と、中間圧冷媒通路(15)を開閉する開閉手段(16a)とを備え、加熱用熱交換器(12)が、冷却用熱交換器(23)に対して送風空気流れ下流側に配置されるヒートポンプサイクルであって、
冷却用熱交換器(23)にて送風空気を冷却して、冷却された送風空気を加熱用熱交換器(23)にて空調対象空間の温度以上となるまで昇温させる除湿暖房運転モードとして、開閉手段(16a)が中間圧冷媒通路(15)を開くことによって、気相冷媒を中間圧ポート(11b)へ流入させるインジェクション除湿暖房モードを有することを特徴とする。
【0030】
これによれば、除湿暖房運転モードとして、インジェクション除湿暖房モードを有しているので、加熱用熱交換器(12)における加熱能力を充分に向上させることができる。
【0031】
つまり、インジェクション除湿暖房モードでは、開閉手段(16a)が中間圧冷媒通路(15)を開くので、加熱用熱交換器(12)から流出した冷媒を、第1減圧手段(13)→気液分離手段(14)→第2減圧手段(17)→室外熱交換器(20)→第3減圧手段(22)→冷却用熱交換器(23)の順に流すとともに、気液分離手段(14)にて分離された気相冷媒を中間圧冷媒通路(15)へ流入させる冷媒流路に切り替えることができる。
【0032】
従って、ヒートポンプサイクル全体として、圧縮機(11)の吸入ポート(11a)から中間圧ポート(11b)へ至る低段側の圧縮行程および中間圧ポート(11b)から吐出ポート(11c)へ至る高段側の圧縮行程の2つの圧縮行程にて、冷媒を二段階に昇圧させるガスインジェクションサイクル(エコノマイザ式冷凍サイクル)を構成できる。
【0033】
これにより、中間圧ポート(11b)から吐出ポート(11c)へ至る高段側圧縮行程へ吸入させる冷媒流量を増加させて、高段側圧縮行程における圧縮仕事量を増加させることができる。その結果、加熱用熱交換器(12)における加熱能力を充分に向上させることができる。
【0034】
なお、請求項に記載された開閉手段とは、単に中間圧冷媒通路(15)の開閉機能を有する開閉弁のみを意味するものではなく、弁開度を調整することによって、中間圧冷媒通路(15)を閉塞させる機能に加えて、中間圧冷媒通路(15)を流通する冷媒の流量を調整する機能を有する流量調整弁等も含む意味である。
【0035】
請求項10に記載の発明では、請求項9に記載のヒートポンプサイクルにおいて、さらに、除湿暖房運転モードとして、開閉手段(16a)が中間圧冷媒通路(15)を閉じることによって、第1減圧手段(13)から流出した冷媒の全流量を第2減圧手段(17)へ流入させる通常除湿暖房モードを有することを特徴とする。
【0036】
これによれば、ヒートポンプサイクル全体として、加熱用熱交換器(12)から流出した冷媒を、第1減圧手段(13)→室外熱交換器(20)→第3減圧手段(22)→冷却用熱交換器(23)の順に循環させる通常の冷凍サイクルを構成して、空調対象空間の除湿暖房運転を行うこともできる。
【0037】
請求項11に記載の発明では、請求項9または10に記載のヒートポンプサイクルにおいて、インジェクション除湿暖房モード時には、空調対象空間へ吹き出される送風空気の目標温度(TAO)の上昇に伴って、中間圧ポート(11b)へ流入させる冷媒流量を増加させることを特徴とする。
【0038】
これによれば、インジェクション除湿暖房モード時に、送風空気の目標温度(TAO)の上昇に伴って、高段側圧縮行程における圧縮仕事量を増加させることができ、加熱用熱交換器(12)における加熱能力を充分かつ適切に向上させることができる。
【0039】
さらに、具体的には、請求項12に記載の発明のように、請求項11に記載のヒートポンプサイクルにおいて、インジェクション除湿暖房モード時には、空調対象空間へ吹き出される送風空気の目標温度(TAO)の上昇に伴って、第1減圧手段(13)の絞り開度を増加させることによって、中間圧ポート(11b)へ流入させる冷媒流量を増加させてもよい。
【0040】
請求項13に記載の発明では、請求項10に記載のヒートポンプサイクルにおいて、通常除湿暖房モード時には、空調対象空間へ吹き出される送風空気の目標温度(TAO)の上昇に伴って、第1減圧手段(13)における第1減圧量を増加させるとともに、第3減圧手段(22)における第3減圧量を減少させることを特徴とする。
【0041】
これによれば、通常除湿暖房モード時に、送風空気の目標温度(TAO)の上昇に伴って、室外熱交換器(20)を冷媒を放熱させる放熱器として機能させる状態から冷媒を蒸発させる蒸発器として機能させる状態へ切り替えることができる。従って、加熱用熱交換器(12)における冷媒の放熱量を増加させて、加熱用熱交換器(12)における送風空気の加熱能力を向上させることができる。
【0042】
請求項14に記載の発明では、請求項13に記載のヒートポンプサイクルにおいて、インジェクション除湿暖房モードは、第3減圧量が最小となっている際に実行されることを特徴とする。
【0043】
これによれば、通常除湿暖房モード時に、加熱用熱交換器(12)における送風空気の加熱能力が不足した際に、インジェクション除湿暖房モードへ切り替えて、加熱能力を受分に向上させることができる。
【0044】
なお、本請求項に記載された「第3減圧量が最小となっている」とは、第3減圧手段(22)が減圧作用を発揮している場合のみを意味するものではなく、第3減圧手段(22)の絞り開度が全開となり、減圧作用を発揮しなくなった場合も含む意味である。
【0045】
請求項15に記載の発明では、請求項9ないし14のいずれか1つに記載のヒートポンプサイクルにおいて、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替手段(16b、16c)を備え、送風空気を冷却する冷房運転モード時には、開閉手段(16a)が中間圧冷媒通路(15)を閉じた状態で、冷媒流路切替手段(16b、16c)が、加熱用熱交換器(12)から流出した冷媒を、第1減圧手段(13)→室外熱交換器(20)→第3減圧手段(22)→冷却用熱交換器(23)の順に流す冷媒流路に切り替えることを特徴とする。
【0046】
これによれば、開閉手段(16a)に加えて、冷媒流路切替手段(16b、16c)を備えているので、送風空気を冷却する冷房運転モードを実現することもできる。
【0047】
請求項16に記載の発明では、請求項9ないし15のいずれか1つに記載のヒートポンプサイクルにおいて、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替手段(16b、16c)を備え、送風空気を加熱する暖房運転モード時には、開閉手段(16a)が中間圧冷媒通路(15)を開いた状態で、冷媒流路切替手段(16b、16c)が、加熱用熱交換器(12)から流出した冷媒を、第1減圧手段(13)→気液分離手段(14)→第2減圧手段(17)→室外熱交換器(20)の順に流すとともに、気液分離手段(14)にて分離された気相冷媒を中間圧冷媒通路(15)へ流入させる冷媒流路に切り替えることを特徴とする。
【0048】
これによれば、開閉手段(16a)に加えて、冷媒流路切替手段(16b、16c)を備えているので、送風空気を加熱する暖房運転モードを実現することもできる。
【0049】
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【図面の簡単な説明】
【0050】
【図1】第1実施形態のヒートポンプサイクルの冷房運転モード時の冷媒流路を示す全体構成図である。
【図2】第1実施形態のヒートポンプサイクルのインジェクション除湿暖房モード時の冷媒流路を示す全体構成図である。
【図3】第1実施形態のヒートポンプサイクルの暖房運転モード時の冷媒流路を示す全体構成図である。
【図4】(a)は、第1実施形態の気液分離器の外観斜視図であり、(b)は、上面図である。
【図5】第1実施形態の車両用空調装置の制御処理を示すフローチャートである。
【図6】第1実施形態のヒートポンプサイクルの冷房運転モード時における冷媒の状態を示すモリエル線図である。
【図7】第1実施形態の除湿暖房運転モード時における制御処理を示すフローチャートである。
【図8】第1実施形態の除湿暖房運転モード時の制御を説明するための制御特性図である。
【図9】第1実施形態のヒートポンプサイクルの第1除湿暖房モード時における冷媒の状態を示すモリエル線図である。
【図10】第1実施形態のヒートポンプサイクルの第2除湿暖房モード時における冷媒の状態を示すモリエル線図である。
【図11】第1実施形態のヒートポンプサイクルの第3除湿暖房モード時における冷媒の状態を示すモリエル線図である。
【図12】第1実施形態のヒートポンプサイクルの第4除湿暖房モード時における冷媒の状態を示すモリエル線図である。
【図13】第1実施形態の除湿暖房運転モード時のインジェクション除湿暖房モード時における制御処理を示すフローチャートである。
【図14】第1実施形態のヒートポンプサイクルのインジェクション除湿暖房モード時における冷媒の状態を示すモリエル線図である。
【図15】第1実施形態のヒートポンプサイクルの暖房運転モード時における冷媒の状態を示すモリエル線図である。
【図16】第2実施形態のヒートポンプサイクルのガスバイパス除湿暖房モード時の冷媒流路を示す全体構成図である。
【図17】第2実施形態の除湿暖房運転モード時における制御処理を示すフローチャートである。
【図18】第2実施形態のヒートポンプサイクルのガスバイパス除湿暖房モード時における冷媒の状態を示すモリエル線図である。
【図19】第2実施形態のヒートポンプサイクルの暖房運転モード時の冷媒流路を示す全体構成図である。
【図20】第3実施形態のヒートポンプサイクルのガスバイパス除湿暖房モード時の冷媒流路を示す全体構成図である。
【発明を実施するための形態】
【0051】
(第1実施形態)
図1〜15により、本発明の第1実施形態について説明する。本実施形態では、本発明の冷凍サイクル装置を走行用電動モータから車両走行用の駆動力を得る電気自動車の車両用空調装置1に適用している。この冷凍サイクル装置は、車両用空調装置1において、空調対象空間である車室内へ送風される送風空気を冷却あるいは加熱する機能を果たす。従って、本実施形態の熱交換対象流体は送風空気である。
【0052】
さらに、冷凍サイクル装置は、ヒートポンプサイクル(蒸気圧縮式の冷凍サイクル)10を備えており、ヒートポンプサイクル10は、図1の全体構成図に示すように、送風空気を冷却して車室内を冷房する冷房運転モードあるいは車室内を除湿しながら暖房する通常除湿暖房モードの冷媒回路、図2の全体構成図に示すように、通常除湿暖房モードに対して送風空気の加熱能力を向上させながら車室内を除湿暖房するインジェクション除湿暖房モードの冷媒回路、および、図3の全体構成図に示すように、送風空気を加熱して車室内を暖房する暖房運転モードの冷媒回路を切替可能に構成されている。
【0053】
また、このヒートポンプサイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力Pdが冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。もちろん、HFO系冷媒(例えば、R1234yf)等を採用してもよい。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
【0054】
ヒートポンプサイクル10の構成機器のうち、圧縮機11は、車両のボンネット内に配置され、ヒートポンプサイクル10において冷媒を吸入し、圧縮して吐出するものである。この圧縮機11は、その外殻を形成するハウジングの内部に、固定容量型の圧縮機構からなる低段側圧縮機構と高段側圧縮機構との2つの圧縮機構、および、双方の圧縮機構を回転駆動する電動モータを収容して構成された二段昇圧式の電動圧縮機である。
【0055】
圧縮機11のハウジングには、ハウジングの外部から低段側圧縮機構へ低圧冷媒を吸入させる吸入ポート11a、ハウジングの外部からハウジングの内部へ中間圧冷媒を流入させて低圧から高圧への圧縮過程の冷媒に合流させる中間圧ポート11b、および、高段側圧縮機構から吐出された高圧冷媒をハウジングの外部へ吐出させる吐出ポート11cが設けられている。
【0056】
より具体的には、中間圧ポート11bは、低段側圧縮機構の冷媒吐出口側(すなわち、高段側圧縮機構の冷媒吸入口側)に接続されている。また、低段側圧縮機構および高段側圧縮機は、スクロール型圧縮機構、ベーン型圧縮機構、ローリングピストン型圧縮機構等の各種形式のものを採用することができる。
【0057】
電動モータは、後述する空調制御装置40から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式を採用してもよい。そして、この回転数制御によって、圧縮機11の冷媒吐出能力が変更される。従って、本実施形態では、電動モータが圧縮機11の吐出能力変更手段を構成している。
【0058】
なお、本実施形態では、2つの圧縮機構を1つのハウジング内に収容した圧縮機11を採用しているが、圧縮機の形式はこれに限定されない。つまり、中間圧ポート11bから中間圧冷媒を流入させて低圧から高圧への圧縮過程の冷媒に合流させることが可能であれば、ハウジングの内部に、1つの固定容量型の圧縮機構およびこの圧縮機構を回転駆動する電動モータを収容して構成された電動圧縮機であってもよい。
【0059】
さらに、2つの圧縮機を直列に接続して、低段側に配置される低段側圧縮機の吸入口を吸入ポート11aとし、高段側に配置される高段側圧縮機の吐出口を吐出ポート11cとし、低段側圧縮機の吐出口と高段側圧縮機との吸入口とを接続する接続部に中間圧ポート11bを設け、低段側圧縮機と高段側圧縮機との双方によって、1つの二段昇圧式の圧縮機11を構成してもよい。
【0060】
圧縮機11の吐出ポート11cには、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、後述する車両用空調装置1の室内空調ユニット30の空調ケース31内に配置され、圧縮機11(具体的には、高段側圧縮機構)から吐出された高温高圧冷媒を放熱させる放熱器として機能し、後述する室内蒸発器23を通過した送風空気を加熱する加熱用熱交換器(利用側熱交換器)である。
【0061】
室内凝縮器12の冷媒出口側には、室内凝縮器12から流出した高圧冷媒を中間圧冷媒となるまで減圧させる高段側減圧手段(第1減圧手段)としての高段側膨張弁13の入口側が接続されている。この高段側膨張弁13は、絞り開度を変更可能に構成された弁体と、この弁体の絞り開度を変化させるステッピングモータからなる電動アクチュエータとを有して構成される電気式の可変絞り機構である。
【0062】
より具体的には、高段側膨張弁13では、冷媒を減圧させる絞り状態となると、絞り通路面積が相当直径φ0.5〜φ3mmとなる範囲で絞り開度を変化させる。さらに、絞り開度を全開とすると、絞り通路面積を相当直径φ10mm程度確保して、冷媒減圧作用を発揮させないようにすることもできる。なお、高段側膨張弁13は、空調制御装置40から出力される制御信号によって、その作動が制御される。
【0063】
高段側膨張弁13の出口側には、室内凝縮器12から流出して高段側膨張弁13にて減圧された中間圧冷媒の気液を分離する気液分離手段としての気液分離器14の冷媒流入ポート14bが接続されている。この気液分離器14は、遠心力の作用によって冷媒の気液を分離する遠心分離方式のものである。
【0064】
気液分離器14の詳細構成については、図4を用いて説明する。なお、図4(a)は、気液分離器14の模式的な外観斜視図であり、図4(b)は、気液分離器14の上方側から見た上面図である。また、図4における上下の各矢印は、気液分離器14を車両用空調装置1に搭載した状態における上下の各方向を示している。
【0065】
本実施形態の気液分離器14は、上下方向に延びる略中空有底円筒状(断面円形状)の本体部14a、中間圧冷媒を流入させる冷媒流入口14eが形成された冷媒流入ポート14b、分離された気相冷媒を流出させる気相冷媒流出口14fが形成された気相冷媒流出ポート14c、および、分離された液相冷媒を流出させる液相冷媒流出口14gが形成された液相冷媒流出ポート14d等を有して構成されている。
【0066】
本体部14aの直径は、各流入出ポート14b〜14dに接続される冷媒配管の直径に対して、1.5倍以上、3倍以下程度の径に設定されており、気液分離器14全体としての小型化を図っている。
【0067】
より詳細には、本実施形態の気液分離器14(具体的には、本体部14a)の内容積は、サイクルに封入される冷媒量を液相に換算した際の封入冷媒体積から、サイクルが最大能力を発揮するために必要な冷媒量を液相に換算した際の必要最大冷媒体積を減算した余剰冷媒体積よりも小さく設定されている。このため、本実施形態の気液分離器14の内容積は、サイクルに負荷変動が生じてサイクルを循環する冷媒循環流量が変動しても、実質的に余剰冷媒を溜めることができない程度の容積になっている。
【0068】
冷媒流入ポート14bは、本体部14aの円筒状側面に接続されており、図4(b)に示すように、気液分離器14を上方側から見たときに、本体部14aの断面円形状の外周の接線方向に延びる冷媒配管によって構成されている。さらに、冷媒流入口14eは、冷媒流入ポート14bのうち本体部14aの反対側端部に形成されている。なお、冷媒流入ポート14aは、必ずしも水平方向に延びている必要はなく、上下方向の成分を有して延びていてもよい。
【0069】
気相冷媒流出ポート14cは、本体部14aの軸方向上側端面(上面)に接続されており、本体部14aの内外に亘って本体部14aと同軸上に延びる冷媒配管によって構成されている。さらに、気相冷媒流出口14fは、気相冷媒流出ポート14cの上方側端部に形成され、一方、下方側端部は、冷媒流入ポート14bと本体部14aとの接続部よりも下方側に位置付けられている。
【0070】
液相冷媒流出ポート14dは、本体部14aの軸方向下側端面(底面)に接続されており、本体部14aから下方側へ向かって、本体部14aと同軸上に延びる冷媒配管によって構成されている。さらに、液相冷媒流出口14gは、液相冷媒流出ポート14dの下方側端部に形成されている。
【0071】
従って、冷媒流入ポート14aの冷媒流入口14eから流入した冷媒は、本体部14aの円筒状内壁面に沿って旋回して流れ、この旋回流によって生じる遠心力の作用によって冷媒の気液が分離される。さらに、分離された液相冷媒が、重力の作用によって本体部14aの下方側に落下する。
【0072】
そして、分離されて下方側に落下した液相冷媒は液相冷媒流出ポート14dの液相冷媒流出口14gから流出し、分離された気相冷媒は気相冷媒流出ポート14cの気相冷媒流出口14fから流出する。なお、図4では、本体部14aの軸方向下側端面(底面)を円板状に形成した例を図示しているが、本体部14aの下方側部位を下側に向かって徐々に縮径するテーパ形状に形成し、このテーパ形状の最下位部に液相冷媒流出ポート14dを接続してもよい。
【0073】
また、気液分離器14の気相冷媒流出ポート14cには、図1〜図3に示すように、中間圧冷媒通路15を介して、圧縮機11の中間圧ポート11bが接続されている。この中間圧冷媒通路15には、中間圧側開閉弁16aが配置されている。この中間圧側開閉弁16aは中間圧冷媒通路15を開閉する開閉手段としての電磁弁であり、空調制御装置40から出力される制御信号によって、その作動が制御される。
【0074】
なお、中間圧側開閉弁16aは、中間圧冷媒通路15を開いた際に気液分離器14の気相冷媒出口から圧縮機11の中間圧ポート11b側へ冷媒が流れることのみを許容する逆止弁としての機能を兼ね備えている。これにより、中間圧側開閉弁16aが中間圧冷媒通路15を開いた際に、圧縮機11側から気液分離器14へ冷媒が逆流することが防止される。
【0075】
さらに、中間圧側開閉弁16aは、中間圧冷媒通路15を開閉することによって、サイクル構成(冷媒流路)を切り替える機能を果たす。従って、本実施形態の中間圧側開閉弁16aは、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替手段としての機能も兼ね備えている。
【0076】
一方、気液分離器14の液相冷媒流出ポート14dには、気液分離器14にて分離された液相冷媒を低圧冷媒となるまで減圧させる低段側減圧手段(第2減圧手段)としての低段側固定絞り17の入口側が接続され、低段側固定絞り17の出口側には、室外熱交換器20の冷媒入口側が接続されている。この低段側固定絞り17としては、絞り開度が固定されたノズル、オリフィスを採用できる。
【0077】
ノズル、オリフィス等の固定絞りでは、絞り通路面積が急縮小あるいは急拡大するので、上流側と下流側との圧力差(出入口間差圧)の変化に伴って、固定絞りを通過する冷媒の流量および低段側固定絞り17上流側冷媒の乾き度を自己調整(バランス)することができる。
【0078】
具体的には、圧力差が比較的大きい場合には、サイクルを循環させる必要のある必要循環冷媒流量が減少するに伴って、固定絞り上流側冷媒の乾き度が大きくなるようにバランスする。一方、圧力差が比較的小さい場合には、必要循環冷媒流量が増加するに伴って、固定絞り上流側冷媒の乾き度が小さくなるようにバランスする。
【0079】
ところが、低段側固定絞り17上流側冷媒の乾き度が大きくなってしまうと、室外熱交換器20が冷媒に吸熱作用を発揮させる蒸発器として機能する際に、室外熱交換器20における冷媒の吸熱量(冷凍能力)が減ってサイクルの成績係数(COP)が悪化してしまう。
【0080】
そこで、本実施形態では、暖房運転モード時にサイクルの負荷変動によって必要循環冷媒流量が変化しても、低段側固定絞り17上流側冷媒の乾き度Xが0.1以下となる低段側固定絞り17を採用し、COPの悪化を抑制している。つまり、本実施形態の低段側固定絞り17では、ヒートポンプサイクル10に負荷変動が生じた際に想定される範囲で、冷媒循環流量Qおよび低段側固定絞り17の出入口間差圧が変化しても、低段側固定絞り17上流側冷媒の乾き度Xが0.1以下に調整される。
【0081】
さらに、気液分離器14の液相冷媒流出ポート14dには、気液分離器14にて分離された液相冷媒を低段側固定絞り17を迂回させて室外熱交換器20側へ導く固定絞り迂回用通路18が接続されている。この固定絞り迂回用通路18には、固定絞り迂回用通路18を開閉する低圧側開閉弁16bが配置されている。低圧側開閉弁16bの基本的構成は、中間圧側開閉弁16aと同等であり、空調制御装置40から出力される制御電圧によって、その開閉作動が制御される電磁弁である。
【0082】
また、冷媒が低圧側開閉弁16bを通過する際に生じる圧力損失は、低段側固定絞り17を通過する際に生じる圧力損失に対して極めて小さい。従って、室内凝縮器12から流出した冷媒は、低圧側開閉弁16bが開いている場合には固定絞り迂回用通路18側を介して室外熱交換器20へ流入し、低圧側開閉弁16bが閉じている場合には低段側固定絞り17を介して室外熱交換器20へ流入する。
【0083】
これにより、低圧側開閉弁16bは、ヒートポンプサイクル10の冷媒流路を切り替えることができる。従って、本実施形態の低圧側開閉弁16bは、上述の中間圧側開閉弁16aとともに冷媒流路切替手段を構成している。
【0084】
なお、このような冷媒流路切替手段としては、気液分離器14の液相冷媒流出ポート14d出口側と低段側固定絞り17入口側とを接続する冷媒回路および液相冷媒流出ポート14d出口側と固定絞り迂回用通路18入口側とを接続する冷媒回路を切り替える電気式の三方弁等を採用してもよい。
【0085】
室外熱交換器20は、ボンネット内に配置されて、内部を流通する冷媒と送風ファン21から送風された外気とを熱交換させるものである。この室外熱交換器20は、少なくとも暖房運転モード時には、低圧冷媒を蒸発させて吸熱作用を発揮させる蒸発器として機能し、冷房運転モード時等には、高圧冷媒を放熱させる放熱器として機能する熱交換器である。
【0086】
室外熱交換器20の冷媒出口側には、第3減圧手段としての冷房用膨張弁22の冷媒入口側が接続されている。冷房用膨張弁22は、冷房運転モード時等に室外熱交換器20から流出し、室内蒸発器23へ流入する冷媒を減圧させるものである。この冷房用膨張弁22の基本的構成は、高段側膨張弁13と同様であり、空調制御装置40から出力される制御信号によって、その作動が制御される。
【0087】
冷房用膨張弁22の出口側には、室内蒸発器23の冷媒入口側が接続されている。室内蒸発器23は、室内空調ユニット30の空調ケース31内のうち、室内凝縮器12の送風空気流れ上流側に配置され、冷房運転モード時、除湿暖房運転モード等にその内部を流通する冷媒を蒸発させて吸熱作用を発揮させることにより送風空気を冷却する蒸発器(冷却用熱交換器)である。
【0088】
室内蒸発器23の出口側には、アキュムレータ24の入口側が接続されている。アキュムレータ24は、その内部に流入した冷媒の気液を分離して余剰冷媒を蓄える低圧側気液分離器である。さらに、アキュムレータ24の気相冷媒出口には、圧縮機11の吸入ポート11aが接続されている。従って、室内蒸発器23は、圧縮機11の吸入ポート11a側へ流出させるように接続されている。
【0089】
さらに、室外熱交換器20の冷媒出口側には、室外熱交換器20から流出した冷媒を冷房用膨張弁22および室内蒸発器23を迂回させてアキュムレータ24の入口側へ導く膨張弁迂回用通路25が接続されている。この膨張弁迂回用通路25には、膨張弁迂回用通路25を開閉する冷房用開閉弁16cが配置されている。
【0090】
冷房用開閉弁16cの基本的構成は、低圧側開閉弁16bと同様であり、空調制御装置40から出力される制御電圧によって、その開閉作動が制御される。また、冷媒が冷房用開閉弁16cを通過する際に生じる圧力損失は、冷房用膨張弁22を通過する際に生じる圧力損失に対して極めて小さい。
【0091】
従って、室外熱交換器20から流出した冷媒は、冷房用開閉弁16cが開いている場合には膨張弁迂回用通路25を介してアキュムレータ24へ流入する。この際、冷房用膨張弁22の絞り開度を全閉としてもよい。
【0092】
また、冷房用開閉弁16cが閉じている場合には冷房用膨張弁22を介して室内蒸発器23へ流入する。これにより、冷房用開閉弁16cは、ヒートポンプサイクル10の冷媒流路を切り替えることができる。従って、本実施形態の冷房用開閉弁16cは、中間圧側開閉弁16aおよび低圧側開閉弁16bとともに冷媒流路切替手段を構成している。
【0093】
次に、室内空調ユニット30について説明する。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されて、室内空調ユニット30の外殻を形成するとともに、その内部に車室内に送風される送風空気の空気通路を形成する空調ケース31を有している。そして、この空気通路に送風機32、前述の室内凝縮器12、室内蒸発器23等が収容されている。
【0094】
空調ケース31の空気流れ最上流側には、車室内空気(内気)と外気とを切替導入する内外気切替装置33が配置されている。この内外気切替装置33は、空調ケース31内に内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させるものである。
【0095】
内外気切替装置33の空気流れ下流側には、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する送風機32が配置されている。この送風機32は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、空調制御装置40から出力される制御電圧によって回転数(送風量)が制御される。
【0096】
送風機32の空気流れ下流側には、前述の室内蒸発器23および室内凝縮器12が、送風空気の流れに対して、室内蒸発器23→室内凝縮器12の順に配置されている。換言すると、室内蒸発器23は、室内凝縮器12に対して、空気流れ上流側に配置されている。
【0097】
また、ケーシング31内には、室内蒸発器23通過後の送風空気を、室内凝縮器12を迂回して流すバイパス通路35が設けられており、室内蒸発器23の空気流れ下流側であって、かつ、室内凝縮器12の空気流れ上流側には、エアミックスドア34が配置されている。
【0098】
本実施形態のエアミックスドア34は、室内蒸発器23通過後の送風空気のうち、室内凝縮器12側を通過する送風空気の風量とバイパス通路35を通過させる風量との風量割合を調整することによって、室内凝縮器12へ流入する送風空気の流量(風量)を調整する流量調整手段であるとともに、室内凝縮器12の熱交換能力を調整する熱交換能力調整手段としての機能を果たす。
【0099】
また、室内凝縮器12およびバイパス通路35の空気流れ下流側には、室内凝縮器12にて冷媒と熱交換して加熱された送風空気とバイパス通路35を通過して加熱されていない送風空気が合流する合流空間36が設けられている。
【0100】
ケーシング31の空気流れ最下流部には、合流空間36にて合流した送風空気を、冷却対象空間である車室内へ吹き出す開口穴が配置されている。具体的には、この開口穴としては、車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口穴37a、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口穴37b、乗員の足元に向けて空調風を吹き出すフット開口穴37cが設けられている。
【0101】
従って、エアミックスドア34が、室内凝縮器12を通過させる風量とバイパス通路35を通過させる風量との風量割合を調整することによって、合流空間36内の送風空気の温度が調整される。なお、エアミックスドア34は、空調制御装置40から出力される制御信号によって作動が制御される図示しないサーボモータによって駆動される。
【0102】
さらに、デフロスタ開口穴37a、フェイス開口穴37bおよびフット開口穴37cの空気流れ上流側には、それぞれ、デフロスタ開口穴37aの開口面積を調整するデフロスタドア38a、フェイス開口穴37bの開口面積を調整するフェイスドア38b、フット開口穴37cの開口面積を調整するフットドア38cが配置されている。
【0103】
これらのデフロスタドア38a、フェイスドア38bおよびフットドア38cは、各開口穴37a〜37cを開閉して、吹出口モードを切り替える吹出口モード切替手段を構成するものであって、リンク機構等を介して、空調制御装置40から出力される制御信号によってその作動が制御される図示しないサーボモータによって駆動される。
【0104】
また、デフロスタ開口穴37a、フェイス開口穴37bおよびフット開口穴37cの空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口に接続されている。
【0105】
なお、吹出口モードとしては、フェイス開口穴37bを全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出すフェイスモード、フェイス開口穴37bとフット開口穴37cの両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出すバイレベルモード、フット開口穴37cを全開するとともにデフロスタ開口穴37aを小開度だけ開口して、フット吹出口から主に空気を吹き出すフットモード等がある。
【0106】
次に、本実施形態の電気制御部について説明する。空調制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種空調制御機器(圧縮機11、中間圧側開閉弁16a、冷媒流路切替手段16b、16c、送風機32等)の作動を制御する。
【0107】
また、空調制御装置40の入力側には、車室内温度を検出する内気センサ、外気温を検出する外気センサ、車室内の日射量を検出する日射センサ、室内蒸発器23からの吹出空気温度(蒸発器温度)を検出する蒸発器温度センサ、圧縮機11から吐出された高圧冷媒圧力を検出する吐出圧センサ、室内凝縮器12から流出した冷媒の温度を検出する凝縮器温度センサ、圧縮機11へ吸入される吸入冷媒圧力を検出する吸入圧センサ等の種々の空調制御用のセンサ群41が接続されている。
【0108】
さらに、空調制御装置40の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種空調操作スイッチからの操作信号が入力される。操作パネルに設けられた各種空調操作スイッチとしては、具体的に、車両用空調装置1の作動スイッチ、車室内温度を設定する車室内温度設定スイッチ、冷房運転モード、除湿暖房運転モードおよび暖房運転モードを選択するモード選択スイッチ等が設けられている。
【0109】
なお、空調制御装置40は、その出力側に接続された各種空調制御機器の作動を制御する制御手段が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御手段を構成している。
【0110】
例えば、本実施形態では、圧縮機11の電動モータの作動を制御する構成が吐出能力制御手段を構成し、中間圧側開閉弁16aの作動を制御する構成が開閉弁制御手段を構成し、冷媒流路切替手段16b、16cの作動を制御する構成が冷媒流路制御手段を構成し、さらに、エアミックスドア34用のサーボモータを制御する構成が流量制御手段を構成している。もちろん、吐出能力制御手段、開閉弁制御手段、冷媒流路制御手段および流量制御手段等を空調制御装置40に対して別体の制御装置として構成してもよい。
【0111】
次に、図5〜図15を用いて、上記構成における本実施形態の車両用空調装置1の作動を説明する。図5は、本実施形態の車両用空調装置1のメインルーチンとしての制御処理を示すフローチャートである。この制御処理は、車両用空調装置1の作動スイッチが投入(ON)されるとスタートする。なお、各図面のフローチャートにおける各制御ステップは、空調制御装置40が有する各種の機能実現手段を構成している。
【0112】
まず、ステップS1では、フラグ、タイマ等の初期化、および、上述した各種電動アクチュエータの初期位置合わせ等のイニシャライズ(初期化処理)が行われてステップS2へ進む。なお、ステップS1の初期化処理では、フラグや演算値のうち、前回の車両用空調装置1の作動終了時に記憶された値が維持されるものもある。
【0113】
ステップS2では、車室内温度設定スイッチによって設定された車室内の設定温度Tset、モード選択スイッチによって選択された運転モード等の操作パネルの操作信号等を読み込んでステップS3へ進む。ステップS3では、空調制御に用いられる車両環境状態の信号、すなわち上述の空調制御用のセンサ群41の検出信号を読み込んでステップS4へ進む。
【0114】
ステップS4では、各種吹出口から車室内へ吹き出される送風空気の目標吹出温度(目標温度)TAOを算出してステップS5へ進む。具体的には、ステップS4では、本実施形態の目標吹出温度TAOは、車室内設定温度Tset、内気センサによって検出された車室内温度(内気温)Tr、外気センサによって検出された外気温Tam、日射センサによって検出された日射量Tsを用いて算出される。
【0115】
ステップS5では、送風機32の送風能力(送風量)を決定してステップS6へ進む。具体的には、ステップS5では、ステップS4にて決定された目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、送風機32の風量(具体的には、電動モータに印加するブロワモータ電圧)を決定する。
【0116】
より詳細には、本実施形態では、TAOの極低温域および極高温域でブロワモータ電圧を最大値付近の高電圧にして、送風機32の風量を最大風量付近に制御する。また、TAOが極低温域から中間温度域に向かって上昇すると、TAOの上昇に応じてブロワモータ電圧を減少させて、送風機32の風量を減少させる。
【0117】
さらに、TAOが極高温域から中間温度域に向かって低下すると、TAOの低下に応じてブロワモータ電圧を減少させて、送風機32の風量を減少させる。また、TAOが所定の中間温度域内に入ると、ブロワモータ電圧を最小値にして送風機32の風量を最小値にする。
【0118】
ステップS6では、操作パネルのモード選択スイッチの操作信号に基づいて、運転モードを決定する。そして、モード選択スイッチによって冷房運転モードが選択されている際にはステップS7へ進み、除湿暖房運転モードが選択されている際にはステップS8へ進み、さらに、暖房運転モードが選択されている際にはステップS9へ進み、各運転モードの制御処理が実行される。
【0119】
ステップS7〜S9では、各運転モードに応じた制御処理が実行されて、ステップS10へ進む。これらのステップS7〜S9の制御処理の詳細内容については後述する。
【0120】
ステップS10では、吸込口モード、すなわち内外気切替装置33の切替状態が決定されてステップS11へ進む。ステップS10では、TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して吸込口モードを決定する。本実施形態では、基本的に外気を導入する外気モードが優先されるが、TAOが極低温域あるいは極高温域となって高い冷房性能あるいは暖房性能を得たい場合等には、内気を導入する内気モードが選択される。
【0121】
ステップS11では、吹出口モードが決定されてステップS12へ進む。ステップS11では、TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して吹出口モードを決定する。本実施形態では、TAOが低温域から高温域へと上昇するに伴って、吹出口モードをフットモード→バイレベルモード→フェイスモードへと順次切り替える。
【0122】
ステップS12では、上述のステップS6〜S11にて決定された制御状態が得られるように、空調制御装置40から出力側に接続された各種制御対象機器に対して、制御信号および制御電圧が出力される。続くステップS13では、制御周期τの間待機し、制御周期τの経過を判定するとステップS2に戻るようになっている。
【0123】
以上の如く、図5に示すメインルーチンでは、検出信号および操作信号の読み込み→各制御対象機器の制御状態の決定→各制御対象機器に対する制御信号および制御電圧の出力を繰り返し、このメインルーチンは、例えば、作動スイッチがOFFされる等によって車両用空調装置1の作動停止が要求されるまで実行される。次に、ステップS7〜S9にて実行される各運転モードの詳細について説明する。
【0124】
(a)冷房運転モード
まず、ステップS7にて実行される冷房運転モードについて説明する。冷房運転モードでは、空調制御装置40が、高段側膨張弁13を全開状態とし、冷房用膨張弁22を減圧作用を発揮する絞り状態とし、さらに、中間圧側開閉弁16aを閉弁状態とし、低圧側開閉弁16bを開弁状態とし、冷房用開閉弁16cを閉弁状態とする。
【0125】
これにより、図5のステップS12にて、各制御対象機器に制御信号あるいは制御電圧が出力されると、ヒートポンプサイクル10は、図1の実線矢印に示すように冷媒が流れる冷媒流路に切り替えられる。この冷媒流路の構成で、制御ステップS4で算出された目標吹出温度TAOおよびセンサ群の検出信号に基づいて、空調制御装置40の出力側に接続された各種空調制御機器の作動状態を決定する。
【0126】
例えば、圧縮機11の回転数Nc(すなわち圧縮機11の電動モータに出力される制御信号)については、次のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、室内蒸発器23の目標蒸発器吹出温度TEOを決定する。この目標蒸発器吹出温度TEOは、室内蒸発器23の着霜を防止するため、着霜温度(0℃)よりも高い所定温度(本実施形態では、1℃)以上となるように決定される。
【0127】
そして、この目標蒸発器吹出温度TEOと蒸発器温度センサによって検出された室内蒸発器23からの吹出空気温度との偏差に基づいて、フィードバック制御手法を用いて室内蒸発器23からの吹出空気温度が目標蒸発器吹出温度TEOに近づくように、圧縮機11の回転数Ncが決定される。
【0128】
また、冷房用膨張弁22へ出力される制御信号については、冷房用膨張弁22へ流入する冷媒の過冷却度が、COPを略最大値に近づくように予め決定された目標過冷却度に近づくように決定される。また、エアミックスドア34のサーボモータへ出力される制御信号については、エアミックスドア34が室内凝縮器12の空気通路を閉塞し、室内蒸発器23通過後の送風空気の全流量がバイパス通路35を通過するように決定される。
【0129】
その後、図5のステップS6にて運転モードが除湿暖房運転モードあるいは暖房運転モードに切り替えられるまで、あるいは、操作パネルの操作信号等によって車両用空調装置の作動停止が要求されるまで、所定の制御周期毎に、上述の検出信号および操作信号の読み込み→目標吹出温度TAOの算出→各種空調制御機器の作動状態決定→制御電圧および制御信号の出力といった制御ルーチンが繰り返される。
【0130】
従って、冷房運転モードのヒートポンプサイクル10では、図6のモリエル線図に示すように、圧縮機11の吐出ポート11cから吐出された高圧冷媒(図6のa6点)が室内凝縮器12へ流入する。この際、エアミックスドア34が室内凝縮器12の空気通路を閉塞しているので、室内凝縮器12へ流入した冷媒は殆ど送風空気へ放熱することなく、室内凝縮器12から流出していく。
【0131】
室内凝縮器12から流出した冷媒は、高段側膨張弁13→気液分離器14→低圧側開閉弁16bの順に流れて室外熱交換器20へ流入する。より詳細には、室内凝縮器12から流出した冷媒は、高段側膨張弁13が全開状態となっているので、高段側膨張弁13にて殆ど減圧されることなく流出し、気液分離器14の冷媒流入ポート14aから気液分離器14内へ流入する。
【0132】
ここで、室内凝縮器12では、冷媒は殆ど送風空気へ放熱することがないので、気液分離器14へ流入する冷媒は気相状態である。従って、気液分離器14では冷媒の気液が分離されることなく、気相冷媒が液相冷媒流出ポート14dから流出していく。さらに、中間圧側開閉弁16aが閉弁状態となっているので、気相冷媒流出ポート14cから気相冷媒が流出することはない。
【0133】
液相冷媒流出ポート14dから流出した気相冷媒は、低圧側開閉弁16bが開弁状態となっているので、低段側固定絞り17側へ流入することなく固定絞り迂回用通路18を介して室外熱交換器20へ流入する。室外熱交換器20へ流入した低圧冷媒は、送風ファン21から送風された外気と熱交換して放熱する(図6のa6点→b6点)。
【0134】
室外熱交換器20から流出した冷媒は、冷房用開閉弁16cが閉弁状態となっているので、絞り状態となっている冷房用膨張弁22へ流入して低圧冷媒となるまで、等エンタルピ的に減圧膨脹される(図6のb6点→c6点)。そして、冷房用膨張弁22にて減圧された低圧冷媒は、室内蒸発器23へ流入し、送風機32から送風された送風空気から吸熱して蒸発する(図6のc6点→d6点)。これにより、送風空気が冷却される。
【0135】
室内蒸発器23から流出した冷媒は、アキュムレータ24へ流入して気液分離される。そして、分離された気相冷媒が圧縮機11の吸入ポート11a(図6のe6点)から吸入されて低段側圧縮機構→高段側圧縮機構の順に再び圧縮される(図6のe6点→a16点→a6点)。
【0136】
なお、図6においてd6点とe6点が異なっている理由は、アキュムレータ24から圧縮機11の吸入ポート11aへ至る冷媒配管を流通する気相冷媒には圧力損失が生じるからである。従って、理想的なサイクルでは、d6点とe6点が一致していることが望ましい。このことは、以下のモリエル線図においても同様である。
【0137】
以上の如く、冷房運転モードでは、エアミックスドア34にて室内凝縮器12の空気通路を閉塞しているので、室内蒸発器23にて冷却された送風空気を車室内へ吹き出すことができる。これにより、車室内の冷房を実現することができる。
【0138】
また、上記の説明から明らかなように、冷房運転モードでは、加熱用熱交換器である室内凝縮器12から流出した冷媒を、第1減圧手段である高段側膨張弁13および気液分離器14を介して、室外熱交換器20→第3減圧手段である冷房用膨張弁22→冷却用熱交換器である室内蒸発器23→アキュムレータ24→圧縮機11の吸入ポート11aの順に流している。
【0139】
(b)除湿暖房運転モード
次に、ステップS8にて実行される除湿暖房運転モードの詳細を、図7〜図14を用いて説明する。なお、図7は、除湿暖房運転モード時に実行される制御フローを示すフローチャートであり、図8は、図7の制御ステップS85の制御を説明するための制御特性図である。
【0140】
前述の如く、本実施形態のヒートポンプサイクル10では、除湿暖房運転モードとして、通常除湿暖房モードおよびインジェクション除湿暖房モードの2つの運転モードを切り替えることができる。さらに、通常除湿暖房モードは、インジェクション除湿暖房モードに優先して実行される。
【0141】
そこで、図7のステップS81では、通常除湿暖房モードにおける各膨張弁13、22、エアミックスドア34、中間圧側開閉弁16a、冷媒流路切替手段16b、16c等の制御状態を決定する。
【0142】
具体的には、高段側膨張弁13を全開状態あるいは絞り状態とし、冷房用膨張弁22を全開状態あるいは絞り状態とし、さらに、中間圧側開閉弁16aを閉弁状態とし、低圧側開閉弁16bを開弁状態とし、冷房用開閉弁16cを閉弁状態とし、エアミックスドア34の開度がバイパス通路35を閉塞させる最小開度となるようにエアミックスドア34用のサーボモータの制御状態を決定する。
【0143】
これにより、図5のステップS12にて、各制御対象機器に制御信号あるいは制御電圧が出力されると、ヒートポンプサイクル10は、冷房運転モードと同様の図1の実線矢印に示すように冷媒が流れる冷媒流路に切り替えられる。
【0144】
続くステップS82では、圧縮機11の吐出ポート11cから高段側膨張弁13の入口側へ至るヒートポンプサイクル10の高圧側冷媒圧力Pdの目標高圧TPdを決定し、ステップS83へ進む。具体的には、目標高圧TPdは、図5のステップS4にて決定された目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、車室内へ吹き出される送風空気が目標吹出温度TAOとなるように決定される。
【0145】
ステップS83では、室内蒸発器23の目標蒸発器吹出温度TEOを決定して、ステップS84へ進む。具体的には、目標蒸発器吹出温度TEOは、ステップS81にて決定された目標高圧TPdに基づいて、予め空調制御装置40に記憶された制御マップを参照して、高圧側冷媒圧力Pdが目標高圧TPdとなるように決定される。この際、目標蒸発器吹出温度TEOは、室内蒸発器23の着霜を防止するため、着霜温度よりも高い所定温度(本実施形態では、1℃)以上に決定される。
【0146】
ステップS84では、冷房用膨張弁22が最大弁開度(全開状態)となっているか否かが判定され、冷房用膨張弁22が最大弁開度となっている場合は、ステップS85へ進み、室内凝縮器12における送風空気の加熱能力が不足しているか否かが判定される。一方、ステップS84にて、冷房用膨張弁22が最大弁開度となっていない場合は、ステップS86へ進み、通常除湿暖房モードでの制御処理が実行される。
【0147】
また、ステップS85にて、加熱能力が不足している(図8に示す判定用制御フラグが1)と判定された場合は、ステップS87へ進み、ガスインジェクション除湿暖房モードの制御処理が実行される。一方、ステップS85にて、加熱能力が不足していない(図8に示す判定用制御フラグが0)と判定された場合は、ステップS86へ進み、通常除湿暖房モードの制御処理が実行される。
【0148】
このステップS85では、具体的に、図8の制御特性図に示すように、目標高圧TPdから吐出圧センサによって検出された現在の高圧側冷媒圧力Pdを減算した圧力差が増加する増加過程では、予め定めた第1基準圧力差C1以上となった際に、加熱能力が不足していると判定して判定用制御フラグを1とし、圧力差が減少する減少過程では、予め定めた第2基準圧力差C2以下となった際に、加熱能力が不足していないものと判定して判定用制御フラグを0とする。
【0149】
なお、第1、第2基準圧力差C1、C2との差は、制御ハンチング防止のためのヒステリシス幅として設定されている。
【0150】
ここで、高圧側冷媒圧力Pdは、冷媒凝縮器12における冷媒凝縮温度に相関を有する物理量であるから、目標高圧TPdから高圧側冷媒圧力Pdを減算した圧力差は、目標吹出温度TAOから室内凝縮器12流出直後の実際の送風空気温度を減算した温度差に相関を有する値となる。
【0151】
従って、このステップS85では、目標吹出温度TAOから室内凝縮器12流出直後の実際の送風空気温度を減算した温度差に基づいて、通常除湿暖房モードおよびガスインジェクション除湿暖房モードを切り替えていると表現することができる。より具体的には、目標吹出温度TAOから室内凝縮器12流出直後の実際の送風空気温度を減算した温度差が、予め定めた所定温度差以上となったときに、通常除湿暖房モードからガスインジェクション除湿暖房モードへ切り替えている。
【0152】
ステップS86およびステップS87に続く、ステップS88では、高圧側冷媒圧力Pdが目標高圧TPdに近づくように、フィードバック制御手法によって圧縮機11の回転数Ncが決定されて、ステップS10へ戻る。
【0153】
次に、ステップS86にて実行される通常除湿暖房モードにおける制御処理の詳細を説明する。通常除湿暖房モードでは、目標吹出温度TAOの上昇に伴って、高段側膨張弁13および冷房用膨張弁22の絞り開度を変化させる。具体的には、目標吹出温度TAOの上昇に伴って、高段側膨張弁13における第1減圧量を増加させるとともに、冷房用膨張弁22における第3減圧量を減少させている。これにより、以下に説明する第1〜第4除湿暖房モードの4段階の運転モードが実行される。
【0154】
(b)−1:通常除湿暖房モードの第1除湿暖房モード
第1除湿暖房モードでは、高段側膨張弁13を全開状態とし、冷房用膨張弁22を絞り状態とする。従って、サイクル構成(冷媒流路)については、冷房運転モードと全く同様となるものの、エアミックスドア34が室内凝縮器12の空気通路を全開する最小開度となっているので、サイクルを循環する冷媒の状態については図9のモリエル線図に示すように変化する。
【0155】
すなわち、図9に示すように、圧縮機11の吐出ポート11cから吐出された高圧冷媒(図9のa9点)は、室内凝縮器12へ流入して、室内蒸発器23にて冷却されて除湿された送風空気と熱交換して放熱する(図9のa9点→b19点)。これにより、送風空気が加熱される。
【0156】
室内凝縮器12から流出した冷媒は、冷房運転モードと同様に、高段側膨張弁13→気液分離器14→低圧側開閉弁16bの順に流れて室外熱交換器20へ流入する。そして、室外熱交換器20へ流入した低圧冷媒は、送風ファン21から送風された外気と熱交換して放熱する(図9のb19→b29点)。以降の作動は冷房運転モードと同様である。
【0157】
以上の如く、第1除湿暖房モード時には、室内蒸発器23にて冷却され除湿された送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。
【0158】
(b)−2:通常除湿暖房モードの第2除湿暖房モード
次に、第1除湿暖房モードの実行中に、目標吹出温度TAOが予め定めた第1基準温度よりも高くなった際には、第2除湿暖房モードが実行される。第2除湿暖房モードでは、高段側膨張弁13を絞り状態とし、冷房用膨張弁22の絞り開度を第1除湿暖房モードよりも増加させた絞り状態とする。
【0159】
従って、第2除湿暖房モードでは、第1除湿暖房モードよりも、高段側膨張弁13における第1減圧量が増加し、冷房用膨張弁22における第3減圧量が減少する。さらに、サイクルを循環する冷媒の状態については図10のモリエル線図に示すように変化する。
【0160】
すなわち、図10に示すように、圧縮機11の吐出ポート11cから吐出された高圧冷媒(図10のa10点)は、第1除湿暖房モードと同様に、室内凝縮器12へ流入して、室内蒸発器23にて冷却されて除湿された送風空気と熱交換して放熱する(図10のa10点→b110点)。これにより、送風空気が加熱される。
【0161】
室内凝縮器12から流出した冷媒は、絞り状態となっている高段側膨張弁13によって中間圧冷媒となるまで等エンタルピ的に減圧される(図10のb110点→b210点)。高段側膨張弁13にて減圧された中間圧冷媒は、気液分離器14→低圧側開閉弁16bの順に流れて室外熱交換器20へ流入する。そして、室外熱交換器20へ流入した低圧冷媒は、送風ファン21から送風された外気と熱交換して放熱する(図10のb210点→b310点)。以降の作動は冷房運転モードと同様である。
【0162】
以上の如く、第2除湿暖房モードでは、第1除湿暖房モード時と同様に、室内蒸発器23にて冷却され除湿された送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。
【0163】
この際、第2除湿暖房モードでは、高段側膨張弁13を絞り状態としているので、第1除湿暖房モードに対して、室外熱交換器20を流通する冷媒の温度を低下させることができる。従って、室外熱交換器20における冷媒の温度と外気温との温度差を縮小して、室外熱交換器20における冷媒の放熱量を低減できる。
【0164】
その結果、室内凝縮器12における冷媒の放熱量を増加させることができ、第1除湿暖房モードよりも室内凝縮器12における送風空気の加熱能力を向上させることができる。
【0165】
(b)−3:通常除湿暖房モードの第3除湿暖房モード
次に、第2除湿暖房モードの実行中に、目標吹出温度TAOが予め定めた第2基準温度よりも高くなった際には、第3除湿暖房モードが実行される。第3除湿暖房モードでは、高段側膨張弁13の絞り開度を第2除湿暖房モードよりも縮小させた絞り状態とし、冷房用膨張弁22の絞り開度を第2除湿暖房モードよりも増加させる。
【0166】
従って、第3除湿暖房モードでは、第2除湿暖房モードよりも、高段側膨張弁13における第1減圧量が増加し、冷房用膨張弁22における第3減圧量が減少する。さらに、サイクルを循環する冷媒の状態については図11のモリエル線図に示すように変化する。
【0167】
すなわち、図11に示すように、圧縮機11の吐出ポート11cから吐出された高圧冷媒(図11のa11点)は、第1、第2除湿暖房モードと同様に、室内凝縮器12へ流入して、室内蒸発器23にて冷却されて除湿された送風空気と熱交換して放熱する(図11のa11点→b11点)。これにより、送風空気が加熱される。
【0168】
室内凝縮器12から流出した冷媒は、絞り状態となっている高段側膨張弁13によって外気温よりも温度の低い中間圧冷媒となるまで等エンタルピ的に減圧される(図11のb11点→c111点)。高段側膨張弁13にて減圧された中間圧冷媒は、気液分離器14→低圧側開閉弁16bの順に流れて室外熱交換器20へ流入する。
【0169】
そして、室外熱交換器20へ流入した低圧冷媒は、送風ファン21から送風された外気と熱交換して吸熱する(図11のc111点→c211点)。さらに、室外熱交換器20から流出した冷媒は、冷房用膨張弁22にて等エンタルピ的に減圧されて(図11のc211点→c311点)、室内蒸発器23へ流入する。以降の作動は冷房運転モードと同様である。
【0170】
以上の如く、第3除湿暖房モードでは、第1、第2除湿暖房モード時と同様に、室内蒸発器23にて冷却され除湿された送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。
【0171】
この際、第3除湿暖房モードでは、高段側膨張弁13の絞り開度を縮小させることによって、室外熱交換器20を蒸発器として作用させているので、第2除湿暖房モードに対して、冷媒が外気から吸熱する吸熱量を増加させ、室内凝縮器12における冷媒の放熱量を増加させることができる。その結果、第2除湿暖房モードよりも室内凝縮器12における送風空気の加熱能力を向上させることができる。
【0172】
(b)−4:通常除湿暖房モードの第4除湿暖房モード
次に、第3除湿暖房モードの実行中に、目標吹出温度TAOが予め定めた第3基準温度よりも高くなった際には、第4除湿暖房モードが実行される。第4除湿暖房モードでは、高段側膨張弁13の絞り開度を第3除湿暖房モードよりも縮小させた絞り状態とし、冷房用膨張弁22を全開状態とする。
【0173】
従って、第4除湿暖房モードでは、第3除湿暖房モードよりも、高段側膨張弁13における第1減圧量が増加し、冷房用膨張弁22における第3減圧量が減少する。さらに、サイクルを循環する冷媒の状態については図12のモリエル線図に示すように変化する。
【0174】
すなわち、図12に示すように、圧縮機11の吐出ポート11cから吐出された高圧冷媒(図12のa12点)は、第1、第2除湿暖房モードと同様に、室内凝縮器12へ流入して、室内蒸発器23にて冷却されて除湿された送風空気と熱交換して放熱する(図12のa12点→b12点)。これにより、送風空気が加熱される。
【0175】
室内凝縮器12から流出した冷媒は、絞り状態となっている高段側膨張弁13によって外気温よりも温度の低い低圧冷媒となるまで等エンタルピ的に減圧される(図12のb12点→c112点)。高段側膨張弁13にて減圧された中間圧冷媒は、気液分離器14→低圧側開閉弁16bの順に流れて室外熱交換器20へ流入する。
【0176】
そして、室外熱交換器20へ流入した低圧冷媒は、送風ファン21から送風された外気と熱交換して吸熱する(図12のc112点→c212点)。さらに、室外熱交換器20から流出した冷媒は、冷房用膨張弁22が全開状態となっているので、減圧されることなく室内蒸発器23へ流入する。以降の作動は冷房運転モードと同様である。
【0177】
以上の如く、第4除湿暖房モードでは、第1〜第3除湿暖房モード時と同様に、室内蒸発器23にて冷却され除湿された送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。
【0178】
この際、第4除湿暖房モードでは、第3除湿暖房モードと同様に、室外熱交換器20を蒸発器として作用させるとともに、第3除湿暖房モードよりも高段側膨張弁13の絞り開度を縮小させているので、室外熱交換器20における冷媒蒸発温度を低下させることができる。
【0179】
従って、第3除湿暖房モードに対して、室外熱交換器20における冷媒の温度と外気温との温度差を拡大させて、室外熱交換器20にて冷媒が外気から吸熱する吸熱量を増加させることができる。その結果、第3除湿暖房モードよりも室内凝縮器12における冷媒の放熱量を増加させることができ、室内凝縮器12における送風空気の加熱能力を向上させることができる。
【0180】
上記の如く、通常除湿暖房モードでは、目標吹出温度TAOの上昇に伴って、高段側膨張弁13における減圧量を増加させるとともに、冷房用膨張弁22における減圧量を減少させることによって、第1〜第4除湿暖房モードへ順次切り替えて、室内凝縮器12における送風空気の加熱能力を向上させることができる。
【0181】
ところで、本実施形態では、室内蒸発器23の着霜を防止するために、室内蒸発器23における冷媒蒸発温度を1℃以上に維持しているので、第4除湿暖房モード時のように冷房用膨張弁22が全開状態になると、室外熱交換器20および室内蒸発器23の双方の冷媒蒸発温度が1℃以上に維持されることになる。
【0182】
このため、第4除湿暖房モードに切り替えられて、室外熱交換器20および室内蒸発器23の冷媒蒸発温度が1℃に到達してしまうと、これ以上、冷媒の吸熱量を増加させることができなくなり、室内凝縮器12における冷媒の放熱量を増加させることができなくなってしまう。そこで、本実施形態では、ステップS85にて説明したように、通常除湿暖房モードに加熱能力が不足した際にインジェクション除湿暖房モードへ切り替える。
【0183】
(b)−5:インジェクション除湿暖房モード
図7のステップS87にて実行されるインジェクション除湿暖房モードにおける制御処理の詳細については、図13のフローチャートを用いて説明する。まず、図13のステップS871では、除湿暖房運転モードにおける各膨張弁13、22、中間圧側開閉弁16a、冷媒流路切替手段16b、16c等の制御状態を決定する。
【0184】
具体的には、高段側膨張弁13を冷媒を第4除湿暖房モードと同様の絞り状態とし、冷房用膨張弁22を全開状態とし、さらに、中間圧側開閉弁16aを開弁状態とし、低圧側開閉弁16bを開弁状態とし、冷房用開閉弁16cを閉弁状態とする。
【0185】
これにより、図5のステップS12にて、各制御対象機器に制御信号あるいは制御電圧が出力されると、ヒートポンプサイクル10は、図2の実線矢印に示すように冷媒が流れる冷媒流路に切り替えられることになる。
【0186】
続くステップS872では、現在の高圧側冷媒圧力Pdが目標高圧TPdより高くなっているか否かを判定し、現在の高圧側冷媒圧力Pdが目標高圧TPdより高くなっている場合には、ステップS873へ進み、現在の高圧側冷媒圧力Pdが目標高圧TPdより高くなっていない場合には、ステップS874へ進む。
【0187】
ステップS873では、高段側膨張弁13の現在の弁開度が、最大弁開度(全開状態)よりも小さくなっているか否かを判定する。ステップS873にて、高段側膨張弁13の現在の弁開度が、最大弁開度よりも小さくなっている場合には、ステップS875へ進み、高段側膨張弁13の弁開度を現在の弁開度に対して、予め定めた所定開度分だけ増加させてステップS88へ戻る。
【0188】
一方、ステップS874にて、高段側膨張弁13の現在の弁開度が、最大弁開度よりも小さくなっていない(すなわち、現在の弁開度が、最大弁開度になっている)場合には、現在の値よりも弁開度を増加させることはできないので、現在の弁開度が維持されて、ステップS88へ戻る。
【0189】
また、ステップS874では、高段側膨張弁13の現在の弁開度が、最小弁開度よりも大きくなっているか否かを判定する。ステップS874にて、高段側膨張弁13の現在の弁開度が、最小弁開度よりも大きくなっている場合には、ステップS876へ進み、高段側膨張弁13の弁開度を現在の弁開度に対して、予め定めた所定開度分だけ減少させてステップS88へ戻る。
【0190】
なお、ステップS874における最小弁開度とは、高段側膨張弁13を絞り状態とした際に、高段側膨張弁13の絞り通路面積が取り得る範囲内において最小となる開度(本実施形態では、絞り通路面積が相当直径φ0.5mmとなる開度)であり、最小弁開度になった際に、高段側膨張弁13における第1減圧量が最大となる。このことは冷房用膨張弁22においても同様である。
【0191】
一方、ステップS874にて、高段側膨張弁13の現在の弁開度が、最小弁開度よりも大きくなっていない(すなわち、現在の弁開度が、最小弁開度になっている)場合には、現在の値よりも弁開度を減少させることはできないので、現在の弁開度が維持されて、ステップS88へ戻る。
【0192】
従って、インジェクション除湿暖房モードのヒートポンプサイクル10では、図14のモリエル線図に示すように冷媒の状態が変化する。なお、図14では、インジェクション除湿暖房モード時の冷媒の状態の変化を太実線で示し、比較のために第4除湿暖房モードの冷媒の状態の変化を破線で示している。
【0193】
まず、インジェクション除湿暖房モードが実行されると、圧縮機11の吐出ポート11cから吐出された高圧冷媒(図14のa14点)が室内凝縮器12へ流入する。室内凝縮器12へ流入した冷媒は、送風機32から送風されて室内蒸発器23を通過して冷却され除湿された送風空気と熱交換して放熱する(図14のa14点→b14点)。これにより、送風空気が加熱される。
【0194】
室内凝縮器12から流出した冷媒は、絞り状態となっている高段側膨張弁13にて中間圧冷媒となるまで等エンタルピ的に減圧膨脹される(図14のb14点→c114点)。そして、高段側膨張弁13にて減圧された中間圧冷媒は、気液分離器14にて気液分離される(図14のc114点→c214点、c114点→c314点)。
【0195】
気液分離器14にて分離された気相冷媒は、中間圧側開閉弁16aが開弁状態となっているので、中間圧冷媒通路15を介して、圧縮機11の中間圧ポート11bへ流入し(図14のc214点→a214点)、低段側圧縮機構吐出冷媒(図14のa114点)と合流して、高段側圧縮機構へ吸入される。
【0196】
一方、気液分離器14にて分離された液相冷媒は、低圧側開閉弁16bが閉弁状態となっているので、低段側固定絞り17へ流入して低圧冷媒となるまで等エンタルピ的に減圧膨脹される(図14のc314点→c414点)。低段側固定絞り17から流出した冷媒は、室外熱交換器20へ流入して、送風ファン21から送風された外気と熱交換して吸熱する(図14のc414点→d114点)。
【0197】
室外熱交換器20から流出した冷媒は、冷房用開閉弁16cが閉弁状態となっており、さらに、冷房用膨張弁22が全開状態となっているので、減圧されることなく室内蒸発器23へ流入し、送風機32から送風された送風空気から吸熱して蒸発する(図14のd114点→d214点)。これにより、送風空気が冷却される。
【0198】
室内蒸発器23から流出した冷媒は、アキュムレータ24へ流入して気液分離される。そして、分離された気相冷媒が圧縮機11の吸入ポート11a(図14のe14点)から吸入されて低段側圧縮機構→高段側圧縮機構の順に再び圧縮される(図14のe14点→a114点→a14点)。
【0199】
以上の如く、インジェクション除湿暖房モードでは、室内蒸発器23にて冷却され除湿された送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。
【0200】
この際、インジェクション除湿暖房モードでは、低段側圧縮機構および高段側圧縮機構にて、冷媒を二段階に昇圧させるとともに、サイクル内の中間圧冷媒を中間圧ポート11bから高段側圧縮機構へ吸入させるガスインジェクションサイクル(エコノマイザ式冷凍サイクル)を構成できる。
【0201】
これにより、高段側圧縮機構へ吸入される冷媒流量(ガスインジェクション量)を増加させて、圧縮機11の吐出ポート11cから吐出される高温高圧冷媒の温度を第4除湿暖房モードよりも上昇させることができるとともに、高段側圧縮機構における圧縮仕事量を増加させることができる。その結果、室内凝縮器12における送風空気の加熱能力を充分に向上させることができる。
【0202】
なお、図14のモリエル線図では、インジェクション除湿暖房モードにおいて、圧縮機11から吐出される高温高圧冷媒の温度が第4除湿暖房モードよりも上昇する例を説明しているが、本発明者らの検討によれば、インジェクション除湿暖房モードでは、圧縮機11から吐出される高温高圧冷媒の温度が第4除湿暖房モードより高くなっていなくても、高段側圧縮機構における圧縮仕事量の増加によって、室内凝縮器12における送風空気の加熱能力を充分に向上できることが判っている。
【0203】
さらに、インジェクション除湿暖房モード時には、制御ステップS873→S875にて説明したように、目標高圧Pdの上昇、すなわち車室内へ吹き出される送風空気の目標吹出温度TAOの上昇に伴って、高段側膨張弁13の絞り開度を増加させている。これにより、目標吹出温度TAOの上昇に伴って、中間圧ポート11bへ流入させる冷媒流量(ガスインジェクション量)を増加させて高段側圧縮機構における圧縮仕事量を増加させることができ、室内凝縮器12における加熱能力を充分かつ適切に向上させることができる。
【0204】
(c)暖房運転モード
次に、ステップS9にて実行される暖房運転モードについて説明する。暖房運転モードでは、高段側膨張弁13を冷媒を減圧させる絞り状態とし、冷房用膨張弁22を全閉状態とし、エアミックスドア34の開度がバイパス通路35を閉塞させる最小開度となるようにエアミックスドア34用のサーボモータの制御状態を決定し、さらに、中間圧側開閉弁16aを開弁状態とし、低圧側開閉弁16bを閉弁状態とし、冷房用開閉弁16cを開弁状態とする。
【0205】
これにより、図5のステップS12にて、各制御対象機器に制御信号あるいは制御電圧が出力されると、ヒートポンプサイクル10は、図3の実線矢印に示すように冷媒が流れる冷媒流路に切り替えられる。
【0206】
また、圧縮機11の回転数Ncについては、圧縮機11の吐出ポート11cから高段側膨張弁13の入口側へ至るヒートポンプサイクル10の高圧側冷媒圧力Pdが、フィードバック制御手法等によって目標高圧TPdに近づくように決定される。この目標高圧Tdは、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、車室内へ吹き出される送風空気が目標吹出温度TAOとなるように決定される。
【0207】
従って、暖房運転モードのヒートポンプサイクル10では、図15のモリエル線図に示すように、圧縮機11の吐出ポート11cから吐出された高圧冷媒(図15のa15点)が室内凝縮器12へ流入する。室内凝縮器12へ流入した冷媒は、送風機32から送風されて室内蒸発器23を通過した車室内送風空気と熱交換して放熱する(図15のa15→b15点)。これにより、車室内送風空気が加熱される。
【0208】
室内凝縮器12から流出した冷媒は、絞り状態となっている高段側膨脹弁13にて中間圧冷媒となるまで等エンタルピ的に減圧膨脹される(図15のb15→c115点)。そして、高段側膨脹弁13にて減圧された中間圧冷媒は、気液分離器14にて気液分離される(図15のc15→c215点、c15→c315点)。
【0209】
気液分離器14にて分離された気相冷媒は、中間圧側開閉弁16aが開弁状態となっているので、中間圧冷媒通路15を介して、圧縮機11の中間圧ポート11bへ流入し(図15のc215→a215点)、低段側圧縮機構吐出冷媒(図15のa115点)と合流して、高段側圧縮機構へ吸入される。
【0210】
一方、気液分離器14にて分離された液相冷媒は、低圧側開閉弁16bが閉弁状態となっているので、低段側固定絞り17へ流入して低圧冷媒となるまで等エンタルピ的に減圧膨脹される(図15のc315→c415点)。低段側固定絞り17から流出した冷媒は、室外熱交換器20へ流入して、送風ファン21から送風された外気と熱交換して吸熱する(図7のc415点→d15点)。
【0211】
室外熱交換器20から流出した冷媒は、冷房用開閉弁16cが開弁状態となっているので、膨脹弁迂回用通路25を介して、アキュムレータ24へ流入して気液分離される。そして、分離された気相冷媒が圧縮機11の吸入ポート11a(図15のe15点)から吸入されて再び圧縮される。一方、分離された液相冷媒はサイクルが要求されている冷凍能力を発揮するために必要としていない余剰冷媒としてアキュムレータ24内に蓄えられる。
【0212】
以上の如く、暖房運転モードでは、圧縮機11から吐出された冷媒の有する熱を室内凝縮器12にて車室内送風空気に放熱させて、加熱された室内送風空気を車室内へ吹き出すことができる。これにより、車室内の暖房を実現することができる。
【0213】
また、上記の説明から明らかなように、暖房運転モードでは、加熱用熱交換器である室内凝縮器12から流出した冷媒を、第1減圧手段である高段側膨脹弁13→気液分離器14→第2減圧手段である低段側固定絞り17→室外熱交換器20→アキュムレータ24の順に流すとともに、気液分離器14にて分離された気相冷媒を中間圧冷媒通路15→圧縮機11の中間圧ポート11bへ流入させている。
【0214】
本実施形態のヒートポンプサイクル10は、以上の如く作動するので、冷房運転モード時には車室内の冷房を実現でき、暖房運転モード時には車室内の暖房を実現できる。
【0215】
さらに、除湿暖房運転モード時には、ヒートポンプサイクル10全体としてガスインジェクションサイクル(エコノマイザ式冷凍サイクル)を構成することによって、室内蒸発器23の冷媒蒸発圧力が所定温度以上に維持されていても、室内凝縮器12における送風空気の加熱能力を向上させることができる。
【0216】
(第2実施形態)
上記第1実施形態のヒートポンプサイクル10は、インジェクション除湿暖房モードの冷媒回路に切替可能に構成されているが、本第2実施形態のヒートポンプサイクル10は、インジェクション除湿暖房モードの冷媒回路に代えて、図16に示すガスバイパス除湿暖房モードの冷媒回路に切替可能に構成されている。
【0217】
具体的には、本実施形態では、気液分離器14の気相冷媒流出ポート14cには、中間圧冷媒通路15を介して圧縮機11の吸入ポート11aが接続されている。したがって、本実施形態では、圧縮機11は、中間圧ポート11bが不要であるので、一段昇圧式の電動圧縮機でよい。
【0218】
また、本実施形態では、中間圧冷媒通路15には、上記第1実施形態の中間圧側開閉弁16aの代わりに、絞り機能付き開閉弁16dが配置されている。この中間圧側開閉弁16aは中間圧冷媒通路15を開閉する開閉手段としての電磁弁であるとともに、中間圧冷媒通路15を開いた際に冷媒流れを絞って冷媒を減圧させる減圧手段でもあり、空調制御装置40から出力される制御信号によって、その作動が制御される。
【0219】
絞り機能付き開閉弁16dの代わりに、中間圧冷媒通路15を開閉する開閉手段としての開閉弁と、中間圧冷媒通路15の冷媒を減圧させる減圧手段としての減圧弁とを中間圧冷媒通路15に配置してもよい。
【0220】
なお、中間圧側開閉弁16aは、中間圧冷媒通路15を開いた際に気液分離器14の気相冷媒出口から圧縮機11の中間圧ポート11b側へ冷媒が流れることのみを許容する逆止弁としての機能を兼ね備えている。これにより、中間圧側開閉弁16aが中間圧冷媒通路15を開いた際に、圧縮機11側から気液分離器14へ冷媒が逆流することが防止される。
【0221】
さらに、中間圧側開閉弁16aは、中間圧冷媒通路15を開閉することによって、サイクル構成(冷媒流路)を切り替える機能を果たす。従って、本実施形態の中間圧側開閉弁16aは、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替手段としての機能も兼ね備えている。
【0222】
これにより、ヒートポンプサイクル10は、インジェクション除湿暖房モードの冷媒回路に代えて、ガスバイパス除湿暖房モードの冷媒回路に切替可能に構成されている。
【0223】
次に、図17〜図20を用いて、上記構成における本実施形態の車両用空調装置1の作動を説明する。本実施形態の車両用空調装置1のメインルーチンとしての制御処理を示すフローチャートは、図5のフローチャートと同様であるので図示を省略する。
【0224】
また、本実施形態のステップS7にて実行される冷房運転モードの詳細は、上記第1実施形態と同様であるので説明を省略する。
【0225】
次に、本実施形態のステップS8にて実行される除湿暖房運転モードの詳細を、図17、図18を用いて説明する。なお、図17は、除湿暖房運転モード時に実行される制御フローを示すフローチャートである。
る。
【0226】
図17のフローチャートでは、上記第1実施形態の図7のフローチャートに対して、ステップS87に示すインジェクション除湿暖房モードの制御処理を、ステップS89に示すガスバイパス除湿暖房モードの制御処理に変更している。
【0227】
これにより、本実施形態のヒートポンプサイクル10では、除湿暖房運転モードとして、通常除湿暖房モードおよびガスバイパス除湿暖房モードの2つの運転モードを切り替えることができる。さらに、通常除湿暖房モードは、ガスバイパス除湿暖房モードに優先して実行される。
【0228】
すなわち、ステップS85にて、加熱能力が不足している(図8に示す判定用制御フラグが1)と判定された場合は、ステップS89へ進み、ガスバイパス除湿暖房モードの制御処理が実行される。一方、ステップS85にて、加熱能力が不足していない(図8に示す判定用制御フラグが0)と判定された場合は、ステップS86へ進み、通常除湿暖房モードの制御処理が実行される。
【0229】
ステップS86にて実行される通常除湿暖房モードにおける制御処理は、上記第1実施形態と同様であるので説明を省略する。
【0230】
ステップS89にて実行されるインジェクション除湿暖房モードにおける制御処理の詳細については、上記第1実施形態で説明した図13のフローチャートと同様であるので、図13のフローチャートに基づいて説明する。
【0231】
まず、ステップS871では、除湿暖房運転モードにおける各膨張弁13、22、絞り機能付き開閉弁16d、冷媒流路切替手段16b、16c等の制御状態を決定する。
【0232】
具体的には、高段側膨張弁13を冷媒を第4除湿暖房モードと同様の絞り状態とし、冷房用膨張弁22を全開状態とし、さらに、絞り機能付き開閉弁16dを開弁状態とし、低圧側開閉弁16bを開弁状態とし、冷房用開閉弁16cを閉弁状態とする。
【0233】
これにより、図5のステップS12にて、各制御対象機器に制御信号あるいは制御電圧が出力されると、ヒートポンプサイクル10は、図16の実線矢印に示すように冷媒が流れる冷媒流路に切り替えられることになる。
【0234】
続くステップS872では、現在の高圧側冷媒圧力Pdが目標高圧TPdより高くなっているか否かを判定し、現在の高圧側冷媒圧力Pdが目標高圧TPdより高くなっている場合には、ステップS873へ進み、現在の高圧側冷媒圧力Pdが目標高圧TPdより高くなっていない場合には、ステップS874へ進む。
【0235】
ステップS873では、高段側膨張弁13の現在の弁開度が、最大弁開度(全開状態)よりも小さくなっているか否かを判定する。ステップS873にて、高段側膨張弁13の現在の弁開度が、最大弁開度よりも小さくなっている場合には、ステップS875へ進み、高段側膨張弁13の弁開度を現在の弁開度に対して、予め定めた所定開度分だけ増加させてステップS88へ戻る
一方、ステップS874にて、高段側膨張弁13の現在の弁開度が、最大弁開度よりも小さくなっていない(すなわち、現在の弁開度が、最大弁開度になっている)場合には、現在の値よりも弁開度を増加させることはできないので、現在の弁開度が維持されて、ステップS88へ戻る。
【0236】
また、ステップS874では、高段側膨張弁13の現在の弁開度が、最小弁開度よりも大きくなっているか否かを判定する。ステップS874にて、高段側膨張弁13の現在の弁開度が、最小弁開度よりも大きくなっている場合には、ステップS876へ進み、高段側膨張弁13の弁開度を現在の弁開度に対して、予め定めた所定開度分だけ減少させてステップS88へ戻る。
【0237】
なお、ステップS874における最小弁開度とは、高段側膨張弁13を絞り状態とした際に、高段側膨張弁13の絞り通路面積が取り得る範囲内において最小となる開度(本実施形態では、絞り通路面積が相当直径φ0.5mmとなる開度)であり、最小弁開度になった際に、高段側膨張弁13における第1減圧量が最大となる。このことは冷房用膨張弁22においても同様である。
【0238】
一方、ステップS874にて、高段側膨張弁13の現在の弁開度が、最小弁開度よりも大きくなっていない(すなわち、現在の弁開度が、最小弁開度になっている)場合には、現在の値よりも弁開度を減少させることはできないので、現在の弁開度が維持されて、ステップS88へ戻る。
【0239】
従って、ガスバイパス除湿暖房モードのヒートポンプサイクル10では、図18のモリエル線図に示すように冷媒の状態が変化する。なお、図18では、インジェクション除湿暖房モード時の冷媒の状態の変化を太実線で示し、比較のために第4除湿暖房モードの冷媒の状態の変化を破線で示している。
【0240】
まず、インジェクション除湿暖房モードが実行されると、圧縮機11の吐出ポート11cから吐出された高圧冷媒(図18のa18点)が室内凝縮器12へ流入する。室内凝縮器12へ流入した冷媒は、送風機32から送風されて室内蒸発器23を通過して冷却され除湿された送風空気と熱交換して放熱する(図18のa18点→b18点)。これにより、送風空気が加熱される。
【0241】
室内凝縮器12から流出した冷媒は、絞り状態となっている高段側膨張弁13にて中間圧冷媒となるまで等エンタルピ的に減圧膨脹される(図18のb18点→c118点)。そして、高段側膨張弁13にて減圧された中間圧冷媒は、気液分離器14にて気液分離される(図18のc118点→c218点、c118点→c318点)。
【0242】
気液分離器14にて分離された気相冷媒は、絞り機能付き開閉弁16dが開弁状態となっているので、中間圧冷媒通路15を介して圧縮機11の吸入ポート11aへ吸入される。このとき、絞り機能付き開閉弁16dが気相冷媒の流れを絞ることによって、気相冷媒が減圧される(図18のc218点→d218点)。
【0243】
一方、気液分離器14にて分離された液相冷媒は、低圧側開閉弁16bが閉弁状態となっているので、低段側固定絞り17へ流入して低圧冷媒となるまで等エンタルピ的に減圧膨脹される(図18のc318点→c418点)。低段側固定絞り17から流出した冷媒は、室外熱交換器20へ流入して、送風ファン21から送風された外気と熱交換して吸熱する(図18のc418点→d118点)。
【0244】
室外熱交換器20から流出した冷媒は、冷房用開閉弁16cが閉弁状態となっており、さらに、冷房用膨張弁22が全開状態となっているので、減圧されることなく室内蒸発器23へ流入し、送風機32から送風された送風空気から吸熱して蒸発する(図18のd118点→d218点)。これにより、送風空気が冷却される。
【0245】
室内蒸発器23から流出した冷媒は、アキュムレータ24へ流入して気液分離される。そして、分離された気相冷媒が圧縮機11の吸入ポート11aから吸入されて再び圧縮される(図14のe18点→a18点)。
【0246】
以上の如く、ガスバイパス除湿暖房モードでは、室内蒸発器23にて冷却され除湿された送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。
【0247】
この際、ガスバイパス除湿暖房モードでは、サイクル内の中間圧冷媒を吸入ポート11aから圧縮機11へ吸入させるガスバイパスサイクルを構成できる。これにより、圧縮機11へ吸入される冷媒流量を増加させて、圧縮機11の吐出ポート11cから吐出される高温高圧冷媒の温度を第4除湿暖房モードよりも上昇させることができるとともに、圧縮機11における圧縮仕事量を増加させることができる。その結果、室内凝縮器12における送風空気の加熱能力を充分に向上させることができる。
【0248】
なお、図18のモリエル線図では、ガスバイパス除湿暖房モードにおいて、圧縮機11から吐出される高温高圧冷媒の温度が第4除湿暖房モードよりも上昇する例を説明しているが、本発明者らの検討によれば、ガスバイパス除湿暖房モードでは、圧縮機11から吐出される高温高圧冷媒の温度が第4除湿暖房モードより高くなっていなくても、高段側圧縮機構における圧縮仕事量の増加によって、室内凝縮器12における送風空気の加熱能力を充分に向上できることが判っている。
【0249】
さらに、ガスバイパス除湿暖房モード時には、制御ステップS873→S875にて説明したように、目標高圧Pdの上昇、すなわち車室内へ吹き出される送風空気の目標吹出温度TAOの上昇に伴って、高段側膨張弁13の絞り開度を増加させている。これにより、目標吹出温度TAOの上昇に伴って、気液分離器14に流入する冷媒の乾き度が増大するので、吸入ポート11aへ流入させる冷媒流量(ガスバイパス量)を増加させて圧縮機11における圧縮仕事量を増加させることができ、室内凝縮器12における加熱能力を充分かつ適切に向上させることができる。
【0250】
このとき、吸入ポート11aへ流入させる冷媒流量(ガスバイパス量)が増加することで室外熱交換器20および室内蒸発器23へ流入させる冷媒流量(液冷媒量)が減ることとなるが、この場合、室内蒸発器23の温度が上昇するので、上述のフィードバック制御手法により圧縮機11の回転数Ncが増加し、室外熱交換器20および室内蒸発器23へ適切な流量の冷媒が流れるようになる。また、圧縮機11の回転数Ncが増加することで、吸入ポート11aへ流入させる冷媒流量(ガスバイパス量)をさらに増加させることができるので、室内凝縮器12における加熱能力をさらに向上させることができる。
【0251】
なお、絞り機能付き開閉弁16dで減圧された気相冷媒の圧力は、アキュムレータ24で分離された気相冷媒の圧力よりも高くなっているのが好ましい。圧縮機11の回転数Ncが増加した場合、絞り機能付き開閉弁16dで減圧された気相冷媒の方がアキュムレータ24で分離された気相冷媒よりも吸入ポート11aへ流入しやすくなって、ガスバイパス量を効果的に増加させることができるからである。但し、絞り機能付き開閉弁16dで減圧された気相冷媒がアキュムレータ24側へ逆流することのないよう、絞り機能付き開閉弁16dで減圧された気相冷媒の圧力と、アキュムレータ24で分離された気相冷媒の圧力との差を適度に抑えておくのが好ましい。
【0252】
次に、本実施形態のステップS9にて実行される暖房運転モードについて説明する。図19は、本実施形態の暖房運転モード時における冷媒流路を示す全体構成図である。暖房運転モードでは、絞り機能付き開閉弁16dを閉弁状態とする。また、高段側膨張弁13を冷媒を減圧させる絞り状態とし、冷房用膨張弁22を全閉状態とし、エアミックスドア34の開度がバイパス通路35を閉塞させる最小開度となるようにエアミックスドア34用のサーボモータの制御状態を決定し、低圧側開閉弁16bを閉弁状態とし、冷房用開閉弁16cを開弁状態とする。
【0253】
これにより、図5のステップS12にて、各制御対象機器に制御信号あるいは制御電圧が出力されると、ヒートポンプサイクル10は、図19の実線矢印に示すように冷媒が流れる冷媒流路に切り替えられる。
【0254】
また、圧縮機11の回転数Ncについては、圧縮機11の吐出ポート11cから高段側膨張弁13の入口側へ至るヒートポンプサイクル10の高圧側冷媒圧力Pdが、フィードバック制御手法等によって目標高圧TPdに近づくように決定される。この目標高圧Tdは、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、車室内へ吹き出される送風空気が目標吹出温度TAOとなるように決定される。
【0255】
従って、暖房運転モードのヒートポンプサイクル10では、圧縮機11の吐出ポート11cから吐出された高圧冷媒が室内凝縮器12へ流入する。室内凝縮器12へ流入した冷媒は、送風機32から送風されて室内蒸発器23を通過した車室内送風空気と熱交換して放熱する。これにより、車室内送風空気が加熱される。
【0256】
室内凝縮器12から流出した冷媒は、絞り状態となっている高段側膨脹弁13にて中間圧冷媒となるまで等エンタルピ的に減圧膨脹される。そして、高段側膨脹弁13にて減圧された中間圧冷媒は、絞り機能付き開閉弁16dおよび低圧側開閉弁16bが閉弁状態となっているので、気液分離器14を流れて低段側固定絞り17へ流入して低圧冷媒となるまで等エンタルピ的に減圧膨脹される。低段側固定絞り17から流出した冷媒は、室外熱交換器20へ流入して、送風ファン21から送風された外気と熱交換して吸熱する。
【0257】
室外熱交換器20から流出した冷媒は、冷房用開閉弁16cが開弁状態となっているので、膨脹弁迂回用通路25を介して、アキュムレータ24へ流入して気液分離される。そして、分離された気相冷媒が圧縮機11の吸入ポート11aから吸入されて再び圧縮される。一方、分離された液相冷媒はサイクルが要求されている冷凍能力を発揮するために必要としていない余剰冷媒としてアキュムレータ24内に蓄えられる。
【0258】
以上の如く、暖房運転モードでは、圧縮機11から吐出された冷媒の有する熱を室内凝縮器12にて車室内送風空気に放熱させて、加熱された室内送風空気を車室内へ吹き出すことができる。これにより、車室内の暖房を実現することができる。
【0259】
(第3実施形態)
上記第1実施形態では、気液分離器14の気相冷媒流出ポート14cには、中間圧冷媒通路15を介して圧縮機11の中間圧ポート11bが接続されているが、本第3実施形態では、図20に示すように、中間圧冷媒通路15が圧縮機11の中間圧ポート11b側と吸入ポート11a側とに分岐しており、気液分離器14の気相冷媒流出ポート14cには、分岐した中間圧冷媒通路15を介して圧縮機11の中間圧ポート11bおよび吸入ポート11aが接続されている。
【0260】
また、本実施形態では、中間圧冷媒通路15のうち分岐部よりも上流側に中間圧側開閉弁16aが配置され、中間圧冷媒通路15のうち分岐部よりも吸入ポート11a側に絞り機能付き開閉弁16dが配置されている。絞り機能付き開閉弁16dの詳細については、上記第2実施形態と同様であるので説明を省略する。
【0261】
これによると、中間圧側開閉弁16aを閉弁状態とすることで、上記第1実施形態の冷房運転モードおよび通常除湿暖房モードにすることができる。
【0262】
また、中間圧側開閉弁16aを開弁状態とし、絞り機能付き開閉弁16dを閉弁状態とすることで、上記第1実施形態のインジェクション除湿暖房モードおよび暖房運転モードにすることができる。
【0263】
そして、中間圧側開閉弁16aおよび絞り機能付き開閉弁16dを開弁状態とすることで、上記第2実施形態のガスバイパス除湿暖房モードにすることができる。
【0264】
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
【0265】
(1)上述の実施形態では、本発明の冷凍サイクル装置を電気自動車用の車両用空調装置1に適用した例を説明したが、本発明の冷凍サイクル装置は、例えば、エンジン(内燃機関)および走行用電動モータから走行用の駆動力を得るハイブリッド車両のように、エンジン廃熱が暖房用熱源として不充分となることのある車両に適用して有効である。さらに、据置型空調装置等に適用してもよい。
【0266】
また、上述の実施形態では、冷媒流路を切り替えることによって、種々の運転モードを実現可能な冷凍サイクル装置について説明したが、本発明による加熱用熱交換器における加熱能力向上効果は、少なくとも空調対象空間の除湿暖房を行う際に、通常の冷凍サイクルからガスインジェクションサイクル(エコノマイザ式冷凍サイクル)またはガスバイパスサイクルへ切替可能なサイクルであれば得ることができる。
【0267】
(2)上述の実施形態では、図5の制御ステップS6にて、モード選択スイッチに応じて、冷房運転モード、除湿暖房運転モードおよび暖房運転モードを決定した例を説明したが、各運転モードの決定はこれに限定されない。
【0268】
例えば、外気温に対して設定温度が低い場合に冷房運転モードを実行することを決定し、外気温に対して設定温度が高い場合に暖房運転モードを実行するように決定してもよい。さらに、車室内湿度を検出する湿度検出手段を設け、暖房運転モード時に、車室内湿度が予め定めた基準湿度以上となったときに、除湿暖房運転モードを実行するように決定してもよい。
【0269】
(3)上述の第1、第3実施形態では、開閉手段として、電磁弁からなる中間圧側開閉弁16aを採用した例を説明したが、開閉手段はこれに限定されない。例えば、全閉機能付きの流量調整弁を採用してもよい。そして、インジェクション除湿暖房モード時に、車室内へ吹き出される送風空気の目標吹出温度TAOの上昇に伴って、この流量調整弁の開度を増加させるようにしてもよい。
【0270】
(4)上述の第1、第3実施形態では、暖房運転モード時にヒートポンプサイクル10全体として、ガスインジェクションサイクルを構成した例を説明したが、暖房運転モード時のサイクル構成は、これに限定されない。例えば、要求される加熱能力が予め定めた基準値以下となった際に、高段側膨脹弁13を絞り状態とし、冷房用膨脹弁22を全閉状態とし、さらに、中間圧側開閉弁16aを全閉状態とし、低圧側開閉弁16bを開弁状態とし、冷房用開閉弁16cを開弁状態としてもよい。
【0271】
これにより、圧縮機11の吐出ポート11c→室内凝縮器12→高段側膨張弁13→室外熱交換器20→アキュムレータ24→圧縮機11の吸入ポート11aの順に循環する通常の冷凍サイクルを構成できる。従って、要求される加熱能力が予め定めた基準値以下となった際でも、圧縮機11の回転数Ncを増加させて、圧縮機11圧縮効率の低下を抑制することができる。
【0272】
(5)上述の実施形態では、低段側減圧手段(第2減圧手段)としての低段側固定絞り17の流量特性を適切に設定することによって、暖房運転モード時に、室外熱交換器20へ流入する冷媒の乾き度Xを0.1以下としているが、低段側減圧手段(第2減圧手段)は、固定絞りに限定されない。
【0273】
つまり、低段側減圧手段として、高段側膨張弁13と同様の構成の可変絞り機構を採用してもよい。この場合は、空調制御装置40が、室外熱交換器20へ流入する冷媒の温度および圧力等に基づいて、室外熱交換器20へ流入する冷媒の乾き度Xを検出し、この検出値が0.1以下となるように、低段側減圧手段を構成する可変絞り機構の開度を制御すればよい。
【0274】
(6)上述の実施形態では、除湿暖房運転モード時に目標吹出温度TAOの上昇に伴って、第1除湿暖房モードから第4除湿暖房モードへ段階的に切り替える例を説明したが、第1除湿暖房モードから第4除湿暖房モードへの切り替えはこれに限定されない。例えば、目標吹出温度TAOに増加に伴って、第1除湿暖房モードから第4除湿暖房モードへ連続的に切り替えるようにしてもよい。
【0275】
すなわち、目標吹出温度TAOの上昇に伴って、高段側膨張弁13を絞り開度を縮小させ、さらに、冷房用膨張弁22の絞り開度を増加させればよい。このように高段側膨張弁13および冷房用膨張弁22の絞り開度を変化させることによって、室外熱交換器20における冷媒の圧力(温度)が調整されるので、室外熱交換器20を自動的に、放熱器として作用させる状態から蒸発器として作用させる状態へ切り替えることができる。
【0276】
また、インジェクション除湿暖房モードまたはガスバイパス除湿暖房モードは、第4除湿暖房モードにおいて高段側膨張弁13における第1減圧量が最大となり、冷房用膨張弁22における第3減圧量が最小となっている際に切り替えるようにしてもよい。
【符号の説明】
【0277】
11 圧縮機
11a 吸入ポート
11b 中間圧ポート
11c 吐出ポート
12 室内凝縮器(利用側熱交換器、加熱用熱交換器)
13 高段側膨張弁(第1減圧手段)
14 気液分離器
15 中間圧冷媒通路
16a 中間圧側開閉弁
16b 低圧側開閉弁
16c 冷房用開閉弁
16d 絞り機能付き開閉弁(開閉手段、減圧手段)
17 低段側固定絞り(第2減圧手段)
20 室外熱交換器
22 冷房用膨張弁(第3減圧手段)
23 室内蒸発器(冷却用熱交換器)

【特許請求の範囲】
【請求項1】
吸入ポート(11a)から吸入した低圧冷媒を圧縮して吐出ポート(11c)から高圧冷媒を吐出する圧縮機(11)と、
前記圧縮機(11)の吐出ポート(11c)から吐出された高圧冷媒を空調対象空間へ送風される送風空気と熱交換させて、前記送風空気を加熱する加熱用熱交換器(12)と、
前記加熱用熱交換器(12)から流出した冷媒を減圧させる第1減圧手段(13)と、
前記第1減圧手段(13)にて減圧された中間圧冷媒の気液を分離する気液分離手段(14)と、
前記気液分離手段(14)にて分離された液相冷媒を減圧させる第2減圧手段(17)と、
前記第2減圧手段(17)から流出した冷媒と外気とを熱交換させる室外熱交換器(20)と、
前記室外熱交換器(20)から流出した冷媒を減圧させる第3減圧手段(22)と、
前記第3減圧手段(22)から流出した冷媒と前記送風空気と熱交換させて、前記吸入ポート(11a)側へ流出させる冷却用熱交換器(23)と、
前記気液分離手段(14)にて分離された気相冷媒を、前記吸入ポート(11a)側へ導く中間圧冷媒通路(15)と、
前記中間圧冷媒通路(15)を開閉する開閉手段(16d)と、
前記中間圧冷媒通路(15)を流れる前記気相冷媒を減圧する減圧手段(16d)とを備え、
前記加熱用熱交換器(12)が、前記冷却用熱交換器(23)に対して前記送風空気流れ下流側に配置されるヒートポンプサイクルであって、
前記冷却用熱交換器(23)にて前記送風空気を冷却して、冷却された前記送風空気を前記加熱用熱交換器(23)にて前記空調対象空間の温度以上となるまで昇温させる除湿暖房運転モードとして、
前記開閉手段(16d)が前記中間圧冷媒通路(15)を開き且つ前記減圧手段(16d)が前記気相冷媒を減圧することによって、前記気相冷媒を前記吸入ポート(11a)へ流入させるガスバイパス除湿暖房モードを有することを特徴とするヒートポンプサイクル。
【請求項2】
さらに、前記除湿暖房運転モードとして、
前記開閉手段(16d)が前記中間圧冷媒通路(15)を閉じることによって、前記第1減圧手段(13)から流出した冷媒の全流量を前記第2減圧手段(17)へ流入させる通常除湿暖房モードを有することを特徴とする請求項1に記載のヒートポンプサイクル。
【請求項3】
前記ガスバイパス除湿暖房モード時には、前記空調対象空間へ吹き出される送風空気の目標温度(TAO)の上昇に伴って、前記中間圧冷媒通路(15)から前記吸入ポート(11a)側へ流入させる冷媒流量を増加させることを特徴とする請求項1または2に記載のヒートポンプサイクル。
【請求項4】
前記ガスバイパス除湿暖房モード時には、前記空調対象空間へ吹き出される送風空気の目標温度(TAO)の上昇に伴って、前記第1減圧手段(13)の絞り開度を増加させることを特徴とする請求項3に記載のヒートポンプサイクル。
【請求項5】
前記通常除湿暖房モード時には、前記空調対象空間へ吹き出される送風空気の目標温度(TAO)の上昇に伴って、前記第1減圧手段(13)における第1減圧量を増加させるとともに、前記第3減圧手段(22)における第3減圧量を減少させることを特徴とする請求項2に記載のヒートポンプサイクル。
【請求項6】
前記ガスバイパス除湿暖房モードは、前記第3減圧量が最小となっている際に実行されることを特徴とする請求項5に記載のヒートポンプサイクル。
【請求項7】
サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替手段(16b、16c)を備え、
前記送風空気を冷却する冷房運転モード時には、
前記開閉手段(16d)が前記中間圧冷媒通路(15)を閉じた状態で、前記冷媒流路切替手段(16b、16c)が、前記加熱用熱交換器(12)から流出した冷媒を、前記第1減圧手段(13)→前記室外熱交換器(20)→前記第3減圧手段(22)→前記冷却用熱交換器(23)の順に流す冷媒流路に切り替えることを特徴とする請求項1ないし6のいずれか1つに記載のヒートポンプサイクル。
【請求項8】
サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替手段(16b、16c)を備え、
前記送風空気を加熱する暖房運転モード時には、
前記開閉手段(16d)が前記中間圧冷媒通路(15)を閉じた状態で、前記冷媒流路切替手段(16b、16c)が、前記加熱用熱交換器(12)から流出した冷媒を、前記第1減圧手段(13)→前記気液分離手段(14)→前記第2減圧手段(17)→前記室外熱交換器(20)の順に流す冷媒流路に切り替えることを特徴とする請求項1ないし7のいずれか1つに記載のヒートポンプサイクル。
【請求項9】
吸入ポート(11a)から吸入した低圧冷媒を圧縮して吐出ポート(11c)から高圧冷媒を吐出するとともに、サイクル内の中間圧冷媒を流入させて圧縮過程の冷媒に合流させる中間圧ポート(11b)を有する圧縮機(11)と、
前記圧縮機(11)の吐出ポート(11c)から吐出された高圧冷媒を空調対象空間へ送風される送風空気と熱交換させて、前記送風空気を加熱する加熱用熱交換器(12)と、
前記加熱用熱交換器(12)から流出した冷媒を減圧させる第1減圧手段(13)と、
前記第1減圧手段(13)にて減圧された中間圧冷媒の気液を分離する気液分離手段(14)と、
前記気液分離手段(14)にて分離された液相冷媒を減圧させる第2減圧手段(17)と、
前記第2減圧手段(17)から流出した冷媒と外気とを熱交換させる室外熱交換器(20)と、
前記室外熱交換器(20)から流出した冷媒を減圧させる第3減圧手段(22)と、
前記第3減圧手段(22)から流出した冷媒と前記送風空気と熱交換させて、前記吸入ポート(11a)側へ流出させる冷却用熱交換器(23)と、
前記気液分離手段(14)にて分離された気相冷媒を、前記中間圧ポート(11b)へ導く中間圧冷媒通路(15)と、
前記中間圧冷媒通路(15)を開閉する開閉手段(16a)とを備え、
前記加熱用熱交換器(12)が、前記冷却用熱交換器(23)に対して前記送風空気流れ下流側に配置されるヒートポンプサイクルであって、
前記冷却用熱交換器(23)にて前記送風空気を冷却して、冷却された前記送風空気を前記加熱用熱交換器(23)にて前記空調対象空間の温度以上となるまで昇温させる除湿暖房運転モードとして、
前記開閉手段(16a)が前記中間圧冷媒通路(15)を開くことによって、前記気相冷媒を前記中間圧ポート(11b)へ流入させるインジェクション除湿暖房モードを有することを特徴とするヒートポンプサイクル。
【請求項10】
さらに、前記除湿暖房運転モードとして、
前記開閉手段(16a)が前記中間圧冷媒通路(15)を閉じることによって、前記第1減圧手段(13)から流出した冷媒の全流量を前記第2減圧手段(17)へ流入させる通常除湿暖房モードを有することを特徴とする請求項9に記載のヒートポンプサイクル。
【請求項11】
前記インジェクション除湿暖房モード時には、前記空調対象空間へ吹き出される送風空気の目標温度(TAO)の上昇に伴って、前記中間圧ポート(11b)へ流入させる冷媒流量を増加させることを特徴とする請求項9または10に記載のヒートポンプサイクル。
【請求項12】
前記インジェクション除湿暖房モード時には、前記空調対象空間へ吹き出される送風空気の目標温度(TAO)の上昇に伴って、前記第1減圧手段(13)の絞り開度を増加させることを特徴とする請求項11に記載のヒートポンプサイクル。
【請求項13】
前記通常除湿暖房モード時には、前記空調対象空間へ吹き出される送風空気の目標温度(TAO)の上昇に伴って、前記第1減圧手段(13)における第1減圧量を増加させるとともに、前記第3減圧手段(22)における第3減圧量を減少させることを特徴とする請求項10に記載のヒートポンプサイクル。
【請求項14】
前記インジェクション除湿暖房モードは、前記第3減圧量が最小となっている際に実行されることを特徴とする請求項13に記載のヒートポンプサイクル。
【請求項15】
サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替手段(16b、16c)を備え、
前記送風空気を冷却する冷房運転モード時には、
前記開閉手段(16a)が前記中間圧冷媒通路(15)を閉じた状態で、前記冷媒流路切替手段(16b、16c)が、前記加熱用熱交換器(12)から流出した冷媒を、前記第1減圧手段(13)→前記室外熱交換器(20)→前記第3減圧手段(22)→前記冷却用熱交換器(23)の順に流す冷媒流路に切り替えることを特徴とする請求項9ないし14のいずれか1つに記載のヒートポンプサイクル。
【請求項16】
サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替手段(16b、16c)を備え、
前記送風空気を加熱する暖房運転モード時には、
前記開閉手段(16a)が前記中間圧冷媒通路(15)を開いた状態で、前記冷媒流路切替手段(16b、16c)が、前記加熱用熱交換器(12)から流出した冷媒を、前記第1減圧手段(13)→前記気液分離手段(14)→前記第2減圧手段(17)→前記室外熱交換器(20)の順に流すとともに、前記気液分離手段(14)にて分離された気相冷媒を前記中間圧冷媒通路(15)へ流入させる冷媒流路に切り替えることを特徴とする請求項9ないし15のいずれか1つに記載のヒートポンプサイクル。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate


【公開番号】特開2012−233676(P2012−233676A)
【公開日】平成24年11月29日(2012.11.29)
【国際特許分類】
【出願番号】特願2011−260523(P2011−260523)
【出願日】平成23年11月29日(2011.11.29)
【出願人】(000004260)株式会社デンソー (27,639)
【Fターム(参考)】